Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

库布齐沙地柠条叶生物量及营养估测模型

马普, 陶梦, 吕世海, 苏德荣, 叶生星, 刁兆岩

马普, 陶梦, 吕世海, 苏德荣, 叶生星, 刁兆岩. 库布齐沙地柠条叶生物量及营养估测模型[J]. 北京林业大学学报, 2018, 40(8): 33-41. DOI: 10.13332/j.1000-1522.20180044
引用本文: 马普, 陶梦, 吕世海, 苏德荣, 叶生星, 刁兆岩. 库布齐沙地柠条叶生物量及营养估测模型[J]. 北京林业大学学报, 2018, 40(8): 33-41. DOI: 10.13332/j.1000-1522.20180044
Ma Pu, Tao Meng, Lü Shihai, Su Derong, Ye Shengxing, Diao Zhaoyan. Estimation models of leaf biomass and nutrient content for Caragana korshinskii in Kubuqi Sandy Land of northern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 33-41. DOI: 10.13332/j.1000-1522.20180044
Citation: Ma Pu, Tao Meng, Lü Shihai, Su Derong, Ye Shengxing, Diao Zhaoyan. Estimation models of leaf biomass and nutrient content for Caragana korshinskii in Kubuqi Sandy Land of northern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 33-41. DOI: 10.13332/j.1000-1522.20180044

库布齐沙地柠条叶生物量及营养估测模型

基金项目: 

国家科技支撑计划项目 2015BAC06B01

详细信息
    作者简介:

    马普。主要研究方向:草地生态。Email:mapu1106@163.com  地址:100083  北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    吕世海,研究员,博士生导师。主要研究方向:草地资源与生态保护、土地荒漠化与沙尘暴防治。Email: lv_sh@craes.org.cn  地址:100012  北京市朝阳区安外北苑大羊坊8号中国环境科学研究院生态环境研究所

    苏德荣,教授,博士生导师。主要研究方向:草地生态水文过程。Email: suderong@bjfu.edu.cn  地址:100083  北京市海淀区清华东路35号北京林业大学林学院

  • 中图分类号: S793.3

Estimation models of leaf biomass and nutrient content for Caragana korshinskii in Kubuqi Sandy Land of northern China

  • 摘要:
    目的柠条是一种生长迅速、枝叶茂盛、防风固沙能力强大的豆科植物,且茎叶粗蛋白含量相对较高,具有广泛的饲用开发前景,但柠条灌丛在不同发育阶段叶生物量和体内营养物质含量差异较大,其饲用性受到一定限制。因此,了解柠条各生长阶段叶生物量及其营养物质含量变化情况成为打破柠条叶片利用局限性的关键。
    方法本试验以库布齐沙地柠条灌丛为研究对象,分别测量了不同林龄、不同发育时期柠条的叶生物量及营养物质含量,并构建了柠条不同生长年限叶生物量动态模型、生长参数与叶生物量估测模型以及叶片营养物质动态变化模型。
    结果(1) 不同生长年限,柠条叶生物量年内变化均呈现出先增长后降低的趋势,在7月份2年生、3年生、5年生柠条叶生物量分别达到0.14、0.32、1.40 kg/株的最高峰值,生长拟合曲线R2>0.8,F检验结果均达到显著水平(P < 0.05)。(2)不同生长年限,柠条叶片粗蛋白含量平均达16.0%以上,年内总体变化呈下降趋势(拟合曲线R2>0.8),且最高值均出现在每年的5月份。(3)不同生长年限,柠条叶片内中性洗涤纤维和酸性洗涤纤维含量无明显变化规律,且年内变化趋势各不相同。
    结论根据研究结果可以发现7月份柠条叶生物量达到最大值,5月份柠条叶粗蛋白含量达到最大值。因此,根据柠条叶片生育期及其营养价值等综合考虑,建议5月、7月为主要利用时期。
    Abstract:
    ObjectiveCaragana korshinskii is a kind of leguminous plant with rapid growth, exuberant foliage, strong wind and sand fixing ability. Meanwhile, the crude protein (CP) content of stem and leaf is relatively high and it has a wide range of forage development prospects. However, the leaf biomass and nutrient contents of caragana are different at various stages of development and its forage ability is limited. Therefore, in order to break the limitations of the use of caragana leaves, we should understand the changes of leaf biomass and nutrient content during the growth stages of caragana.
    MethodThe study used caragana as research material in Kubuqi Sandy Land of northern China. Meanwhile, we measured leaf biomass and nutrient contents of caragana at different growth years and varied developing stages. In addition, we constructed the dynamic models of leaf biomass of caragana at different growth years, the estimation model of growth parameter and leaf biomass and the dynamic model of leaf nutrient contents.
    Result(1) For different growth years, the leaf biomass of caragana increased first and then decreased within the year. The leaf biomass of 2, 3 and 5 years old caragana reached the peak value in July and the leaf content was 0.14, 0.32, 1.40 kg per plant, respectively, the determining coefficient of the growth fitting curve was greater than 0.8, and the results of F test all reached a significant level (P < 0.05). (2) The CP content of caragana leaves was all over 16.0% during different growth years, and the overall change showed a downward trend during the year (the determining coefficient of the fitting curve was greater than 0.8), and the highest CP contents appeared in May each year. (3) There were no significant changes in the contents of neutral detergent fibers and acidic detergent fibers in caragana at different growth years, and the change trend was different within the year.
    ConclusionAccording to the results, it can be seen that July is the period when the biomass of caragana leaves reaches its maximum, and May is the period when the CP contents of caragana leaves reach its maximum value. Therefore, according to the comprehensive consideration of the growth period and nutrient value of caragana leaves, May and July are the main utilization periods.
  • 图  1   不同生长年限柠条叶生物量年内变化情况

    不同字母表示P < 0.05水平上差异显著。

    Figure  1.   Changes of leaf biomass of Caragana korshinskii within the year at different growth years

    Different letters indicate significant differences at P < 0.05 level.

    图  2   柠条不同形态指标与叶生物量的关系

    Figure  2.   Correlations between different morphological indexes and leaf biomass of Caragana korshinskii

    图  3   不同生长年限柠条叶片粗蛋白含量(CP)变化趋势

    Figure  3.   Changing trends of CP content of Caragana korshinskii leaves at different growth years

    图  4   不同生长年限柠条叶片NDF、ADF含量变化

    Figure  4.   Changes of NDF and ADF contents of Caragana korshinskii leaves at different growth years

    表  1   试验样地柠条灌丛形态特征参数

    Table  1   Parameters of the morphological characteristics for Caragana korshinskii in sample plots

    株龄
    Plant age
    样本数
    Sample number
    冠幅长
    Crown width length/cm
    冠幅宽
    Crown width/cm
    株高
    Plant height/cm
    地径
    Ground diameter/mm
    2年生2 years old 30 122.22±5.39 105.94±6.25 112.28±5.15 9.95±0.46
    3年生3 years old 30 173.44±6.82 172.11±7.08 158.11±4.04 12.93±0.51
    5年生5 years old 30 220.22±6.08 207.50±10.56 220.39±6.38 17.92±0.84
    下载: 导出CSV

    表  2   不同生长年限柠条叶生物量拟合模型精度检验

    Table  2   Precision test for fitting models of leaf biomass of Caragana korshinskii at different growth years

    株龄Plant age 估测模型Estimation model R2 P RS/% RMA/%
    2年生2 years old WL=t2138.9470+342.6215t1690.9080t 0.892 0.003 9 -5.977 14.348
    3年生3 years old WL=t981.7648+144.1632t744.0618t 0.955 0.000 7 3.804 17.147
    5年生5 years old WL=t626.3694+92.7222t180.2703t 0.993 0.000 1 -3.077 11.099
    下载: 导出CSV

    表  3   不同生长年限柠条叶片营养物含量

    Table  3   Nutrient contents of Caragana korshinskii leaves in different growth years

    株龄Plant age CP/% NDF/% ADF/%
    2年生
    2 years old
    16.31a 54.58a 17.21a
    3年生
    3 years old
    17.02a 55.14a 17.79a
    5年生
    5 years old
    16.09a 54.84a 17.13a
    注:不同字母表示P < 0.05水平上差异显著;CP.粗蛋白含量;NDF.中性洗涤纤维含量;ADF.酸性洗涤纤维含量。下同。Notes: different letters indicate significant differences at P < 0.05 level; CP, crude protein content; NDF, neutral detergent fiber content; ADF, acid detergent fiber content. The same below.
    下载: 导出CSV
  • [1] 何炎红, 田有亮, 叶冬梅, 等.白刺地上生物量关系模型及其与叶面积关系的研究[J].中国沙漠, 2005, 25(4): 541-546. doi: 10.3321/j.issn:1000-694X.2005.04.015

    He Y H, Tian Y L, Ye D M, et al. Model of abovegroud biomass of Nitraria tangutorum and relationship biomass and leaf area[J]. Journal of Desert Research, 2005, 25(4): 541-546. doi: 10.3321/j.issn:1000-694X.2005.04.015

    [2]

    West P W. Tree and forest measurement[M]. Berlin: Springer-Verlag, 2004.

    [3]

    Somogyi Z, Cienciala E, Makipaa R, et al. Indirect methods of large-scale forest biomass estimation[J]. European Journal of Forest Research, 2007, 126(2): 197-207. doi: 10.1007/s10342-006-0125-7

    [4] 王天博, 陆静.国外生物量模型概述[J].中国农学通报, 2012, 28(16): 6-11. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201216002

    Wang T B, Lu J. The advance on foreign biomass model[J]. Chinese Agricultural Science Bulletin, 2012, 28(16): 6-11. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201216002

    [5]

    Picolas N, Rutishauser E, Ploton P, et al. Should tree biomass allometry be restricted to power models?[J]. Forest Ecology and Management, 2015, 353: 156-163. doi: 10.1016/j.foreco.2015.05.035

    [6]

    Komiyama A, Jin E O, Poungparn S. Allometry, biomass, and productivity of mangrove forests: a review[J]. Aquatic Botany, 2008, 89(2): 128-137. doi: 10.1016/j.aquabot.2007.12.006

    [7]

    Mascaro J, Litton C M, Hughes R F, et al. Minimizing bias in biomass allometry: model selection and log-transformation of data[J]. Biotropica, 2011, 43(6): 649-653. doi: 10.1111/btp.2011.43.issue-6

    [8] 冯仲科, 刘永霞.森林生物量测定精度分析[J].北京林业大学学报, 2005, 27(增刊2): 108-111.

    Feng Z K, Liu Y X. Precision analysis of forest biomass measuring[J]. Journal of Beijing Forestry University, 2005, 27(Suppl.2): 108-111.

    [9] 程堂仁, 马钦彦, 冯仲科, 等.甘肃小陇山森林生物量研究[J].北京林业大学学报, 2007, 29(1):31-36. doi: 10.3321/j.issn:1000-1522.2007.01.006

    Cheng T R, Ma Q Y, Feng Z K, et al. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31-36. doi: 10.3321/j.issn:1000-1522.2007.01.006

    [10] 董利虎, 李凤日, 宋玉文.东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J].应用生态学报, 2015, 26(3): 704-714. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503009

    Dong L H, Li F R, Song Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China[J]. Chinese Jounal of Applied Ecology, 2015, 26(3): 704-714. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503009

    [11] 陶冶, 张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报, 2014, 23(2): 38-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201402005

    Tao Y, Zhang Y M. Biomass allocation patterns and allometric relationships of ephemeroid species in Junggar Basin, China[J]. Acta Prataculturae Sinica, 2014, 23(2): 38-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201402005

    [12] 曾伟生, 白锦贤, 宋连城, 等.内蒙古柠条生物量建模[J].林业资源管理, 2014(6): 58-62. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201406014

    Zeng W S, Bai J X, Song L C, et al. Biomass modeling for caragana microphylla in Inner Mongolia[J]. Forest Resources Management, 2014(6): 58-62. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201406014

    [13] 曾伟生.国内外灌木生物量模型研究综述[J].世界林业研究, 2015, 28(1): 31-36. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201501006

    Zeng W S. A review of studies of shrub biomass modeling[J]. World Forestry Research, 2015, 28(1): 31-36. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201501006

    [14] 刘存琦.灌木植物量测定技术的研究[J].草业学报, 1994, 3(4): 61-65. doi: 10.3321/j.issn:1004-5759.1994.04.006

    Liu C Q. The study on techniques in determining shrub phytomass[J]. Acta Prataculturae Sinica, 1994, 3(4): 61-65. doi: 10.3321/j.issn:1004-5759.1994.04.006

    [15] 李钢铁, 贾守义.旱生灌木生物量预测模型的研究[J].内蒙古林学院学报, 1998, 20(2): 24-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800437133

    Li G T, Jia S Y. Study on biomass estimation models of xerophyte shrub[J]. Journal of Innermongolia Forestry College, 1998, 20(2): 24-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800437133

    [16]

    Navar J, Mendez E, Najera A, et al. Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico[J]. Journal of Arid Environments, 2004, 59(4): 657-674. doi: 10.1016/j.jaridenv.2004.02.010

    [17]

    Lufafa A, Diedhiou I, Ndiaye N A S, et al. Allometric relationships and peak-season community biomass stocks of native shrubs in Senegal's Peanut Basin[J]. Journal of Arid Environments, 2009, 73(3): 260-266. doi: 10.1016/j.jaridenv.2008.09.020

    [18] 王忠云, 刘润焕.沙漠生态工程拓宽了亿利资源集团发展之路[J].内蒙古林业, 2006(12): 36-37. doi: 10.3969/j.issn.1033-8221.2006.12.026

    Wang Z Y, Liu R H. Desert ecological engineering broadened the development path of ELION resources group[J]. Journal of Inner Mongolia Forestry, 2006 (12): 36-37. doi: 10.3969/j.issn.1033-8221.2006.12.026

    [19] 庞琪伟.晋西北黄土丘陵区柠条能源林适生立地、合理密度及生物量研究[D].北京: 北京林业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10022-2009161746.htm

    Pang Q W. A study on suitable site, rational density and biomass of the energy plantations of Caragana microphylla Lam in loess hilly region of the Northwest Shanxi Province[D]. Beijing: Beijing Forestry University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10022-2009161746.htm

    [20] 王新云, 郭艺歌, 陈林, 等.荒漠草原不同林龄柠条灌丛生物量模型研究[J].生物数学学报, 2013, 28(2): 377-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swsxxb201302029

    Wang X Y, Guo Y G, Chen L, et al. Study on biomass model of different age Caragana microphylla shrubbery in desert steppe region[J]. Journal of Biomathematics, 2013, 28(2): 377-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swsxxb201302029

    [21] 杨宪龙, 魏孝荣, 邵明安, 等.黄土高原北部典型灌丛枝条生物量估算模型[J].应用生态学报, 2016, 27(10): 3164-3172. http://d.old.wanfangdata.com.cn/Periodical/yystxb201610013

    Yang X L, Wei X R, Shao M A, et al. Stem biomass estimation models for dominant shrubs on the northern Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3164-3172. http://d.old.wanfangdata.com.cn/Periodical/yystxb201610013

    [22] 田树飞, 毛可桢.柠条对草食动物饲用价值的研究进展[J].安徽农业科学, 2007, 35(25): 7836-7837. doi: 10.3969/j.issn.0517-6611.2007.25.055

    Tian S F, Mao K Z. Research advances on feeding value of Caragana microphlla to herbivores[J]. Journal of Anhui Agricultural Sciences, 2007, 35(25): 7836-7837. doi: 10.3969/j.issn.0517-6611.2007.25.055

    [23] 张丽英.饲料分析及饲料质量检测技术[M]. 2版.北京:中国农业大学出版社, 2003.

    Zhang L Y. Feed analysis and feed quality testing technology[M]. 2th ed. Beijing: China Agricultural University Press, 2003.

    [24] 江世高, 尚振艳, 牛得草, 等.贺兰山西坡草地植物多样性与其叶片C :N :P计量比的关系[J].干旱区研究, 2014, 31(3): 523-529. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201403021

    Jiang S G, Shang Z Y, Niu D C, et al. Relationship between grassland plant diversity and foliar C :N :P stoichiometry on the western slope of the Helan Mountain[J]. Arid Zone Research, 2014, 31(3):523-529. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201403021

    [25] 吴统贵, 吴明, 刘丽, 等.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J].植物生态学报, 2010, 34(1): 23-28. doi: 10.3773/j.issn.1005-264x.2010.01.005

    Wu T G, Wu M, Liu L, et al. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 23-28. doi: 10.3773/j.issn.1005-264x.2010.01.005

    [26]

    Freschet G T, Cornelissen J H C, Logtnstijn R S P V, et al. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits?[J]. New Phytologist, 2010, 186(4): 879-889. doi: 10.1111/j.1469-8137.2010.03228.x

    [27] 曾珍英, 刘琪璟, 曾慧卿.江西千烟洲几种灌木生物量模型的研究[J].福建林业科技, 2005, 1(4): 68-72. doi: 10.3969/j.issn.1002-7351.2005.04.019

    Zeng Z Y, Liu Q J, Zeng H Q. Study of biomass models of some kinds of shrubs in Qianyanzhou, Jiangxi Province[J]. Journal of Fujian Forestry Science and Technology, 2005, 1(4): 68-72. doi: 10.3969/j.issn.1002-7351.2005.04.019

    [28] 王玲.川西北地区主要灌丛类型生物量及其模型的研究[D].雅安: 四川农业大学, 2009. http: //cdmd.cnki.com.cn/Article/CDMD-10626-2009258777.htm

    Wang L. Study of biomass and its models of main shrub community type in Northwest Sichuan[D]. Yaan: Sichuan Agricultural University, 2009. http: //cdmd.cnki.com.cn/Article/CDMD-10626-2009258777.htm

    [29] 李刚, 赵祥, 张宾宾, 等.不同株高的柠条生物量分配格局及其估测模型构建[J].草地学报, 2014, 22(4): 769-775. http://d.old.wanfangdata.com.cn/Periodical/cdxb201404014

    Li G, Zhao X, Zhang B B, et al. Biomass allocation pattern and estimation model building of Caragana korshinskii with different plant heights[J]. Acta Agrestia Sinica, 2014, 22(4): 769-775. http://d.old.wanfangdata.com.cn/Periodical/cdxb201404014

    [30] 卜崇峰, 刘国彬, 张文辉.黄土丘陵沟壑区狼牙刺的生长特征研究[J].西北植物学报, 2004, 24(10): 1791-1797. doi: 10.3321/j.issn:1000-4025.2004.10.004

    Bo C F, Liu G B, Zhang W H. Growth of characteristics of Sophora viciifolia population in the hilly and gully region of Loess Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(10): 1791-1797. doi: 10.3321/j.issn:1000-4025.2004.10.004

    [31] 高俊芳.黄土丘陵区柠条人工林生长及凋落动态研究[D].杨凌: 西北农林科技大学, 2011. http: //cdmd.cnki.com.cn/Article/CDMD-10712-1011403103.htm

    Gao J F. The study of growth and litter dynamic of Caragana korshinskii plantations in loess hilly region[D]. Yangling: Northwest A & F University, 2011. http: //cdmd.cnki.com.cn/Article/CDMD-10712-1011403103.htm

    [32] 牛西午.柠条生物学特性研究[J].华北农学报, 1998, 13(4): 122-129. doi: 10.3321/j.issn:1000-7091.1998.04.023

    Niu X W. Biological characters of cultivars in caragana[J]. Act Agriculturae Boreali-Sinica, 1998, 13(4): 122-129. doi: 10.3321/j.issn:1000-7091.1998.04.023

    [33] 罗云建, 张小全, 王效科, 等.森林生物量的估算方法及其研究进展[J].林业科学, 2009, 45(8): 129-134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    Luo Y J, Zhang X Q, Wang X K, et al. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129-134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    [34] 林伟, 李俊生, 郑博福, 等.井冈山自然保护区12种常见灌木生物量的估测模型[J].植物科学学报, 2010, 28(6): 725-729. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201006013

    Lin W, Li J S, Zheng B F, et al. Models for estimating biomass of twelve shrub species[J]. Plant Science Journal, 2010, 28(6): 725-729. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201006013

    [35] 王俊峰, 欧光龙, 唐军荣, 等.临沧膏桐种植区灌木群落生物量估测模型研究[J].西部林业科学, 2012, 41(6): 53-57. doi: 10.3969/j.issn.1672-8246.2012.06.010

    Wang J F, Ou G L, Tang J R, et al. Biomass estimation model of shrub community at Jatropha curcas growing area in Lincang of Yunnan[J]. Journal of West China Forestry Science, 2012, 41(6): 53-57. doi: 10.3969/j.issn.1672-8246.2012.06.010

    [36] 杨明秀, 宋乃平, 杨新国.人工柠条林枝、叶构件生物量的分配格局与估测模型[J].江苏农业科学, 2013, 41(12): 331-333. doi: 10.3969/j.issn.1002-1302.2013.12.121

    Yang M X, Song N P, Yang X G. Biomass allocation pattern and estimation model of branches and leaf members of Caragana korshinskii plantation[J]. Jiangsu Agricultural Sciences, 2013, 41(12): 331-333. doi: 10.3969/j.issn.1002-1302.2013.12.121

    [37] 曾慧卿, 刘琪琛, 马泽清, 等.基于冠幅及植株高度的檵木生物量回归模型[J].南京林业大学学报(自然科学版), 2006, 30(4): 101-104. doi: 10.3969/j.issn.1000-2006.2006.04.024

    Zeng H Q, Liu Q C, Ma Z Q, et al. The regression model of Loropetalum chinense biomass based on canopy diameter and plant height[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(4): 101-104. doi: 10.3969/j.issn.1000-2006.2006.04.024

    [38] 王旭.利用GI技术对粗饲料进行科学搭配及绵羊日粮配方系统优化技术的研究[D].呼和浩特: 内蒙古农业大学, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10129-2003085424.htm

    Wang X. A technique for formulation of mixed forages by grading index and systematic optimization of sheep ration based on the technique[D]. Hohhot: Inner Mongolia Agricultural University, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10129-2003085424.htm

    [39]

    Jung H J G. Analysis of forage fiber and cell walls in ruminant nutrition[M]. Cambridge: Cambridge University Press, 1997.

    [40]

    Grant R, Anderson B, Rasby R J, et al. Testing livestock feeds for beef cattle, dairy cattle, sheep and horses[D]. Lincoln: University of Nebraska Lincoln, 1997.

    [41] 冯仰廉, 张子仪.低质粗饲料的营养价值及合理利用[J].中国畜牧杂志, 2001, 37(6):3-5. doi: 10.3969/j.issn.0258-7033.2001.06.001

    Feng Y L, Zhang Z Y. The nutritional value and rational use of low quality roughage[J]. Chinese Journal of Animal Science, 2001, 37(6): 3-5. doi: 10.3969/j.issn.0258-7033.2001.06.001

  • 期刊类型引用(6)

    1. 崔恒久,曾教科,李雯,黄海杰,彭世清,郭冬,蒲金基,周永凯,李辉亮. 腰果CBF基因家族的鉴定及响应冷胁迫的表达模式. 热带作物学报. 2024(03): 473-480 . 百度学术
    2. 韩立群,张捷,赵钰,梅闯,马凯. 新疆野生核桃JfDREB1A基因的克隆与原核表达分析. 西北农业学报. 2023(07): 1050-1057 . 百度学术
    3. 赵淑玲,王永斌,蹇小勇,郭兴贵,朱福民,杨静静,霍发喜. 平欧杂交榛研究进展. 现代化农业. 2023(09): 46-49 . 百度学术
    4. 夏蕴,巢建国,谷巍,盛业龙,王玉卓,惠西珂,王凯,王圆圆. 倒春寒胁迫与恢复对茅苍术生长、生理及关键酶基因的影响. 中成药. 2020(08): 2187-2191 . 百度学术
    5. 宋静武,彭磊. 核桃CBF基因在低温胁迫中表达. 湖北林业科技. 2019(02): 7-13 . 百度学术
    6. 刘晓丹,王霞,杨祥波. 非生物胁迫下山腊梅CpCBF基因的表达模式分析. 黑龙江农业科学. 2017(12): 18-21 . 百度学术

    其他类型引用(3)

图(4)  /  表(3)
计量
  • 文章访问数:  5840
  • HTML全文浏览量:  425
  • PDF下载量:  50
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-03-18
  • 发布日期:  2018-07-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭