高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油松FT/TFL1-like基因表达模式与调控分析

刘洋 李帮同 杜桂华 黄东旭 周先清 钮世辉 李伟

刘洋, 李帮同, 杜桂华, 黄东旭, 周先清, 钮世辉, 李伟. 油松FT/TFL1-like基因表达模式与调控分析[J]. 北京林业大学学报, 2018, 40(10): 60-66. doi: 10.13332/j.1000-1522.20180040
引用本文: 刘洋, 李帮同, 杜桂华, 黄东旭, 周先清, 钮世辉, 李伟. 油松FT/TFL1-like基因表达模式与调控分析[J]. 北京林业大学学报, 2018, 40(10): 60-66. doi: 10.13332/j.1000-1522.20180040
Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. doi: 10.13332/j.1000-1522.20180040
Citation: Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. doi: 10.13332/j.1000-1522.20180040

油松FT/TFL1-like基因表达模式与调控分析

doi: 10.13332/j.1000-1522.20180040
基金项目: 

中央高校基本科研业务费专项资金项目 2015ZCQ-SW-02

国家自然科学基金项目 31600535

国家自然科学基金项目 31770713

详细信息
    作者简介:

    刘洋。主要研究方向:针叶树遗传改良。Email: xiaoyang_jiajia@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    钮世辉,博士,副教授。主要研究方向:针叶树生殖发育调控。Email:arrennew@bjfu.edu.cn 地址:同上

  • 中图分类号: S722

Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis

  • 摘要: 目的PEBP基因家族的FT-like与TFL1-like亚基因家族在被子植物生殖发育调控网络中处于核心调控节点,而在针叶树中,仅存在未分化的FT/TFL1-like亚基因家族。研究表明针叶树FT/TFL1-like可能在生殖发育、生长节律及休眠过程中发挥重要功能。然而,目前关于针叶树FT/TFL1-like基因系统的表达模式与不同环境因子对其表达的调控仍然缺乏深入认识。方法本研究从油松中分离得到两个FT/TFL1-like基因,分别命名为PtTFL1与PtTFL2,对它们在不同组织、不同发育阶段雌雄球花、休眠与解除休眠过程中针叶、深冬相对高温、不同光质与光周期处理中的表达水平进行了系统分析。结果PtTFL1仅在花粉中特异表达,在其他组织中只有痕量表达或不表达。而PtTFL2表达范围非常广泛,且在芽组织中的表达丰度显著高于其他组织,二者在快速增殖的愈伤组织中均无明显表达;另外,对PtTFL2在不同环境下表达水平进行分析发现,PtTFL2在芽、针叶休眠时期大量积累,且随着休眠解除表达量水平持续降低;在不足以打破休眠的相对高温处理下,PtTFL2的表达受到极显著的抑制;短日照下远红光处理可以高效诱导PtTFL2的表达。结论由此可知,PtTFL1在油松生殖发育进程中的特异性可能与花粉成熟过程相关,而PtTFL2可能参与更多其他发育调控,但二者均不是维持细胞活性所必须的基因;秋季环境条件非常利于PtTFL2在针叶、芽中大量表达,其表达模式与休眠过程高度相关,但PtTFL2对温度响应过于敏感,其在针叶、雌雄球花中的表达模式很可能是对温度响应的结果,这表明PtTFL2自身的表达可能并不足以维持休眠,也并不作为球花发育调控中的控制因子,而很可能只是作为一个温度、短日照远红光信号的感受与传递因子。本研究为深入理解FT/TFL1-like基因在油松生殖与休眠等重要发育过程中的功能,揭示不同环境因子对其表达的调控作用提供了重要依据。

     

  • 图  1  种子植物FT/TFL1-like蛋白系统发育分析

    基于蛋白序列构建无根ML进化树,氨基酸名字与ID标注在每个分枝的右侧,分枝的长度与每个氨基酸残基的替换率成正比,箭头指示的是在本研究中所克隆的油松基因编码蛋白。

    Figure  1.  Phylogenetic analysis of seed plant FT/TFL1-like protein

    The figures show an unrooted maximum likelihood tree based on the amino acid sequence. The amino acid name and ID were provided on right of each branch. The horizontal branch lengths are proportional to the estimated number of amino acid substitutions per residue. The arrows indicate the proteins encoded by P. tabuliformis genes investigated in this study.(Ptrichocarpa, Populus trichocarpa; Athaliana, Arabidopsis thaliana; Vvinifera, Vitis vinifera; Osativa, Oryza sativa; Pabies, Picea abies; Pglauca, Picea glauca; Ptabuliformis, Pinus tabuliformis; Psitchensis, Picea sitchensis; Pcontorta, Pinus contorta).

    图  2  油松FT/TFL1-like蛋白与AtFT及AtTFL1序列比对

    Figure  2.  Amino acid sequence alignment of FT/TFL1-like proteins in P. tabuliformis with AtFT and AtTFL1

    图  3  油松PtTFL1、PtTFL2在不同组织中的表达模式

    3个生物学重复

    Figure  3.  Expression profiles of PtTFL1 and PtTFL2 in different tissue type of P. tabuliformis

    Three biological repeats

    图  4  油松PtTFL2在雌雄球花发育中的表达模式

    3个生物学重复;VB代表叶芽;M1代表幼年雄球花;M2~M6代表 5个不同时期的雄球花;F1代表幼年雌球花;F2~F6代表 5个不同时期的雌球花。

    Figure  4.  Expression patterns of PtTFL2 in developing male and female cones of P. tabuliformis

    Three biological repeats; VB represents vegetative bud; M1 represents juvenile male cone; M2-M6 represent five different development stages of male cone; F1 represents juvenile female cone; F2-F6 represent five different development stages of female cone.

    图  5  PtTFL2在冬季与春季针叶中的表达模式

    12个生物学重复

    Figure  5.  Expression profiles of PtTFL2 in needles in mid-winter and spring

    Twelve biological repeats

    图  6  冬季与春季针叶中PtTFL2的表达模式

    9个生物学重复

    Figure  6.  Expression profiles of PtTFL2 in needles in mid-winter and spring

    Nine biological repeats

    图  7  长日照、短日照、红光与远红光对PtTFL2的表达调控

    3个生物学重复;LB为长日照下白光;LF为长日照下远红光;LR为长日照下红光;SB为短日照下白光;SF为短日照下远红光;SR为短日照下红光。

    Figure  7.  Expressional regulation of PtTFL2 by the day length, red light and far-red light

    Three biological repeats; LB is long bright light; LF is long far-red light; LR is long red light; SB is short bright light; SF is short far-red light; SR is short red light.

  • [1] 张云中, 祁丽君, 王沙生.油松球花发端期的研究[J].北京林业大学学报, 1990, 12(4): 57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199004008.htm

    Zhang Y Z, Qi L J, Wang S S. The study of cone initiation period in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 1990, 12(4): 57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199004008.htm
    [2] Bluemel M, Dally N, Jung C. Flowering time regulation in crops: what did we learn from Arabidopsis?[J]. Current Opinion in Biotechnology, 2015, 32: 121-129. doi: 10.1016/j.copbio.2014.11.023
    [3] Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences, 2005, 102(21): 7748-7753. doi: 10.1073/pnas.0500932102
    [4] Liu Y Y, Yang K Z, Wei X X, et al. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution[J]. New Phytologist, 2016, 212(3): 730-744. doi: 10.1111/nph.14066
    [5] Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497: 579-584. doi: 10.1038/nature12211
    [6] Gyllenstrand N, Clapham D, Källman T, et al. A Norway spruce FLOWERING LOCUS T homologs implicated in control of growth rhythm in conifers[J]. Plant Physiology, 2007, 144(1): 248-257. https://www.jstor.org/stable/40065336
    [7] Karlgren A, Gyllenstrand N, Källman T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution[J/OL]. Plant Physiology, 2011[2017-10-21]. https://doi.org/10.1104/pp.111.176206.
    [8] Klintenäs M, Pin P A, Benlloch R, et al. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage[J]. New Phytologist, 2012, 196(4): 1260-1273. doi: 10.1111/j.1469-8137.2012.04332.x
    [9] Asante D K A, Yakovlev I A, Fossdal C G, et al. Gene expression changes during short day induced terminal bud formation in Norway spruce[J]. Plant, Cell & Environment, 2011, 34(2): 332-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24fbeebe42c1ac5fbeae811a046b87af
    [10] Karlgren A, Gyllenstrand N, Clapham D, et al. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce[J]. Plant Physiology, 2013, 163(2): 792-803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fdce970d160a2e5d4d6622bf77528c
    [11] Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX[J/OL]. Current Protocols in Bioinformatics, 2003[2017-10-21]. http://doi.org/10.1002/0471250953.bi0203s00.
    [12] Sohpal V K, Dey A, Singh A. MEGA biocentric software for sequence and phylogenetic analysis: a review[J]. International Journal of Bioinformatics Research and Applications, 2010, 6(3): 230-240. http://cn.bing.com/academic/profile?id=f85918849d9d9ce71ab2c4888bc9cffc&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Niu S H, Yuan H W, Sun X R, et al. A transcriptomics investigation into pine reproductive organ development[J]. New Phytologist, 2016, 209(3): 1278-1289. doi: 10.1111/nph.2016.209.issue-3
    [14] Bray N L, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification[J]. Nature Biotechnology, 2016, 34(5): 525-527. doi: 10.1038/nbt.3519
    [15] Ho W W H, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T[J/OL]. The Plant Cell, 2014[2017-10-06]. https://doi.org/10.1105/tpc.113.115220.
    [16] Singh R K, Svystun T, AlDahmash B, et al. Photoperiod-and temperature-mediated control of phenology in trees-a molecular perspective[J]. New Phytologist, 2017, 213(2): 511-524. doi: 10.1111/nph.14346
    [17] Bouché F, D'Aloia M, Tocquin P, et al. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana[J]. Scientific Reports, 2016, 6(4): 29042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926122/
    [18] Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316: 1030-1033. doi: 10.1126/science.1141752
    [19] Takala H, Björling A, Berntsson O, et al. Signal amplification and transduction in phytochrome photosensors[J]. Nature, 2014, 509: 245-248. doi: 10.1038/nature13310
  • 加载中
图(7)
计量
  • 文章访问数:  696
  • HTML全文浏览量:  207
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-30
  • 修回日期:  2018-04-25
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回