高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2/PDMS增强表面热改性木材耐老化性的协同效应

许佳琪 沈海颖 曹金珍

许佳琪, 沈海颖, 曹金珍. TiO2/PDMS增强表面热改性木材耐老化性的协同效应[J]. 北京林业大学学报, 2018, 40(4): 109-116. doi: 10.13332/j.1000-1522.20180053
引用本文: 许佳琪, 沈海颖, 曹金珍. TiO2/PDMS增强表面热改性木材耐老化性的协同效应[J]. 北京林业大学学报, 2018, 40(4): 109-116. doi: 10.13332/j.1000-1522.20180053
Xu Jiaqi, Shen Haiying, Cao Jinzhen. Synergistic effect of TiO2 and PDMS on improving anti-weathering properties of surface thermally-modified wood[J]. Journal of Beijing Forestry University, 2018, 40(4): 109-116. doi: 10.13332/j.1000-1522.20180053
Citation: Xu Jiaqi, Shen Haiying, Cao Jinzhen. Synergistic effect of TiO2 and PDMS on improving anti-weathering properties of surface thermally-modified wood[J]. Journal of Beijing Forestry University, 2018, 40(4): 109-116. doi: 10.13332/j.1000-1522.20180053

TiO2/PDMS增强表面热改性木材耐老化性的协同效应

doi: 10.13332/j.1000-1522.20180053
基金项目: 

国家自然科学基金项目 31570542

详细信息
    作者简介:

    许佳琪。主要研究方向:木材功能性改良。Email:bjfu130534112@163.com 地址:100083北京市海淀区清华东路35号北京林业大学材料科学技术学院

    责任作者:

    曹金珍,教授,博士生导师。主要研究方向:木材功能性改良。Email:caoj@bjfu.edu.cn 地址:同上

  • 中图分类号: TQ351

Synergistic effect of TiO2 and PDMS on improving anti-weathering properties of surface thermally-modified wood

  • 摘要: 目的表面热改性木材是一种常见的室外用木材,但易受光照和水分的作用发生老化现象,这在一定程度上限制了它的应用。因此,探究一种有效可行的改性方法提高表面热改性木材的耐老化性能十分必要。方法本研究采用二氧化钛(TiO2)和聚二甲基硅氧烷(PDMS)单独或复合处理作为表面热改性的预处理手段,采用场发射扫描电子显微镜(FE-SEM)和傅里叶红外光谱(FTIR)测试其微观结构和表面物质的变化,探讨了不同处理手段对于提高表面热改性木材耐老化性能的改性效果及其作用机理。结果TiO2或PDMS单独改性处理不能有效提高表面热改性材的耐老化性能。TiO2/PDMS复合改性处理有效提升了表面热改性材在老化过程中的颜色稳定性、疏水性能和耐磨性能,这是TiO2的紫外屏蔽效应和PDMS的防水效应共同作用的结果。木材表面形成的纳米TiO2能够散射、反射和吸收紫外光,防止木材内部组分因吸收紫外光发生剧烈降解,PDMS可减少TiO2颗粒因水分和摩擦影响而产生的流失。结论TiO2/PDMS复合改性处理对改善表面热改性材耐老化性能具有协同作用。

     

  • 图  1  各组试材表面明度(a)和色差(b)随紫外加速老化时间的变化

    Figure  1.  Changes of lightness(a)and color difference(b)on the surface of wood samples during accelerated UV weathering test

    图  2  木材老化前(a)和老化720 h后(b)动态接触角变化

    Figure  2.  Changes of dynamic contact angle of wood before (a) and after weathering for 720 hours (b)

    图  3  木材试件老化前的弦切面扫描电镜图

    Figure  3.  SEM images on transverse surfaces of wood samples before weathering

    图  4  木材试件老化720 h后的弦切面扫描电镜图

    Figure  4.  SEM images on transverse surfaces of wood samples after weathering for 720 hours

    图  5  未处理材和TiO2处理材X射线衍射图

    Figure  5.  XRD patterns of untreated sample and TiO2-treated sample

    图  6  试材老化前(a)和老化720 h后(b)傅里叶红外光谱图

    Figure  6.  FTIR spectra of wood samples before (a) and after weathering for 720 hours (b)

    图  7  TiO2/PDMS处理材表面化学结构

    Figure  7.  Chemical construction of wood surface modified by TiO2 and PDMS

    表  1  试材分组处理方案

    Table  1.   Treatment strategy of different groups of samples

    试件组别
    Group of sample
    TiO2原位沉积
    In-situ deposition of TiO2
    PDMS涂刷
    Coating of PDMS
    表面热改性
    Surface thermal modification
    对照Control × ×
    二氧化钛TiO2 ×
    聚二甲基硅氧烷PDMS ×
    二氧化钛/聚二甲基硅氧烷TiO2/PDMS
    注:表中“×”表明未经过该项处理;“√”表明经过了该项处理。Notes: “×”in the table indicates that the treatment has not been processed, and “√” indicates that the treatment has been processed.
    下载: 导出CSV

    表  2  耐磨实验前后各组试材接触角变化

    Table  2.   Changes of water contact angle of wood samples before and after wear test

    组别Group 老化前接触角Contact angle before weathering/(°) 老化720 h接触角Contact angle after weathering for 720 hours/(°)
    磨损前
    Before wearing test
    磨损后
    After wearing test
    磨损前
    Before wearing test
    磨损后
    After wearing test
    对照Control 89.70±4.26 93.92±5.26 81.17±6.90 56.83±5.06
    二氧化钛TiO2 92.47±6.44 72.81±5.40 0 0
    聚二甲基硅氧烷PDMS 112.89±2.06 100.71±2.09 106.08±3.61 93.37±2.04
    二氧化/钛聚二甲基硅氧烷TiO2/PDMS 132.18±1.88 119.26±1.99 123.92±1.09 109.74±1.10
    下载: 导出CSV
  • [1] 顾炼百, 涂登云, 于学利.炭化木的特点及应用[J].中国人造板, 2007, 14(5):30-32. doi: 10.3969/j.issn.1673-5064.2007.05.011

    Gu L B, Tu D Y, Yu X L. Characteristic and application of thermowood[J]. China Wood-based Panels, 2007, 14(5):30-32. doi: 10.3969/j.issn.1673-5064.2007.05.011
    [2] 刘顺治, 林金国, 陈金明, 等.常用装饰木材老化过程表面特性的变化规律[J].江西农业大学学报, 2013, 35(1):152-155. doi: 10.3969/j.issn.1000-2286.2013.01.027

    Liu S Z, Lin J G, Chen J M, et al. Variation law of surface properties during the aging process of common decorative wood[J]. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(1):152-155. doi: 10.3969/j.issn.1000-2286.2013.01.027
    [3] George B, Suttie E, Merlin A, et al. Photodegradation and photostabilisation of wood: the state of the art[J]. Polymer Degradation & Stability, 2005, 88(2):268-274. http://www.sciencedirect.com/science/article/pii/S014139100400374X
    [4] Hon N S, Chang S T. Surface degradation of wood by ultraviolet light[J]. Journal of Polymer Science Polymer Chemistry Edition, 1984, 22(9):2227-2241. doi: 10.1002/pol.1984.170220923
    [5] 张上镇, 张惠婷.以光谱反射曲线评价木材之色泽与耐光性[J].中华林学季刊, 1996, 29(1):31.

    Zhang S Z, Zhang H T. Evaluation of color and light fastness of wood by spectral reflection curve[J]. Quarterly Journal of Chinese Forestry, 1996, 29(1):31.
    [6] Ohkoshi M. FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood[J]. Journal of Wood Science, 2002, 48(5):394-401. doi: 10.1007/BF00770699
    [7] 韩英磊, 李艳云, 周宇.木材光降解机理及研究进展[J].世界林业研究, 2011, 24(4):35-39. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201104007

    Han Y L, Li Y Y, Zhou Y. Wood photodegradation mechanism and its research advances[J]. World Forestry Research, 2011, 24(4):35-39. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201104007
    [8] Hon N S. Formation of free radicals in photoirradiated cellulose and related compounds[J]. Journal of Polymer Science Polymer Chemistry Edition, 1976, 14(10):2513-2525. doi: 10.1002/pol.1976.170141016
    [9] Huang X, Kocaefe D, Kocaefe Y, et al. A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering[J]. Applied Surface Science, 2012, 258(14):5360-5369. doi: 10.1016/j.apsusc.2012.02.005
    [10] 咸才军, 郭保文, 关延涛.纳米材料及其技术在涂料产业中的应用[J].新型建筑材料, 2001(5):3-5. doi: 10.3969/j.issn.1001-702X.2001.05.002

    Xian C J, Guo B W, Guan Y T. Application of nanomaterial and its technologies in coatings industry[J]. New Building Materials, 2001(5):3-5. doi: 10.3969/j.issn.1001-702X.2001.05.002
    [11] 郭刚.金红石型纳米TiO2在高分子材料抗老化功能改性中的研究[D].成都: 四川大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10610-2005127589.htm

    Guo G. Investigation on ageing resistance of modified polymer materials with nanosized rutile titanium dioxide[D]. Chengdu: Sichuan University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10610-2005127589.htm
    [12] 刘鹏.纳米TiO2/滑石复合粉体的制备及其紫外屏蔽性能研究[D].天津: 天津大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10056-2007041878.htm

    Liu P. Preparation and UV shielding of nano-TiO2/talc compound powder[D]. Tianjin: Tianjin University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10056-2007041878.htm
    [13] 黄岳山, 范杰, 岑人经, 等.溶胶凝胶法制备纳米二氧化钛[J].生物医学工程研究, 2005, 24(4):255-257. doi: 10.3969/j.issn.1672-6278.2005.04.012

    Huang Y S, Fan J, Cen R J, et al. Preparation of nano-TiO2 by sol-gel method[J]. Journal of Biomedical Engineering Research, 2005, 24(4):255-257. doi: 10.3969/j.issn.1672-6278.2005.04.012
    [14] Gao L, Zhan X, Lu Y, et al. pH-dependent structure and wettability of TiO2-based wood surface[J]. Materials Letters, 2015, 142:217-220. doi: 10.1016/j.matlet.2014.12.035
    [15] Yuan Z Q, Bin J P, Wang X, et al. Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating[J]. Surface & Coatings Technology, 2014, 254(18):97-103. https://www.sciencedirect.com/science/article/abs/pii/S0257897214004988
    [16] 青勇权, 郑燕升, 何易, 等.ZnO/聚二甲基硅氧烷超疏水薄膜的制备及其性能研究[J].塑料工业, 2013, 41(7): 108-111. doi: 10.3969/j.issn.1005-5770.2013.07.026

    Qing Y Q, Zheng Y S, He Y, et al. Preparation and properties of ZnO/polydimethylsiloxane superhydrophobic films[J]. China Plastics Industry, 2013, 41(7):108-111. doi: 10.3969/j.issn.1005-5770.2013.07.026
    [17] Shen H Y, Cao J Z, Sun W J, et al. Influence of post-extraction on photostability of thermally modified scots pine wood during artificial weathering[J]. Bioresources, 2016, 11(2):4512-4525.
    [18] 顾炼百, 丁涛.高温热处理木材的生产和应用[J].中国人造板, 2008(9):14-18. doi: 10.3969/j.issn.1673-5064.2008.09.005

    Gu L B, Ding T. Production and application of thermal-modified wood[J]. China Wood-based Panels, 2008(9):14-18. doi: 10.3969/j.issn.1673-5064.2008.09.005
    [19] Wan C C, Lu Y, Jin C D, et al. A facile low-temperature hydrothermal method to prepare anatase titania/cellulose aerogels with strong photocatalytic activities for rhodamine B and methyl orange degradations[J]. Journal of Nanomaterials, 2015(1):4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004266611
    [20] Allan D, Radzinski S C, Tapsak M A, et al. The thermal degradation behaviour of a series of siloxane copolymers: a study by thermal volatilisation analysis[J]. Silicon, 2016, 8(4):1-10. doi: 10.1007/s12633-014-9247-6
    [21] Müller U, Rätzsch M, Schwanninger M, et al. Yellowing and IR-changes of spruce wood as result of UV-irradiation[J]. Journal of Photochemistry & Photobiology B Biology, 2003, 69(2):97-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcbb55067ac6129c1e7dd479fb132c00
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  317
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-04
  • 修回日期:  2018-03-20
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回