• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

沙地天然樟子松径向生长对干旱的响应

张晓, 潘磊磊, SemyungKwon, 刘艳书, 杨晓晖, 时忠杰

张晓, 潘磊磊, SemyungKwon, 刘艳书, 杨晓晖, 时忠杰. 沙地天然樟子松径向生长对干旱的响应[J]. 北京林业大学学报, 2018, 40(7): 27-35. DOI: 10.13332/j.1000-1522.20170467
引用本文: 张晓, 潘磊磊, SemyungKwon, 刘艳书, 杨晓晖, 时忠杰. 沙地天然樟子松径向生长对干旱的响应[J]. 北京林业大学学报, 2018, 40(7): 27-35. DOI: 10.13332/j.1000-1522.20170467
Zhang Xiao, Pan Leilei, Semyung Kwon, Liu Yanshu, Yang Xiaohui, Shi Zhongjie. Climatological response of radial growth for Pinus sylvestris var. mongolica to drought in Hulun Buir Sandland, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(7): 27-35. DOI: 10.13332/j.1000-1522.20170467
Citation: Zhang Xiao, Pan Leilei, Semyung Kwon, Liu Yanshu, Yang Xiaohui, Shi Zhongjie. Climatological response of radial growth for Pinus sylvestris var. mongolica to drought in Hulun Buir Sandland, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(7): 27-35. DOI: 10.13332/j.1000-1522.20170467

沙地天然樟子松径向生长对干旱的响应

基金项目: 

国家自然科学基金项目 41471029

国际科技合作专项 2015DFR31130

国家自然科学基金项目 31670715

中央级公益性科研院所基本科研业务费专项 CAFYBB2017QA037

中国林业科学研究院荒漠化研究所项目 IDS2017JY-4

国家自然科学基金项目 41701249

中央级公益性科研院所基本科研业务费专项 CAFYBB2017ZA006

详细信息
    作者简介:

    张晓,助理研究员。主要研究方向:恢复生态学与荒漠化防治。Email:zhangxiao978@caf.ac.cn 地址:100091北京市海淀区槐树居路10号中国林业科学研究院荒漠化研究所

    责任作者:

    时忠杰,副研究员。主要研究方向:树轮生态学与荒漠化防治。Email:shijie1204@163.com 地址:同上

  • 中图分类号: S758.1

Climatological response of radial growth for Pinus sylvestris var. mongolica to drought in Hulun Buir Sandland, Inner Mongolia of northern China

  • 摘要:
    目的呼伦贝尔沙地为天然樟子松分布区的南缘,气候变化呈暖干化特点,研究该区樟子松树木径向生长对气候的响应及其应对干旱的能力,有助于促进气候变化背景下沙地天然樟子松林的保护与恢复。
    方法在呼伦贝尔沙地的南辉和伊敏河两个地点建立了树轮宽度标准年表并对其变化进行比较,利用树轮宽度标准年表与气候因子进行相关分析,并计算樟子松应对极端干旱的抵抗力、恢复力和弹性力。
    结果南辉的樟子松标准年表与6月平均气温和6—7月平均最高气温呈显著负相关(P < 0.05),伊敏河的樟子松年表与4月、6—7月和9月平均气温和平均最高气温呈显著负相关(P < 0.05);两个地点的樟子松标准年表均与6—7月和9月的降水量正相关(P < 0.1);南辉的樟子松年表与9月相对湿度呈显著负相关(P < 0.05),但伊敏河的樟子松年表与前一年10—12月和当年2—3月和5月相对湿度显著正相关(P < 0.05);两个地点的樟子松年表均与前一年10月至当年9月的帕尔默干旱胁迫指数(PDSI)呈显著正相关(P < 0.05)。以上结果表明这一区域的樟子松径向生长受到水分的显著影响;与南辉的樟子松相比,伊敏河的樟子松对干旱的抵抗力较弱,但恢复力更强;随着干旱程度的增加,樟子松对极端干旱的抵抗力下降、恢复力增强。
    结论呼伦贝尔沙地天然樟子松径向生长受生长季气温和降水的共同影响;在1925—1935年间,两个地点的樟子松年表存在差异可能是由于伊敏河的樟子松处于幼龄,对干旱的抵抗能力较差;树龄可能会导致沙地天然樟子松应对干旱能力的差异,深入了解树龄对樟子松应对干旱能力的影响需进一步开展多点研究。
    Abstract:
    ObjectiveHulun Buir Sandland is the southern margin of natural Mongolian pine (Pinus sylvestris var. mongolica) with a warm and dry climatological trend. This study aims at climatological response of Mongolian pine and its resilience to drought.
    MethodTwo tree-ring width chronologies of Mongolian pine were established at Nanhui and Yiminhe sites in Hulun Buir Sandland, Inner Mongolia of northern China. Correlations were analyzed using the tree-ring width with climate factors, and tree resilience indexes (including resistance, recovery and resilience) were calculated using the two width chronologies.
    ResultResults showed that the tree-ring width had significantly negative correlation with the monthly mean temperature of June, and significantly negative correlation with the maximum temperature from June to July at Nanhui site (P < 0.05); and significantly negative correlation with the monthly mean temperature and the maximum temperature of April, June, July and September at Yiminhe site (P < 0.05). Tree-ring width had positive correlation with the monthly precipitation of June, July and September at both two sites (P < 0.1). In the meanwhile, the tree-ring width had significantly negative correlation with the relative humidity of September at Nanhui site, and significantly positive correlation with the relative humidity of the last October to December and February, March and May in the same year(P < 0.05). The tree-ring width had also significantly positive correlation with the Palmer drought severity index (PDSI) from last October to same September at two sites (P < 0.05), indicating the growth of Mongolian pine was significantly influenced by hydrological factors in Hunlun Buir Sandland. Compared to values in Nanhui site, the drought resistance was lower, but the recovery was larger in Yiminhe site. With drought severity increased, Mongolian pine showed decreased resistance and increased recovery.
    ConclusionThe radial growth of natural Mongolian pine was influenced by temperature and precipitation of summer in Hulun Buir Sandland. Difference of two tree-ring chronologies occurred from the year of 1925 to 1935 in two sites may result from younger trees and its lower resistance to drought in Yiminhe site. Stand age, as an important factor influencing tree resilience to drought should be further studied with multi-site data.
  • 图  1   研究区1951—2008年月平均气温和月降水量分布

    Figure  1.   Mean monthly air temperature and monthly precipitation during 1951-2008 in the study area

    图  2   樟子松年轮宽度标准年表及样本量

    Figure  2.   Standard chronology of tree-ring width and sample number of Pinus sylvestris var. mongolica

    图  3   两个地点樟子松年轮宽度标准化年表与气候因子的相关分析

    虚线表示相关分析显著性水平线P < 0.05,-代表前一年。

    Figure  3.   Correlation analysis of Pinus sylvestris var. mongolica standard chronology of tree-ring width with climate factors in two sampling sites

    The dotted lines mean the significance line of correlation analysis is P < 0.05, "-" represents the previous year.

    图  4   抵抗力、恢复力和弹性力与月均PDSI的关系

    Figure  4.   Relationship between resilience indexes (resistance, recovery and resilience) and monthly average PDSI

    表  1   樟子松采样点基本概况

    Table  1   Statistics description for tree-ring sampling sites

    取样地点Sampling site 经度Longitude 纬度Latitude 海拔Altitude/m 平均胸径Mean DBH/cm
    南辉Nanhui 119°16′E 48°17′N 692~751 78.2
    伊敏河Yiminhe River 120°00′E 48°45′N 724~780 61.0
    下载: 导出CSV

    表  2   樟子松年轮宽度标准年表和差值年表统计量

    Table  2   STD and RES statistics of tree-ring width of Pinus sylvestris var. mongolica

    年表特征
    Chronology characteristics
    南辉Nanhui 伊敏河Yiminhe River
    STD RES STD RES
    样本量(树木株数) Sample number (tree number) 41(20) 38(20) 20(8) 20(8)
    序列长度Time span 1881—2009 1889—2009 1917—2009 1918—2009
    树间平均相关系数Mean correlation coefficient among trees 0.418 0.429 0.451 0.426
    一阶自相关Autocorrelation order 1 0.336 0 0.002 4 0.713 4 0.106 5
    平均敏感度Mean sensitivity 0.199 2 0.174 6 0.179 3 0.181 8
    平均年轮宽度Mean tree-ring width 0.981 6 0.994 0 0.938 1 0.979 4
    标准差Standard deviation 0.212 5 0.157 1 0.246 8 0.167 7
    信噪比Signal-to-noise ratio 27.310 28.553 11.504 10.379
    样本对总体的代表性Representative of sample to total 0.965 0.966 0.920 0.912
    第一特征向量百分比Percentage of the first eigenvector 45.45 45.44 50.52 48.98
    共同区间段平均Mean of common interval 0.990 0.991 1.016 1.003
    注:STD表示标准年表,RES表示差值年表。南辉取样点共同区间段为1944—2009年,伊敏河取样点共同区间段为1946—2009年。
    Notes: STD represents standard chronology and RES represents residual chronology. Chronology common intervals of Nanhui and Yiminhe River were 1944-2009 and 1946-2009, respectively.
    下载: 导出CSV

    表  3   极端干旱年份南辉和伊敏河樟子松树木的抵抗力、恢复力和弹性力

    Table  3   Values of resistance, recovery and resilience of Pinus sylvestric var. mongolica in Nanhui and Yiminhe River in extreme drought years

    干旱事件发生年份Drought event occurring year 抵抗力Resistance 恢复力Recovery 弹性力Resilience
    南辉Nanhui 伊敏河Yiminhe River 南辉Nanhui 伊敏河Yiminhe River 南辉Nanhui 伊敏河Yiminhe River
    1922 1.518 0.860 1.100 1.216 1.670 1.045
    1926 0.845 0.218 0.870 2.230 0.735 0.486
    1944—1946 0.866 0.965 1.196 1.076 1.035 1.039
    1965—1967 0.642 0.816 1.052 0.968 0.675 0.790
    1974—1975 0.855 1.014 0.969 1.040 0.829 1.055
    1987 0.639 0.416 1.957 2.674 1.250 1.114
    2001—2005 0.836 0.777 0.971 1.033 0.812 0.803
    平均值Average 0.886±0.274a 0.724±0.273a 1.159±0.340a 1.462±0.641a 1.001±0.328a 0.905±0.208a
    注:相同字母表示差异不显著(P>0.05)。Note: there is not significant difference between same letters(P>0.05).
    下载: 导出CSV
  • [1]

    Intergovernmental Panel on Climate Change. Climate change 2014: synthesis report[R]. Geneva: IPCC, 2014: 1-151.

    [2] 孙凤华, 袁健, 路爽.东北地区近百年气候变化及突变检测[J].气候与环境研究, 2006, 11(1):101-108. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200601010

    Sun F H, Yuan J, Lu S. The changes and test of climate in northeast China over the last 100 years[J]. Climatic and Environmental Research, 2006, 11(1):101-108. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200601010

    [3] 徐化成.中国大兴安岭森林[M].北京:科学出版社, 1998:8-52.

    Xu H C. The Great Xing'an Mountains forest in China[M]. Beijing:Science press, 1998:8-52.

    [4] 赵慧颖.呼伦贝尔沙地45年来气候变化及其对生态环境的影响[J].生态学杂志, 2007, 26(11):1817-1821. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711021

    Zhao H Y. Recent 45 years climate change and its effects on ecological environment on Hulunbeier Sandy Land[J]. Chinese Journal of Ecology, 2007, 26(11):1817-1821. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711021

    [5] 彭剑峰, 勾晓华, 陈发虎, 等.天山东部西伯利亚落叶松树轮生长对气候要素的响应分析[J].生态学报, 2006, 26(8):2723-2731. doi: 10.3321/j.issn:1000-0933.2006.08.040

    Peng J F, Gou X H, Chen F H, et al. The responses of growth ring width variations of Larix sibirica Ledb to climate change in eastern Tianshan Mountains[J]. Acta Ecologica Sinca, 2006, 26(8):2723-2731. doi: 10.3321/j.issn:1000-0933.2006.08.040

    [6] 张先亮, 崔明星, 马艳军, 等.大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系[J].应用生态学报, 2010, 21(10):2501-2507. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010008

    Zhang X L, Cui M X, Ma Y J, et al. Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer, Great Xing'an Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(10):2501-2507. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010008

    [7] 王晓明, 赵秀海, 高露双, 等.长白山北坡不同年龄红松年表及其对气候的响应[J].生态学报, 2011, 31(21):6378-6387. http://d.old.wanfangdata.com.cn/Periodical/stxb201121009

    Wang X M, Zhao X H, Gao L S, et al. Age-dependent growth responses of Pinus koraiensis to climate in the north slope of Changbai Mountain, North-Eastern China[J]. Acta Ecologica Sinica, 2011, 31(21):6378-6387. http://d.old.wanfangdata.com.cn/Periodical/stxb201121009

    [8] 闫伯前, 林万众, 刘琪璟, 等.秦岭不同年龄太白红杉径向生长对气候因子的响应[J].北京林业大学学报, 2017, 39(9):58-65. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=3764a280-cb21-4a68-a44f-625667d988bf

    Yan B Q, Lin W Z, Liu Q J, et al. Age-dependent radial growth responses of Larix chinensis to climate factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9):58-65. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=3764a280-cb21-4a68-a44f-625667d988bf

    [9] 王晓春, 宋来萍, 张远东.大兴安岭北部樟子松树木生长与气候因子的关系[J].植物生态学报, 2011, 35(3):294-302. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103007

    Wang X C, Song L P, Zhang Y D. Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing'an Mountains, China[J]. Chinese Journal of Plant Ecology, 2011, 35(3):294-302. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103007

    [10] 王丽丽, 邵雪梅, 黄磊, 等.黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应[J].植物生态学报, 2005, 29(3):380-385. doi: 10.3321/j.issn:1005-264X.2005.03.006

    Wang L L, Shao X M, Huang L, et al. Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. mongolica and their response to climate in Mohe, China[J]. Chinese Journal of Plant Ecology, 2005, 29(3):380-385. doi: 10.3321/j.issn:1005-264X.2005.03.006

    [11] 张轩文, 杨丽, 刘晓宏, 等.大兴安岭北部多年冻土区落叶松和樟子松生长的气候响应差异研究[J].冰川冻土, 2017, 39(1):165-174. http://d.old.wanfangdata.com.cn/Periodical/bcdt201701020

    Zhang X W, Yang L, Liu X H, et al. Study of the difference in climate response of dahurian larch and Pinus sylvestris growth in the north Great Higgnan Mountains of permafrost regions, Northeast China[J]. Journal of Glaciology and Geocryology, 2017, 39(1):165-174. http://d.old.wanfangdata.com.cn/Periodical/bcdt201701020

    [12] 何吉成, 王丽丽, 邵雪梅.漠河樟子松树轮指数与标准化植被指数的关系研究[J].第四纪研究, 2005, 25(2):252-257. doi: 10.3321/j.issn:1001-7410.2005.02.017

    He J C, Wang L L, Shao X M. The relationships between Mongolian scotch pine tree ring indices and normalized difference vegetation index in Mohe, China[J]. Quaternary Sciences, 2005, 25(2):252-257. doi: 10.3321/j.issn:1001-7410.2005.02.017

    [13] 吕姗娜, 王春晓.大兴安岭北部阿里河樟子松年轮气候响应及冬季降水重建[J].东北师大学报(自然科学版), 2014, 46(2):110-116. http://d.old.wanfangdata.com.cn/Periodical/dbsdxb201402022

    Lü S N, Wang C X. Growth-climate response and winter precipitation reconstruction of Pinus sylvestris var. mongolica in A'li River of Great Khingan Range[J]. Journal of Northeast Normal University (Natural Science Edition), 2014, 46(2):110-116. http://d.old.wanfangdata.com.cn/Periodical/dbsdxb201402022

    [14] 尚建勋, 时忠杰, 高吉喜, 等.呼伦贝尔沙地樟子松年轮生长对气候变化的响应[J].生态学报, 2012, 32(4):1077-1084. http://d.old.wanfangdata.com.cn/Periodical/stxb201204008

    Shang J X, Shi Z J, Gao J X, et al. Response of tree-ring width of Pinus sylvestris var. mongolica to climate change in Hulunbuir Sand Land, China[J]. Acta Ecologica Sinica, 2012, 32(4):1077-1084. http://d.old.wanfangdata.com.cn/Periodical/stxb201204008

    [15] 宋来萍, 刘礴霏, 张红蕾, 等.呼伦贝尔沙地樟子松树轮对气候变化的响应[J].东北林业大学学报, 2015, 43(5):17-22. doi: 10.3969/j.issn.1000-5382.2015.05.004

    Song L P, Liu B F, Zhang H L, et al. Response of Pinus sylvestris var. mongolica tree-ring width to climate change in Hulunbuir Sandy Land, China[J]. Journal of Northeast Forestry University, 2015, 43(5):17-22. doi: 10.3969/j.issn.1000-5382.2015.05.004

    [16]

    Liu Y, Bao G, Song H, et al. Precipitation reconstruction from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hailar Region, Inner Mongolia, China back to 1865 AD[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 282(1):81-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c31e9ba0465749f74849a27aabdb5577

    [17]

    Gao J, Shi Z, Xu L, et al. Precipitation variability in Hulunbuir, northeastern China since 1829 AD reconstructed from tree-rings and its linkage with remote oceans[J]. Journal of Arid Environments, 2013, 95:14-21. doi: 10.1016/j.jaridenv.2013.02.011

    [18]

    Folke C, Carpenter S, Walker B, et al. Regime shifts, resilience, and biodiversity in ecosystem management[J]. Annual Review of Ecology Evolution and Systematics, 2004, 35:557-581. doi: 10.1146/annurev.ecolsys.35.021103.105711

    [19]

    Lloret F, Keeling E G, Sala A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests[J]. Oikos, 2011, 120:1909-1920. doi: 10.1111/more.2011.120.issue-12

    [20]

    Gazol A, Camarero J J, Anderegg W R L, et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests[J]. Global Ecology and Biogeograhy, 2017, 26:166-176. doi: 10.1111/geb.2017.26.issue-2

    [21]

    Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests:evidence of stress release by inter-specific facilitation[J]. Plant Biology, 2013, 15:483-496. doi: 10.1111/plb.2013.15.issue-3

    [22]

    Merlin M, Perot T, Perret S, et al. Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine[J]. Forest Ecology and Management, 2015, 339:22-33. doi: 10.1016/j.foreco.2014.11.032

    [23]

    Gazol A, Camarero J J. Functional diversity enhances silver fir growth resilience to an extreme drought[J]. Journal of Ecology, 2016, 104:1063-1075. doi: 10.1111/1365-2745.12575

    [24] 李宝, 程雪寒, 吕利新.西藏朗县地区不同林龄高山松林木径向生长对火干扰的响应[J].植物生态学报, 2016, 40(5):436-446.

    Li B, Cheng X H, Lü L X. Responses of radial growth to fire disturbance in alpine pine (Pinus densata) of different age classes in Lang County, Xizang, China[J]. Chinese Journal of Plant Ecology, 2016, 40(5):436-446.

    [25]

    Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-ring Bulletin, 1983, 43(1):69-78. http://www.oalib.com/references/13004981

    [26]

    Cook E R. Atime-series analysis approach to tree-ring standardization[D]. Tucson: The University of Arizona, 1985.

    [27]

    Dai A, Trenberth K E, Qian T. A global datast of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming[J]. Journal of Hydrometeorology, 2004, 5(6):1117-1130. doi: 10.1175/JHM-386.1

    [28] 中国气象局.气象干旱等级: GB/T 20481—2006[S].北京: 中国标准出版社, 2006.

    China Meteorological Administration.Classification of meteorological drought: GB/T 20481-2006[S]. Beijing: Standards Press of China, 2006.

    [29] 吴祥定.树木年轮与气候变化[M].北京:气象出版社, 1990:34-60.

    Wu X D. Tree ring and climate change[M]. Beijing:China Meteorological Press, 1990:34-60.

    [30] 秦莉, 尚华明, 苏佳佳, 等.不同去趋势方法对格尔木地区胡杨宽度年表的气候意义影响分析[J].沙漠与绿洲气象, 2016, 10(1):54-59. doi: 10.3969/j.issn.1002-0799.2016.01.008

    Qin L, Shang H M, Su J J, et al. Different detrending method impact on climate information of Populus euphratica tree-ring chronology from Golmud[J]. Desert and Oasis Meteorology, 2016, 10(1):54-59. doi: 10.3969/j.issn.1002-0799.2016.01.008

    [31]

    Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climate and Applied Meteorology, 1984, 23(2):201-213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    [32] 张先亮, 何兴元, 陈振举, 等.大兴安岭山地樟子松径向生长对气候变暖的响应:以满归地区为例[J].应用生态学报, 2011, 22(12):3101-3108. http://d.old.wanfangdata.com.cn/Periodical/yystxb201112003

    Zhang X X, He X Y, Chen Z J, et al. Responses of Pinus sylvestris var. mongolica radial growth to climate warming in Great Xing'an Mountains: a case study in Mangui[J]. Chinese Journal of Applied Ecology, 2011, 22(12):3101-3108. http://d.old.wanfangdata.com.cn/Periodical/yystxb201112003

    [33] 李露露, 李丽光, 陈振举, 等.辽宁省人工林樟子松径向生长对水热梯度变化的响应[J].生态学报, 2015, 35(13):4508-4517. http://d.old.wanfangdata.com.cn/Periodical/stxb201513028

    Li L L, Li L G, Chen Z J, et al. Responses of Pinus sylvestris var. mongolica to gradient change of hydrothermal in plantations in Liaoning Province[J].Acta Ecologica Sinica, 2015, 35(13):4508-4517. http://d.old.wanfangdata.com.cn/Periodical/stxb201513028

    [34] 赵伯阳, 刘禹, 宋慧明, 等.基于油松树轮宽度重建河北青龙过去123年平均相对湿度[J].地球环境学报, 2016, 7(5):509-520. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201605008

    Zhao B Y, Liu Y, Song H M, et al. Mean relative humidity reconstruction based on the tree-ring width from Chinese pines since 1890 from the Qinglong Region, China[J]. Journal of Earth Environment, 2016, 7(5):509-520. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201605008

    [35] 梁尔源, 邵雪梅, 刘鸿雁, 等.树轮所记录的公元1842年以来内蒙古东部浑善达克沙地PDSI的变化[J].科学通报, 2007, 52(14):1694-1699. doi: 10.3321/j.issn:0023-074x.2007.14.016

    Liang E Y, Shao X M, Liu H Y, et al. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia[J].Chinese Science Bulletin, 2007, 52(14): 1694-1699. doi: 10.3321/j.issn:0023-074x.2007.14.016

    [36]

    Príncipe A, Maaten E, Maaten-Theunissen M, et al. Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L.) in response to late spring frost in southern Germany[J]. Trees, 2017, 31:743-751. doi: 10.1007/s00468-016-1505-3

  • 期刊类型引用(24)

    1. 张秀芸,伍文慧,梁英梅. 落叶松枯梢病在中国的适生性. 生态学报. 2024(07): 3027-3037 . 百度学术
    2. 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测. 林业科学. 2024(11): 63-74 . 百度学术
    3. 汤思琦,武扬,梁定东,郭恺. 未来气候变化下栎树猝死病菌在中国的适生性分析. 生态学报. 2023(01): 388-397 . 百度学术
    4. 刘璐璐,赵亮,蔺诗颖,冯建龙. 基于MaxEnt和GARP的阿蒙森海域南极磷虾(EUPHAUSIA SUPERBA)的分布区预测. 海洋与湖沼. 2023(02): 399-411 . 百度学术
    5. 唐雨薇,张晓龙,张雪云,吕佩锋,罗乐. 基于GIS与AHP分析法的单叶蔷薇生态适宜性评价. 绿色科技. 2023(13): 205-208+213 . 百度学术
    6. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 . 百度学术
    7. 张惠惠,孟祥霄,林余霖,陈士林,黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志. 2023(18): 4959-4966 . 百度学术
    8. 李盼畔,何旭诺,吴海荣,陈萍,刘明航,武目涛,王亚锋. 多年生豚草在中国的潜在分布预测. 植物检疫. 2022(04): 57-62 . 百度学术
    9. 李盼畔,何旭诺,左然玲,吕文刚,吴海荣. 4种蒺藜草属杂草在中国的潜在适生性预测. 杂草学报. 2022(02): 15-23 . 百度学术
    10. 林姗,陆兴利,王茹琳,李庆,王明田,郭翔,文刚. RCP8.5情景下气候变化对四川省猕猴桃溃疡病病菌地理分布的影响. 江苏农业科学. 2020(03): 124-129 . 百度学术
    11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
    12. 赵金鹏,王茹琳,刘原,陆兴利,王庆,郭翔,文刚,李庆. RCP4.5情景下四川省猕猴桃溃疡病菌适生性分析. 沙漠与绿洲气象. 2020(02): 137-143 . 百度学术
    13. 段义忠,王佳豪,王驰,王海涛,杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析. 生态学杂志. 2020(07): 2193-2204 . 百度学术
    14. 陈爱莉,赵志华,龚伟,孔芬,张克亮. 气候变化背景下紫楠在中国的适宜分布区模拟. 热带亚热带植物学报. 2020(05): 435-444 . 百度学术
    15. 文雪梅,艾科拜尔·木哈塔尔,木巴来克·阿布都许科尔,阿不都拉·阿巴斯. 基于MaxEnt模型的新疆微孢衣属地衣生境适宜性评价. 武汉大学学报(理学版). 2019(01): 77-84 . 百度学术
    16. 常红,刘彤,王大伟,纪孝儒. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠. 2019(01): 110-118 . 百度学术
    17. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    18. 陆兴利,罗伟,李庆,林姗,王茹琳,游超,郭翔,王明田. RCP2.6情景下四川省猕猴桃溃疡病菌潜在分布预测. 湖北农业科学. 2019(18): 49-54 . 百度学术
    19. 王蕾,罗磊,刘平,侯晓臣,邱琴,高亚琪,李曦光. 基于MaxEnt模型分析新疆特色林果区春尺蠖发生风险. 新疆农业科学. 2019(09): 1691-1700 . 百度学术
    20. 王茹琳,郭翔,李庆,王明田,游超. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分. 应用生态学报. 2019(12): 4222-4230 . 百度学术
    21. 赵健,李志鹏,张华纬,陈宏,翁启勇. 基于MaxEnt模型和GIS技术的烟粉虱适生区预测. 植物保护学报. 2019(06): 1292-1300 . 百度学术
    22. 王奕晨,郑鹏,潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区. 福建农林大学学报(自然科学版). 2018(01): 21-25 . 百度学术
    23. 邱靖,朱弘,陈昕,汤庚国. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征. 北京林业大学学报. 2018(09): 25-32 . 本站查看
    24. 王野,陈磊,白云,张俊娥,刘红霞,田呈明. 云杉矮槲寄生遗传多样性的ISSR分析. 西北植物学报. 2017(11): 2153-2162 . 百度学术

    其他类型引用(20)

图(4)  /  表(3)
计量
  • 文章访问数:  1809
  • HTML全文浏览量:  423
  • PDF下载量:  124
  • 被引次数: 44
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-03-09
  • 发布日期:  2018-06-30

目录

    /

    返回文章
    返回