高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型阔叶红松林叶面积指数的空间异质性

刘志理 毕连柱 宋国华 王全波 刘琪 金光泽

刘志理, 毕连柱, 宋国华, 王全波, 刘琪, 金光泽. 典型阔叶红松林叶面积指数的空间异质性[J]. 北京林业大学学报, 2018, 40(11): 1-11. doi: 10.13332/j.1000-1522.20170468
引用本文: 刘志理, 毕连柱, 宋国华, 王全波, 刘琪, 金光泽. 典型阔叶红松林叶面积指数的空间异质性[J]. 北京林业大学学报, 2018, 40(11): 1-11. doi: 10.13332/j.1000-1522.20170468
Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. doi: 10.13332/j.1000-1522.20170468
Citation: Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. doi: 10.13332/j.1000-1522.20170468

典型阔叶红松林叶面积指数的空间异质性

doi: 10.13332/j.1000-1522.20170468
基金项目: 

黑龙江博士后基金项目 LBH-Z16003

中国博士后科学基金项目 2016M590271

国家自然科学基金项目 31600587

详细信息
    作者简介:

    毕连柱:刘志理,博士,副教授。主要研究方向:森林生态学。Email:liuzl2093@126.com    地址:150040黑龙江省哈尔滨市香坊区和兴路51号东北林业大学生态研究中心

    责任作者:

    金光泽,博士,教授。主要研究方向:森林生态学。Email:taxus@126.com   地址:同上

  • 中图分类号: S791.247

Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China

  • 摘要: 目的探讨叶面积指数(LAI)的空间异质性及其影响因素,以期为准确地获得局域、区域等大尺度上LAI的空间分布特征提供参考依据。方法依托黑龙江丰林国家级自然保护区30hm2典型阔叶红松林动态监测样地,首先通过LAI与胸高断面积间的经验模型得到阔叶红松林内红松、冷杉、紫椴、硕桦、裂叶榆和色木槭6种主要树种及林分水平上的LAI,然后采用半方差函数和Kriging空间插值等地统计学方法分析LAI的空间异质性特征以及与地形因子(海拔、坡度、坡向和曲率)的相关关系。结果主要树种LAI的变异系数均大于10%,具有中等或强变异性,且变异程度表现为裂叶榆>硕桦>紫椴>红松>色木槭>冷杉。红松LAI的空间结构比(块金值(C0)/基台值(C0+C))为0.50,具有中等程度的空间自相关,而其他5个树种的比值均低于0.25,具有强烈的空间自相关;主要树种LAI的变程范围为24m(紫椴)~126m(红松)。红松、裂叶榆和色木槭的空间异质性具有较明显的各向异性结构特点,且红松的LAI在240m尺度范围内时,东西方向(0°)上的空间异质性明显大于南北方向(90°),240m以后出现相反的结果。红松的LAI与海拔、坡度、坡向和曲率4个地形因子均呈极显著正相关(P<0.01),其他树种的LAI与地形因子也表现出不同的相关关系。结论LAI的空间异质性不仅与研究尺度相关,而且与方向相关;地形因子对LAI空间分布的影响存在种间差异,但整体来看,4个地形因子均对LAI的空间分布存在显著影响。

     

  • 图  1  阔叶红松林主要树种叶面积指数的变异函数图

    Figure  1.  Semivariograms of LAI for major species in a mixed broadleaved-Korean pine forest

    图  2  阔叶红松林主要树种的叶面积指数在2个方向上(90°和0°)的各向异性变异函数图

    Figure  2.  Anisotropic semivariograms at two directions (south-north, 90° and east-west, 0°) of LAI for major species in a mixed broadleaved-Korean pine forest

    图  3  阔叶红松林主要树种的叶面积指数在2个方向上(90和°0°)的各向异性比

    Figure  3.  Anisotropy ratios of semivariograms between two directions (south-north, 90° and east-west, 0°) of LAI for major species in a mixed broadleaved-Korean pine forest

    图  4  阔叶红松林主要树种叶面积指数的空间分布格局

    Pk.红松Pinus koraiensis; An.冷杉Abies nephrolepis; Ta.紫椴Tilia amurensis; Bc.硕桦Betula costata; Ul.裂叶榆Ulmus laciniata; Am.色木槭Acer mono; Ts.所有树种Total species

    Figure  4.  Spatial distribution of LAI for major species in a mixed broadleaved-Korean pine forest

    表  1  主要树种叶面积指数与胸高断面积间的经验模型

    Table  1.   Empirical models between leaf area index and basal area for major species

    树种Species系数Coefficient(a)系数Coefficient(b)R2
    红松Pinus koraiensis*0.343 10.797 20.78
    冷杉Abies nephrolepis*0.199 50.953 90.81
    紫椴Tilia amurensis*0.258 40.636 10.81
    硕桦Betula costata*0.336 90.5410.89
    裂叶榆Ulmus laciniata*0.274 30.681 40.93
    色木槭Acer mono*0.457 50.552 40.67
    其他树种Other species0.300 40.629 80.66
    注:经验模型为LAI=aBAb, a, b为系数; *表示引自文献[24]。
    Notes:empirical model: LAI=aBAb, in which a and b are coefficients; * refers to being cited from reference [24].
    下载: 导出CSV

    表  2  阔叶红松林主要树种的叶面积指数(n=750)

    Table  2.   LAI for major species in a mixed broadleaved-Korean pine forest (n=750)

    树种Species最大值Maximum value最小值Minimum value平均值Mean变异系数Coefficient of variation/%
    红松Pinus koraiensis14.700.403.37 (2.86)85
    冷杉Abies nephrolepis3.730.091.01 (0.66)65
    紫椴Tilia amurensis2.400.100.41 (0.43)94
    枫桦Betula costata3.730.160.40 (0.40)99
    裂叶榆Ulmus laciniata4.310.090.36 (0.47)130
    色木槭Acer mono2.110.190.38 (0.26)69
    所有树种Total species16.791.546.56 (2.73)42
    注:括号内数据为标准差。Note: value in parentheses is standard deviation.
    下载: 导出CSV

    表  3  阔叶红松林主要树种叶面积指数半方差函数的模型类型及参数

    Table  3.   Fitted model types and parameters for semivariograms of LAI for major species in a mixed broadleaved-Korean pine forest

    树种Species最优模型Optimal model块金值Nugget (C0)基台值Sill (C0+C)空间结构比Spatial structure ratio变程Range (A)/m分维数Fractal dimensionR2
    红松Pinus koraiensis球状模型Spherical model4.2808.5610.501261.9390.86
    冷杉Abies nephrolepis指数模型Exponential model0.0480.4240.11451.9570.58
    紫椴Tilia amurensis指数模型Exponential model0.0160.1440.11241.9910.50
    硕桦Betula costata指数模型Exponential model0.0170.1610.11301.9880.52
    裂叶榆Ulmus laciniata指数模型Exponential model0.0210.2130.10451.9510.32
    色木槭Acer mono指数模型Exponential model0.0080.0680.11491.9510.54
    所有树种Total species指数模型Exponential model3.4507.6770.45951.9570.83
    注:C表示拱高。Note: C means arch height.
    下载: 导出CSV

    表  4  阔叶红松林主要树种叶面积指数与地形因子的相关关系(n=750)

    Table  4.   Correlations between LAI and topographic variables for major species in a mixed broadleaved-Korean pine forest (n=750)

    树种Species海拔Elevation/m坡度Slope degree/(°)坡向Slope aspect/(°)曲率Curvature
    红松Pinus koraiensis0.306**0.143**0.186**0.335**
    冷杉Abies nephrolepis-0.157**-0.264**0.0420.024
    紫椴Tilia amurensis0.113**0.173**-0.0090.136**
    硕桦Betula costata-0.0620.026-0.108**-0.010
    裂叶榆Ulmus laciniata0.077*0.126**-0.136**-0.140**
    色木槭Acer mono0.128**0.186**-0.0280.104**
    所有树种Total species0.309**0.146**0.154**0.359**
    注:*表示在P<0.05水平上显著相关,**表示在P<0.01水平上极显著相关。Notes:* means significant correlation at P<0.05 level, ** means extremely significant correlation at P<0.01 level.
    下载: 导出CSV
  • [1] Chen J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(6): 1353-1368. doi: 10.1109/36.544559
    [2] 任海, 彭少麟.鼎湖山森林群落的几种叶面积指数测定方法的比较[J].生态学报, 1997, 17(2): 220-223. doi: 10.3321/j.issn:1000-0933.1997.02.014

    Ren H, Peng S L. Comparison of methods of estmation leaf area index in Dinghushan forests[J]. Acta Ecologica Sinica, 1997, 17(2): 220-223. doi: 10.3321/j.issn:1000-0933.1997.02.014
    [3] Broeckx L S, Verlinden M S, Vangronsveld J, et al. Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation[J]. Tree Physiology, 2012, 32(10): 1214-1226. doi: 10.1093/treephys/tps083
    [4] Ewert F. Modelling plant responses to elevated CO2: how important is leaf area index[J]. Annals of Botany, 2004, 93(6): 619-627. doi: 10.1093/aob/mch101
    [5] Dermody O, Long S P, DeLucia E H. How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently[J]. New Phytologist, 2006, 169(1): 145-155. doi: 10.1111/nph.2006.169.issue-1
    [6] Tor-ngern P, Oren R, Ward E J, et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy[J]. New Phytologist, 2015, 205(2): 518-525. doi: 10.1111/nph.13148
    [7] Chen J, Liu J, Cihlar J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J]. Ecological Modelling, 1999, 124(2): 99-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5daa40800037794167d3c1cbebb85242
    [8] Tillack A, Clasen A, Kleinschmit B, et al. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices[J]. Remote Sensing of Environment, 2014, 141: 52-63. doi: 10.1016/j.rse.2013.10.018
    [9] 李哈滨, 王政权, 王庆成.空间异质性定量研究理论与方法[J].应用生态学报, 1998, 9(6): 651-657. doi: 10.3321/j.issn:1001-9332.1998.06.018

    Li H B, Wang Z Q, Wang Q C. Theory and methodology of spatial heterogeneity quantification[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 651-657. doi: 10.3321/j.issn:1001-9332.1998.06.018
    [10] Li H, Reynolds J. On definition and quantification of heterogeneity[J]. Oikos, 1995, 73(2): 280-284. doi: 10.2307/3545921
    [11] 柳艺博, 居为民, 陈镜明, 等. 2000—2010年中国森林叶面积指数时空变化特征[J].科学通报, 2012, 57(16): 1435-1445. http://www.cqvip.com/qk/94252x/201216/42232363.html

    Liu Y B, Ju W M, Chen J M, et al. Spatial and temporal variations of forest LAI in China during 2000-2010[J]. Chinese Science Bulletin, 2012, 57(16): 1435-1445. http://www.cqvip.com/qk/94252x/201216/42232363.html
    [12] Yan G, Hu R, Wang Y, et al. Scale effect in indirect measurement of leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3475-3484. doi: 10.1109/TGRS.2016.2519098
    [13] 吕瑜良, 刘世荣, 孙鹏森, 等.川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征[J].林业科学, 2007, 43(8): 1-7. http://d.old.wanfangdata.com.cn/Periodical/lykx200708001

    Lü Y L, Liu S R, Sun P S, et al. Seasonal and spatial variations of leaf area index of sub-alpine dark coniferous forest during growing season in western Sichuan[J]. Scientia Silvae Sinicae, 2007, 43(8): 1-7. http://d.old.wanfangdata.com.cn/Periodical/lykx200708001
    [14] 刘志理, 戚玉娇, 金光泽.小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局[J].林业科学, 2013, 49(8): 58-64. http://d.old.wanfangdata.com.cn/Periodical/lykx201308009

    Liu Z L, Qi Y J, Jin G Z. Seasonality and spatial pattern of leaf area index of a spruce-fir forest at the valley in Xiaoxing'an Mountains[J]. Scientia Silvae Sinicae, 2013, 49(8): 58-64. http://d.old.wanfangdata.com.cn/Periodical/lykx201308009
    [15] 姚丹丹, 雷相东, 余黎, 等.云冷杉针阔混交林叶面积指数的空间异质性[J].生态学报, 2015, 35(1): 71-79. http://d.old.wanfangdata.com.cn/Periodical/stxb201501010

    Yao D D, Lei X D, Yu L, et al. Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 71-79. http://d.old.wanfangdata.com.cn/Periodical/stxb201501010
    [16] Zhu W, Xiang W, Pan Q, et al. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters[J]. Biogeosciences, 2016, 13(12): 3819-3831. doi: 10.5194/bg-13-3819-2016
    [17] 赵传燕, 沈卫华, 彭焕华.祁连山区青海云杉林冠层叶面积指数的反演方法[J].植物生态学报, 2009, 33(5): 860-869. doi: 10.3773/j.issn.1005-264x.2009.05.004

    Zhao C Y, Shen W H, Peng H H. Methods for determining canopy leaf area index of Picea crassifolia forest in Qilian Mountains, China[J]. Journal of Plant Ecology, 2009, 33(5): 860-869. doi: 10.3773/j.issn.1005-264x.2009.05.004
    [18] 昝梅, 李登秋, 居为民, 等.新疆喀纳斯国家自然保护区植被叶面积指数观测与遥感估算[J].生态学报, 2013, 33(15): 4744-4757. http://d.old.wanfangdata.com.cn/Periodical/stxb201315025

    Zan M, Li D Q, Ju W M, et al. Measurement and retrieval of leaf area index using remote sensing data in Kanas National Nature Reserve, Xinjiang[J]. Acta Ecologica Sinica, 2013, 33(15): 4744-4757. http://d.old.wanfangdata.com.cn/Periodical/stxb201315025
    [19] 邹杰, 阎广建.森林冠层地面叶面积指数光学测量方法研究进展[J].应用生态学报, 2010, 21(11): 2971-2979. http://d.old.wanfangdata.com.cn/Periodical/yystxb201011035

    Zou J, Yan G J.Optical methods for in situ measuring leaf area index of forest canopy: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2971-2979. http://d.old.wanfangdata.com.cn/Periodical/yystxb201011035
    [20] Liu Z L, Chen J M, Jin G Z, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agricultural and Forest Meteorology, 2015, 209: 36-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b185d3acdfe8f37bb02c192888296f3b
    [21] Hwang Y, Ryu Y, Kimm H, et al. Correction for light scattering combined with sub-pixel classification improves estimation of gap fraction from digital cover photography[J]. Agricultural and Forest Meteorology, 2016, 222: 32-44. doi: 10.1016/j.agrformet.2016.03.008
    [22] 向洪波, 郭志华, 赵占轻, 等.不同空间尺度森林叶面积指数的估算方法[J].林业科学, 2009, 45(6): 139-144. doi: 10.3321/j.issn:1001-7488.2009.06.024

    Xiang H B, Guo Z H, Zhao Z Q, et al. Estimating method of forest leaf area index on different space scales[J]. Scientia Silvae Sinicae, 2009, 45(6): 139-144. doi: 10.3321/j.issn:1001-7488.2009.06.024
    [23] 徐希孺, 范闻捷, 陶欣.遥感反演连续植被叶面积指数的空间尺度效应[J].中国科学: D辑, 2009, 39(1): 79-87. http://www.cqvip.com/Main/Detail.aspx?id=29434659

    Xu X R, Fan W J, Tao X.Remote sensing inverse spatial scale effect of the continuous vegetation leaf area index[J]. Science in China Series D: Earth Sciences, 2009, 39(1): 79-87. http://www.cqvip.com/Main/Detail.aspx?id=29434659
    [24] 刘志理, 金光泽.利用凋落物法和林木因子模拟小兴安岭阔叶红松林叶面积指数[J].生态学报, 2015, 35(10): 3190-3198. http://d.old.wanfangdata.com.cn/Periodical/stxb201510007

    Liu Z L, Jin G Z. Using litter collection and tree data to model leaf area index in the mixed broadleaved-Korean pine forest in the Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2015, 35(10): 3190-3198. http://d.old.wanfangdata.com.cn/Periodical/stxb201510007
    [25] 王政权, 王庆成, 李哈滨.红松老龄林主要树种的空间异质性特征与比较的定量研究[J].植物生态学报, 2000, 24(6): 718-723. doi: 10.3321/j.issn:1005-264X.2000.06.013

    Wang Z Q, Wang Q C, Li H B. Characteristics and comparison of spatial heterogeneity of the main species of Korean pine in old growth forests[J]. Journal of Plant Ecology, 2000, 24(6): 718-723. doi: 10.3321/j.issn:1005-264X.2000.06.013
    [26] Rossi R E, Mulla D J, Journel A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs, 1992, 62(2): 277-314. doi: 10.2307/2937096
    [27] 徐丽娜, 金光泽.小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J].生物多样性, 2012, 20(4): 470-481. http://d.old.wanfangdata.com.cn/Periodical/swdyx201204009

    Xu L N, Jin G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China[J]. Biodiversity Science, 2012, 20(4): 470-481. http://d.old.wanfangdata.com.cn/Periodical/swdyx201204009
    [28] Mcdonald D J, Cowling R M, Boucher C. Vegetation-environment relationships on a species-rich coastal mountain range in the Fynbos Biome (South Africa)[J]. Plant Ecology, 1996, 123(2): 165-182. doi: 10.1007/BF00118269
    [29] 李景文.红松混交林生态与经营[M].哈尔滨:东北林业大学出版社, 1997.

    Li J W.The ecology and management of Korean pine mixed forest in Northeast China[M]. Harbin: Northeast Forestry University Press, 1997.
    [30] 赵维俊, 刘贤德, 敬文茂, 等.祁连山青海云杉林群落结构的空间异质性[J].应用生态学报, 2015, 26(9): 2591-2599. http://d.old.wanfangdata.com.cn/Periodical/yystxb201509001

    Zhao W J, Liu X D, Jing W M, et al. Spatial heterogeneity of community structure of Picea crassifolia forest in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2591-2599. http://d.old.wanfangdata.com.cn/Periodical/yystxb201509001
    [31] 区余端, 苏志尧, 李镇魁, 等.地形因子对粤北山地森林不同生长型地表植物分布格局的影响[J].应用生态学报, 2011, 22(5): 1107-1113. http://d.old.wanfangdata.com.cn/Periodical/yystxb201105001

    Qu Y D, Su Z Y, Li Z K, et al. Effects of topographic factors on the distribution patterns of ground plants with different growth forms in montane forests in North Guangdong, China[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1107-1113. http://d.old.wanfangdata.com.cn/Periodical/yystxb201105001
    [32] 许洺山, 赵延涛, 杨晓东, 等.浙江天童木本植物叶片性状空间变异的地统计学分析[J].植物生态学报, 2016, 40(1): 48-59. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601005

    Xu M S, Zhao Y T, Yang X D, et al. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province[J]. Journal of Plant Ecology, 2016, 40(1): 48-59. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601005
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  276
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-29
  • 修回日期:  2018-04-02
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回