• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

华北土石山区不同粒径土壤团聚体特征及其与坡面侵蚀定量关系

陈佩岩, 马岚, 薛孟君, 梅雪梅, 张栋, 孙一惠

陈佩岩, 马岚, 薛孟君, 梅雪梅, 张栋, 孙一惠. 华北土石山区不同粒径土壤团聚体特征及其与坡面侵蚀定量关系[J]. 北京林业大学学报, 2018, 40(8): 64-71. DOI: 10.13332/j.1000-1522.20180026
引用本文: 陈佩岩, 马岚, 薛孟君, 梅雪梅, 张栋, 孙一惠. 华北土石山区不同粒径土壤团聚体特征及其与坡面侵蚀定量关系[J]. 北京林业大学学报, 2018, 40(8): 64-71. DOI: 10.13332/j.1000-1522.20180026
Chen Peiyan, Ma Lan, Xue Mengjun, Mei Xuemei, Zhang Dong, Sun Yihui. Characteristics of soil aggregates with different particle sizes and their quantitative relationship with slope erosion in rocky mountain area of northern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 64-71. DOI: 10.13332/j.1000-1522.20180026
Citation: Chen Peiyan, Ma Lan, Xue Mengjun, Mei Xuemei, Zhang Dong, Sun Yihui. Characteristics of soil aggregates with different particle sizes and their quantitative relationship with slope erosion in rocky mountain area of northern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 64-71. DOI: 10.13332/j.1000-1522.20180026

华北土石山区不同粒径土壤团聚体特征及其与坡面侵蚀定量关系

基金项目: 

国家科技支撑计划课题 2015BAD07B030201

国家自然科学基金项目 51779004

详细信息
    作者简介:

    陈佩岩。主要研究方向:土壤侵蚀与流域治理。Email:3082677509@qq.com  地址:100083  京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    马岚,副教授。主要研究方向:土壤侵蚀与生态水文。Email:mlpcz@sina.com  地址:同上

  • 中图分类号: S157.2; S714.7

Characteristics of soil aggregates with different particle sizes and their quantitative relationship with slope erosion in rocky mountain area of northern China

  • 摘要:
    目的为明确华北土石山区不同粒径(1~2 mm、2~3 mm、3~5 mm、5~7 mm、7~10 mm)团聚体结构特征对沟间及沟道侵蚀过程的影响。
    方法选取2种典型褐土为研究对象,通过Le Bissonnais(LB)法对团聚体稳定性进行分析,并初步研究了不同粒径团聚体稳定性特征与人工降雨条件下坡面沟间、沟道侵蚀量之间的定量关系。
    结果石灰性褐土团聚体稳定性大于黄土性褐土;不同粒径团聚体稳定性差异较为显著,较小粒径的团聚体稳定性大于较大粒径的团聚体,其中1~2 mm粒径的团聚体稳定性最好;不同雨强下土壤侵蚀现象差异明显,坡面径流强度和产沙强度均随产流历时的增加而增大,且降雨强度大小对坡面入渗率变化幅度和达到稳渗状态的时间有很大影响。将可蚀性因子(Ki)替换为经修正后的团聚体稳定性参数(Ka),然后将其代入到WEPP侵蚀模型,通过回归分析,建立了不同粒径团聚体的侵蚀预测方程,显示了较好的预测性能,其决定系数均在0.81以上;尤其是2~3 mm粒径对应的预测方程,其沟间及沟道相对误差均小于20%。
    结论该研究验证了土壤可蚀性参数可以由不同粒径团聚体稳定性表示,并建立了不同粒径团聚体的沟间及沟道侵蚀预测方程,为华北土石山区褐土的侵蚀机理研究提供了新思路。
    Abstract:
    ObjectiveThe purpose of this study is to clarify the structural characteristics of soil aggregates with different particle sizes (1-2 mm, 2-3 mm, 3-5 mm, 5-7 mm and 7-10 mm) and its impact on the process of interchannel and gully erosion.
    MethodTwo kinds of typical cinnamon soil were selected as research objects. The stability of aggregates was analyzed by Le Bissonnais (LB) method and artificial rainfall test. The quantitative relations between stability characteristics of aggregates with different particle sizes and process of interchannel and gully erosion were studied.
    ResultThe stability of limb drab soil aggregates was greater than loess brown soil, and the stability of aggregates with different particle sizes was significantly different. The stability of smaller size aggregates was larger than bigger size aggregates, among them, the aggregates with 1-2 mm particle size have the best stability. The difference of soil erosion under different rainfall intensities was obvious, the intensity of runoff and sediment of the slope increased with the increase of runoff duration, and the magnitude of rainfall intensity had a great effect on the changing rate of slope infiltration and the time to achieve a steady state of infiltration. Based on the WEPP gully and between channel erosion model framework, the erodibility, factor Ki was replaced by the modified characteristic parameter of aggregate stability Ka. By the analysis of regression, erosion prediction equations established with different particle sizes all showed good predictive performance, and the decision coefficients were above 0.81. Especially for the prediction equation corresponding to the particle size of 2-3 mm, the relative errors of between channel and gully were both less than 20%.
    ConclusionThe study verifies that the stability of agglomerates with different particle sizes can be used as an indicator of soil erodibility. It establishes between channel and gully erosion prediction equations for aggregates of different sizes and provides a new idea for the study of the erosion mechanism of the brown soil in mountainous areas of northern China.
  • 图  1   试验土槽

    Figure  1.   Soil trough for experiment

    图  2   黄土性褐土在不同雨强下的产沙强度及径流强度

    Figure  2.   Sediment yield intensity and runoff intensity of loess brown soil under different rainfall intensities

    图  3   石灰性褐土不同雨强下的产沙强度及径流强度

    Figure  3.   Sediment yield intensity and runoff intensity of limb drab soil under different rainfall intensities

    图  4   沟间侵蚀量计算值与实测值比较

    D1、D2、D3、D4和D5分别表示1~2 mm、2~3 mm、3~5 mm、5~7 mm、7~10 mm粒径预测方程计算值,K1、K2、K3、K4和K5分别表示1~2 mm、2~3 mm、3~5 mm、5~7 mm、7~10 mm粒径拟合方程;图 5同此。

    Figure  4.   Comparison in between channel erosion for calculated values and measured ones

    D1, D2, D3, D4, and D5 represent the calculated values of the prediction equations of 1-2 mm, 2-3 mm, 3-5 mm, 5-7 mm, 7-10 mm particle sizes, respectively; K1, K2, K3, K4, and K5 represent fitting equations of 1-2 mm, 2-3 mm, 3-5 mm, 5-7 mm, 7-10 mm particle sizes, respectively; same in Fig. 5.

    图  5   沟道侵蚀量计算值与实测值比较

    Figure  5.   Comparison in gully erosion between calculated values and measured ones

    表  1   供试土壤基本情况

    Table  1   Basic situation of the tested soil

    样品
    Sample
    土壤密度
    Soil bulk density/(g·cm-3)
    机械组成Mechanical composition/%
    0~2 μm 2~20 μm 20~50 μm > 50 μm
    黄土性褐土Loess brown soil 1.33 14.22 58 20.57 7.21
    石灰性褐土Limb drab soil 1.29 9.51 57.16 24.82 8.51
    下载: 导出CSV

    表  2   各粒径团聚体经LB法处理后的稳定性

    Table  2   Soil aggregate stability of different particle sizes by LB method        mm

    团聚体粒径
    Aggregate particle size
    黄土性褐土Loess brown soil 石灰性褐土Limb drab soil
    NMWDFW NMWDSW NMWDWS NMWDFW NMWDSW NMWDWS
    1~2 0.19a 0.33a 0.25a 0.22a 0.42a 0.34a
    2~3 0.14b 0.19b 0.17b 0.17b 0.23b 0.25b
    3~5 0.09c 0.19b 0.12c 0.11c 0.21c 0.15c
    5~7 0.07d 0.10c 0.10d 0.08d 0.18d 0.13d
    7~10 0.06d 0.09c 0.06e 0.09cd 0.11e 0.07e
    注:同一列中字母不同表示差异显著(P<0.05)。下同。Notes: data followed by different letters mean significant difference at P<0.05 level. The same below.
    下载: 导出CSV

    表  3   LB法测定试验土壤团聚体稳定性

    Table  3   Stability of soil aggregates determined by LB method

    团聚体粒径
    Aggregate particle size
    黄土性褐土Loess brown soil 石灰性褐土Limb drab soil
    MWDFW/mm MWDSW/mm MWDWS/mm RSI RMI Ka MWDFW/mm MWDSW/mm MWDWS/mm RSI RMI Ka
    1~2 mm 0.37c 0.64a 0.48b 0.61 0.25 0.15 0.42c 0.81a 0.67b 0.48 0.17 0.08
    2~3 mm 0.28c 0.57a 0.34b 0.51 0.40 0.20 0.34c 0.69a 0.48b 0.51 0.30 0.15
    3~5 mm 0.26c 0.55a 0.35b 0.53 0.36 0.19 0.31c 0.62a 0.45b 0.50 0.27 0.13
    5~7 mm 0.21c 0.49a 0.30b 0.57 0.39 0.22 0.25c 0.51a 0.39b 0.51 0.22 0.11
    7~10 mm 0.17c 0.45a 0.29b 0.62 0.36 0.23 0.27c 0.53a 0.34b 0.49 0.36 0.18
    下载: 导出CSV

    表  4   不同粒径团聚体沟间及沟道侵蚀预测方程

    Table  4   Prediction equations of between channel and gully erosion for aggregates with different particle sizes

    粒径
    Particle size
    侵蚀类型
    Erosion type
    拟合方程
    Fitting equation
    R2 n 相对误差范围
    Range of relative error/%
    1~2 mm 沟间侵蚀Between channel erosion y=0.12Di 0.84 236 25~39
    沟道侵蚀Gully erosion y=3 168.04Dr 0.87 121 26~39
    2~3 mm 沟间侵蚀Between channel erosion y=0.23Di 0.93 236 11~19
    沟道侵蚀Gully erosion y=4 293.68Dr 0.94 121 12~20
    3~5 mm 沟间侵蚀Between channel erosion y=0.23Di 0.91 236 17~24
    沟道侵蚀Gully erosion y=3 805.18Dr 0.93 121 14~22
    5~7 mm 沟间侵蚀Between channel erosion y=0.31Di 0.81 236 14~21
    沟道侵蚀Gully erosion y=4 406.31Dr 0.89 121 15~24
    7~10 mm 沟间侵蚀Between channel erosion y=0.41Di 0.86 236 24~35
    沟道侵蚀Gully erosion y=5 450.57Dr 0.93 121 26~37
    下载: 导出CSV
  • [1] 刘淑珍, 刘斌涛, 苏正安, 等.对我国水土流失调查评价方法若干问题的思考[J].山地学报, 2014, 32(2):150-153. doi: 10.3969/j.issn.1008-2786.2014.02.003

    Liu S Z, Liu B T, Su Z A, et al. Reflections on some problems in the evaluation and evaluation of soil and water loss in China[J]. Mountain Research, 2014, 32(2):150-153. doi: 10.3969/j.issn.1008-2786.2014.02.003

    [2] 刘敏超, 李迪强, 温琰茂, 等.三江源地区土壤保持功能空间分析及其价值评估[J].中国环境科学, 2005, 25(5):627-631. doi: 10.3321/j.issn:1000-6923.2005.05.028

    Liu M C, Li D Q, Wen Y M, et al. Spatial analysis and evaluation of soil conservation functions in the Three River Source Region[J].Chinese Environmental Science, 2005, 25(5): 627-631. doi: 10.3321/j.issn:1000-6923.2005.05.028

    [3] 秦伟, 左长清, 郑海金, 等.赣北红壤坡地土壤流失方程关键因子的确定[J].农业工程学报, 2013, 29(21):115-125. doi: 10.3969/j.issn.1002-6819.2013.21.015

    Qin W, Zuo C Q, Zheng H J, et al. Determination of key factors of soil loss equation in red soil slope land in north[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21):115-125. doi: 10.3969/j.issn.1002-6819.2013.21.015

    [4]

    Romero C C, Stroosnijder L, Baigorria G A. Interrill and rill erodibility in the northern Andean Highlands[J]. Catena, 2007, 70(2):105-113. doi: 10.1016/j.catena.2006.07.005

    [5]

    Xiao R, Bai J, Wang J, et al. Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: toxic levels, sources and relationships with soil organic matter and water-stable aggregates[J]. Chemosphere, 2014, 110:8-16. doi: 10.1016/j.chemosphere.2014.03.001

    [6]

    Ball B C, Campbell D J, Douglas J T, et al. Soil structural quality, compaction and land management[J]. European Journal of Soil Science, 1997, 48(4):593-601. http://cn.bing.com/academic/profile?id=9f86eab47c22017aae49bbe10a100da2&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    Barthès B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2):133-149. doi: 10.1016/S0341-8162(01)00180-1

    [8]

    DíAz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure[J]. Soil & Tillage Research, 2002, 64(1-2):3-22. http://cn.bing.com/academic/profile?id=a9cadbe9ac5ade5fca1bd5af3bcbab53&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    Valmis S, Dimoyiannis D, Danalatos N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece[J]. Soil & Tillage Research, 2005, 80(1):139-147. http://cn.bing.com/academic/profile?id=d06e7423d9ae62bcc628cc58f2f632b7&encoded=0&v=paper_preview&mkt=zh-cn

    [10]

    Le Bissonnais Y, Arrouays D. Aggregate stability and assessment of soil crustability and erodibility (2): application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science, 1997, 48(1):39-48.

    [11]

    Amezketa E, Singer M J, Bissonnais Y L. Testing a new procedure for measuring water-stable aggregation[J]. Soil Science Society of America Journal, 1996, 60(3):888-894. doi: 10.2136/sssaj1996.03615995006000030030x

    [12] 王虹艳, 吴士文, 马海洋, 等.浙南易蚀土壤的团聚体稳定性及其稳定机理[J].土壤通报, 2010, 41(2):429-433. http://d.old.wanfangdata.com.cn/Periodical/trtb201002035

    Wang H Y, Wu S W, Ma H Y, et al. Soil aggregation stability and stable mechanism of erosionable soil in south Zhejiang[J]. Chinese Journal of Soil Science, 2010, 41(2): 429-433. http://d.old.wanfangdata.com.cn/Periodical/trtb201002035

    [13]

    Zhang B, Horn R. Mechanisms of aggregate stabilization in ultisols from subtropical China[J]. Geoderma, 2001, 99(1):123-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8cd9a0ee021058e8bbde07e44a64d8eb

    [14] 郭伟, 史志华, 陈利顶, 等.红壤表土团聚体粒径对坡面侵蚀过程的影响[J].生态学报, 2007, 27(6):2516-2522. doi: 10.3321/j.issn:1000-0933.2007.06.046

    Guo W, Shi Z H, Chen L D, et al. Effects of topsoil aggregate size on runoff and erosion at hillslope in red soils[J]. Journal of Ecology, 2007, 27(6):2516-2522. doi: 10.3321/j.issn:1000-0933.2007.06.046

    [15] 闫峰陵, 李朝霞, 史志华, 等.红壤团聚体特征与坡面侵蚀定量关系[J].农业工程学报, 2009, 25(3): 37-41. http://d.old.wanfangdata.com.cn/Periodical/nygcxb200903008

    Yan F L, Li Z X, Shi Z H, et al. Quantitative relationship between aggregate characteristics and slope erosion in red soil[J].Journal of Agricultural Engineering, 2009, 25(3): 37-41. http://d.old.wanfangdata.com.cn/Periodical/nygcxb200903008

    [16] 史志华, 闫峰陵, 李朝霞, 等.红壤表土团聚体破碎方式对坡面产流过程的影响[J].自然科学进展, 2007, 17(2):217-224. doi: 10.3321/j.issn:1002-008X.2007.02.010

    Shi Z H, Yan F L, Li Z X, et al. Effects of aggregate disintegration on the runoff process of slope in red soil[J].Progress in Natural Science, 2007, 17(2):217-224. doi: 10.3321/j.issn:1002-008X.2007.02.010

    [17]

    Xiao H, Liu G, Liu P, et al. Developing equations to explore relationships between aggregate stability and erodibility in ultisols of subtropical China[J]. Catena, 2017, 157:279-285. doi: 10.1016/j.catena.2017.05.032

    [18] 邬铃莉, 杨文涛, 王云琦, 等.基于WEPP模型的水土保持措施因子与侵蚀量关系研究[J].土壤通报, 2017, 48(4):955-960. http://d.old.wanfangdata.com.cn/Periodical/trtb201704027

    Wu L L, Yang W T, Wang Y Q, et al. Study on the relationship between soil and water conservation measures and soil erosion amount based on WEPP model[J]. Chinese Journal of Soil Science, 2017, 48(4):955-960. http://d.old.wanfangdata.com.cn/Periodical/trtb201704027

    [19] 歌丽巴, 王玉杰, 王云琦, 等. WEPP模型在北京山区的适用性评价[J].北京林业大学学报, 2015, 37(12):69-76. doi: 10.13332/j.1000-1522.20150111

    Geliba, Wang Y J, Wang Y Q, et al. Assessment of WEPP model applicability in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2015, 37(12):69-76. doi: 10.13332/j.1000-1522.20150111

    [20] 曾宪勤, 刘和平, 路炳军, 等.北京山区土壤粒径分布分形维数特征[J].山地学报, 2008, 26(1):65-70. doi: 10.3969/j.issn.1008-2786.2008.01.011

    Zeng X Q, Liu H P, Lu B J, et al. Fractal dimension of soil particle size distribution in Beijing mountainous area[J]. Journal of Mountain Science, 2008, 26(1):65-70. doi: 10.3969/j.issn.1008-2786.2008.01.011

    [21] 张琪, 方海兰, 史志华, 等.侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J].林业科学, 2007, 43(增刊1):77-82. http://d.old.wanfangdata.com.cn/Periodical/lykx2007z1015

    Zhang Q, Fang H L, Shi Z H, et al. Advances in effects of soil properties on aggregate stability under erosion[J]. Scientia Silvae Sinicae, 2007, 43(Suppl.1):77-82. http://d.old.wanfangdata.com.cn/Periodical/lykx2007z1015

    [22]

    Xue Y Z, Liu P L, Yang M Y, et al. Study of spatial and temporal processes of soil erosion on sloping land using rare earth elements as tracers[J]. Journal of Rare Earths, 2004, 22(5):707-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76ca635d8a46b286b0d38e68a529c798

    [23]

    Liu G, Yang M Y, Warrington D N, et al. Using beryllium‐7 to monitor the relative proportions of interrill and rill erosion from loessal soil slopes in a single rainfall event[J]. Earth Surface Processes & Landforms, 2015, 36(4):439-448. https://www.researchgate.net/publication/229991419_Using_beryllium-7_to_monitor_the_relative_proportions_of_interrill_and_rill_erosion_from_loessal_soil_slopes_in_a_single_rainfall_event

    [24] 郑粉莉.细沟侵蚀量测算方法的探讨[J].水土保持通报, 1989(4):41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB198904009.htm

    Zheng F L. Discussion on calculation method of rill erosion amount[J]. Soil and Water Conservation Bulletin, 1989 (4): 41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB198904009.htm

    [25] 付玉, 李光录, 郑腾辉, 等.雨滴击溅对耕作层土壤团聚体粒径分布的影响[J].农业工程学报, 2017, 33(3):155-160. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201703021

    Fu Y, Li G L, Zheng T H, et al. Effects of rain drop splash on particle size distribution of soil aggregate in cultivated soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3):155-160. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201703021

    [26] 闫峰陵.红壤表土团聚体稳定性特征及其对坡面侵蚀过程的影响[D].武汉: 华中农业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10504-2008202978.htm

    Yan F L. Aggregate stability characteristic of red soils and its effects on erosion processes at hillslope[D]. Wuhan: Huazhong Agricultural University, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10504-2008202978.htm

    [27] 董莉丽.不同土地利用类型下土壤水稳性团聚体的特征[J].林业科学, 2011, 47(4):95-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201104015

    Dong L L. Characteristics of soil water-stable aggregates under different land use types[J]. Scientia Silvae Sinicae, 2011, 47(4):95-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201104015

    [28]

    Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss[J]. Transactions American Geophysical Union, 1958, 39(2):285-291. doi: 10.1029/TR039i002p00285

    [29]

    Shi Z H, Yan F L, Lu L, et al. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China[J]. Catena, 2010, 81(3):240-248. doi: 10.1016/j.catena.2010.04.007

    [30]

    Nearing M A. Soil erosion and conservation[M]. New Jersey: Wiley-Backwell, 1995.

  • 期刊类型引用(2)

    1. 卢翠香,兰俊,陈健波,吴永富,邓紫宇,周维. 尾巨桉树轮异常结构的解剖学分析. 西南大学学报(自然科学版). 2019(04): 72-77 . 百度学术
    2. 易敏,赖猛,张露,陈伏生,胡松竹. 人工林刨花楠木材主要特性的径向变异及其对气象因子的响应. 应用生态学报. 2018(11): 3677-3684 . 百度学术

    其他类型引用(5)

图(5)  /  表(4)
计量
  • 文章访问数:  2409
  • HTML全文浏览量:  441
  • PDF下载量:  40
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-04-01
  • 发布日期:  2018-07-31

目录

    /

    返回文章
    返回