Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于SSR标记的山西省油松山脉地理种群遗传结构与地理系统

武文斌, 贺快快, 狄皓, 钮世辉, 马彦光, 张子杰, 李悦

武文斌, 贺快快, 狄皓, 钮世辉, 马彦光, 张子杰, 李悦. 基于SSR标记的山西省油松山脉地理种群遗传结构与地理系统[J]. 北京林业大学学报, 2018, 40(10): 51-59. DOI: 10.13332/j.1000-1522.20180057
引用本文: 武文斌, 贺快快, 狄皓, 钮世辉, 马彦光, 张子杰, 李悦. 基于SSR标记的山西省油松山脉地理种群遗传结构与地理系统[J]. 北京林业大学学报, 2018, 40(10): 51-59. DOI: 10.13332/j.1000-1522.20180057
Wu Wenbin, He Kuaikuai, Di Hao, Niu Shihui, Ma Yanguang, Zhang Zijie, Li Yue. Genetic structure and geographic system of geographical population of Pinus tabuliformis mountain range based on SSR in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2018, 40(10): 51-59. DOI: 10.13332/j.1000-1522.20180057
Citation: Wu Wenbin, He Kuaikuai, Di Hao, Niu Shihui, Ma Yanguang, Zhang Zijie, Li Yue. Genetic structure and geographic system of geographical population of Pinus tabuliformis mountain range based on SSR in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2018, 40(10): 51-59. DOI: 10.13332/j.1000-1522.20180057

基于SSR标记的山西省油松山脉地理种群遗传结构与地理系统

基金项目: 

中央高校基本科研业务费专项 2015ZCQ-SW-02

“十三五”国家重点研究计划 2017YFD0600500

详细信息
    作者简介:

    武文斌。主要研究方向:森林遗传学与针叶树遗传改良。Email:wwb474802665@163.com 地址:100083  北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    李悦,博士,教授。主要研究方向:森林遗传学与针叶树遗传改良。Email:liyue@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.254

Genetic structure and geographic system of geographical population of Pinus tabuliformis mountain range based on SSR in Shanxi Province of northern China

  • 摘要:
    目的分析油松种源区的遗传结构能够为油松起源探索和引种地人工林种群溯源等提供理论依据。
    方法本文利用SSR分子标记分析了山西油松5个山脉地理种群的遗传结构和地理系统。试验方法分别用了8对多态性较高引物和4对卡方检测差异显著性引物进行分析。
    结果结果显示:关帝山遗传变异最丰富,中条山遗传变异最低;8对引物分析显示5个山脉地理种群分化较小(FST=0.0328),4对引物分析显示5个山脉种群存在中等程度分化(FST=0.0519);5个山脉种群遗传距离和地理距离存在显著相关性;遗传多样性参数与1月均温有负相关趋势,年均降水与1月均温比值和遗传多样性参数有正相关趋势。
    结论研究发现山西省主要山脉油松地理种群间有相对较小的遗传分化和种群内有丰富的遗传多样性;SSR标记可以有效显示各种群的遗传结构特点,而筛选得到的有限差异显著标记能更有效的用于油松的种群遗传分析;生境气象因子的水热相对水平对种群遗传多样性有主导影响,相对较高的水热比利于种群保持较高的遗传多样性。
    Abstract:
    ObjectiveAnalysis of genetic structure of Pinus tabuliformis provenance can provide a theoretical basis for the exploration of the origin and trace to the source of Pinus tabuliformis artificial forest.
    MethodIn this paper, SSR molecular markers were used to analyze the genetic structure and geographic system of the five Pinus tabuliformis populations in Shanxi Province of northern China. The test methods were analyzed with eight pairs of polymorphic primers and four differentially significant primers for chi-square detection.
    ResultGenetic variation in Guandi Mountain was the most abundant, and that in Zhongtiao Mountain was the lowest. Eight pairs of primer analysis showed that the differentiation of five mountains was smaller(FST=0.032 8)and four pairs of primers analysis showed that there was a moderate degree of differentiation in five mountain populations(FST=0.051 9). There was a significant correlation between the genetic distance and geographical distance of the five mountain populations; the genetic diversity parameters had a negative correlation trend with temperature in January. The ratio of annual mean precipitation and temperature in January had a positive correlation trend with genetic diversity parameters.
    ConclusionThe study reveals that there are relatively small genetic differentiation and rich genetic diversity among the geographical populations of Pinus tabuliformis in the main mountains of Shanxi Province. SSR markers can effectively display the genetic structure characteristics of various populations, and the limited difference marked markers can be more effectively applied to the population genetic analysis of Pinus tabuliformis. The relative level of water and heat of habitat meteorological factors has a dominant influence on the genetic diversity of population, and a relatively high ratio of water and heat is conducive to maintaining a higher genetic diversity of population.
  • 现如今城市居住空间紧张,小户型的比例在逐渐加大。中国政府出台规定建筑面积90平方米以下户型占比必须达到70%以上[1],这预示着更多的家庭面临功能空间不足的情况,就有大量家庭有一房两用的需求,即一个房间除了卧室的主要功能外,还可通过功能家具实现客厅或书房等功能,而其中翻转床则是实现睡眠–休闲、学习空间转换的功能家具的典型代表产品。

    虽然翻转床有着可观的市场需求,但对于其力学性能的检测还是依赖整体破坏性试验为主要手段,目前其设计和分析尚缺乏科学的理论指导[2]。20世纪90年代气弹簧作为新型支撑出现,张琦等[3]对气弹簧的力学性能进行了计算分析;王殿武[4]研究了气弹簧力学特性并将其运用到汽车尾盖上;刘迎林等[5]对全塑车身后备箱气撑杆进行运动仿真并验证其安装位置;王定虎[6]运用力矩平衡原理和理想气体方程对汽车背门撑杆的选择及布置进行校核。截止目前,气弹簧的研究主要集中在汽车领域,而鲜有在家具领域内的研究,为了弥补翻转床气弹簧机构设计和性能分析的理论欠缺,本文从实际应用需求出发,运用静力学和力矩平衡原理对气弹簧机构进行结构分析计算和选型。

    翻转床床体翻转的目的是实现床体的收纳,以便满足房间睡眠–休闲、学习空间转换的用户功能需求。根据使用场景分析,翻转床运动功能示意图如图1所示。因为翻转床的床体框架、床板、床垫和床上用品等零部件加起来质量较大,如仅凭借人手部力量支撑则翻转困难,且在操作过程中存在砸到人的风险,所以实际翻转床产品均需要借助辅助结构实现翻转和随停的功能。由于气弹簧具有支撑、缓冲的作用,因此恰好适用于翻转床的运动功能需求。

    图  1  床体翻转功能示意图
    Figure  1.  Diagram of turnover function of foldable bed

    壁柜式翻转床的翻转功能主要由气弹簧机构实现,分析翻转床的运动本质就是分析气弹簧机构。壁柜式翻转床结构和气弹簧机构简图如图2所示,翻转床左右两侧具有相同连杆结构,其中A点为翻转床的翻转中心,由螺栓将床体翻转框架和固定柜体铰接;BC为气弹簧,气弹簧两端分别和固定柜体及床体翻转框架铰接;床体翻转存在两个极限状态,即收纳状态(图2a)和使用状态(图2b),处于收纳状态时气弹簧处在伸展状态,即B1C,处于使用状态时气弹簧处在压缩状态,即BC

    图  2  翻转床结构和气弹簧机构简图
    1. 固定柜体;2. 气弹簧;3. 床体翻转框架;A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端; l. A点到床头距离。 1, fixed cabinet; 2, gas spring; 3, rotate frame; A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring; l, the distance from A point to the head of the bed.
    Figure  2.  Diagram of foldable bed structure and gas spring mechanism

    根据国家标准GB 25751—2010压缩气弹簧技术条件、GB/T 1805—2001弹簧术语和JB/T 10418—2004气弹簧设计计算为依据,对气弹簧特性进行研究。对极限位置的床体进行平面力系的简化,并结合力矩平衡原理对床体和气弹簧机构进行受力分析。运用有限元的优化思路对气弹簧安装位置进行列表格寻最优解。运用静力学知识分析床体运动规律。

    图2所示,翻转床在收纳时气弹簧处于伸展过程,气弹簧的伸展力辅助床体的上翻过程。床体完全收纳进柜体时,此时床体重力矢量经过翻转中心A,在无外力情况下床体静止不动。翻转床展开过程中气弹簧处于压缩过程,气弹簧的压缩力为床体下翻过程提供缓冲力。

    图3为气弹簧展开长度与压缩、伸展过程曲线示意图,其中F1为最小伸展力,F2为最大伸展力,F3为最小压缩力,F4为最大压缩力,S为气弹簧的行程,t为端头长度,结合图2气弹簧初始长度BC = S + t,展开长度L = B1C = S + t + S = 2S + tt的取值一般为10 mm。

    图  3  气弹簧展开长度与压缩、伸展过程曲线示意图
    d. 活塞杆直径;D1. 缸筒内径;D2. 缸筒外径;S. 行程;L. 伸展长度;t. 端头长度;F0. 启动力;F1. 最小伸展力;F2. 最大伸展力;F3. 最小压缩力;F4. 最大压缩力;Fa. 公称力a;Fb. 公称力b;C. 采力点。图引自文献[7]。d, piston rod diameter; D1, cylinder inner diameter; D2, cylinder outer diameter; S, stroke; L, extended length; t, end length; F0, star-up force; F1, minimum extension force; F2, maximum extension force; F3, minimum compress force; F4, maximum compress force; Fa, nominal force a; Fb, nominal force b; C, measuring point. Diagram is cited from reference [7].
    Figure  3.  Diagram of expansion length of gas spring and curve of compression and stretching process

    气弹簧的选型需要的参数为气弹簧的伸展长度L和行程S以及气弹簧最小伸展力F1[8]。现以翻转床两个极限位置进行受力分析。使用状态下,当人手抬起床的边沿时以A点为旋转中心,能够将床体抬起。此时受力分析如图4所示。

    图  4  使用状态手抬床体时床体受力分析简图
    A. 翻转中心;B. 气弹簧压缩末端;C. 气弹簧固定端;F2. 气弹簧最大伸展力;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;l. A点到床头距离;FL. 手对床体的抬力;A, rotation center;B, compression end of gas spring;C, fixed end of gas spring;F2, maximum extension force;G1, bed weight on the left side of point AG2, bed weight on the right side of point AFAx, x component of point AFAy, y component of point Al, A point to the head of the bed;FL, hand lift on the bed.
    Figure  4.  Diagram of foldable bed force analysis when hand up the bed in using state

    由力矩平衡可得:

    xF2l+G1l2G2LBl2+FL(LBl)=0 (1)

    式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;G1A点左侧床体质量与重力加速度之积,单位N;G2A点右侧床体质量与重力加速度之积,单位N;lA点到床头距离,单位mm。

    设床体和床垫总质量为mG1=lLBmgG2=LBlLBmg,则可将式(1)简化得:

    xF2l(LB2l)mg+FL(LBl)=0 (2)

    式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;lA点到床头距离,单位mm;m为床体和床垫总质量,单位kg;g为重力加速度,单位N/kg。

    收纳状态下,拉手与AB1点视作在同一竖直线上。拉动床体时,人手拉动拉手的力矩能够平衡气弹簧对A点的弹力矩,此时受力分析简图如图5所示。

    图  5  收纳状态手拉床体时床体受力分析简图
    A. 翻转中心;B1. 气弹簧伸展末端;C. 气弹簧固定端;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;F0. 启动力;F0x. F0沿x轴方向分力;F0y. F0沿y轴方向分力;l. A点到床头距离;θ. F0与垂直方向夹角;FP. 手对拉手拉力。A, rotation center;B1, stretching end of gas spring;C, fixed end of gas spring;FAx, x component of point AFAy, y component of point AF0, star-up force; F0x, x component of F0; F0y. y component of F0; l, A point to the head of the bed; θ, angle of F0 with vertical direction; FP, hand pull on the handle.
    Figure  5.  Diagram of foldable bed force analysis when hand drag the bed in storage state

    因为F0yA点在水平方向上没有距离,所以F0y轴方向上的力矩为0。由力矩平衡可得:

    x(F0xl+F0y0)FP(lPl)=0 (3)

    式中:F0为气弹簧启动力,单位N;lP为拉手高度,单位mm;FP为手对拉手拉力,单位N;lA点到床头距离,单位mm;x为气弹簧个数;F0xF0沿x轴方向分力,单位N;F0yF0沿y轴方向分力,单位N。

    图5中,依据压缩气弹簧技术条件,气弹簧启动力F0略大于气弹簧最小压缩力F3,取F3值近似为F0值,由三角函数可知:

    F0=F0xsinθ=F3 (4)

    式中:θF0与垂直方向夹角,单位°;F0为气弹簧启动力,单位N;F0xF0沿x轴方向分力,单位N;F3为气弹簧最小压缩力,单位N。

    在符合人机工程的情况下,使lP尽量大可以加大手拉开床体的力矩,减小手部力量,取lP = 1 750 mm。依据人机工程学,为使得操作力比较恰当,收纳床体时推荐的操作力范围为50 ~ 80 N[9],此处取手对床体的抬力FL = 80 N,手拉拉手的力FP = 80 N。

    F1F3之间有一段由于摩擦力产生的差值,依据GB25751—2010其计算公式为Fr =(F3F1)/2,即动态摩擦力Fr是最小压缩力和最小伸展力之差的平均值[10]。气弹簧摩擦力所产生的阻力与杆的运动方向相反,其与标称力值(图样及产品上标注的力,包括F1FaF3)极限偏差应符合下表1的规定。

    表  1  标称力值极限偏差与动态摩擦力
    Table  1.  Nominal force limit deviation and dynamic friction
    标称力值 Nominal force标称力值的极限偏差 Nominal force limit deviation最大动态摩擦力 Maximum dynamic friction
    ≤ 100+ 15 − 5 25
    101 ~ 200+ 20 − 10 30
    201 ~ 400+ 30 − 15 40
    401 ~ 600+ 40 − 20 60
    601 ~ 800+ 50 − 25 80
    801 ~ 1 000+ 60 − 30100
    1 001 ~ 1 200+ 70 − 35130
    > 1 200+ 80 − 40150
    注:表1引自文献[7]。Note: Tab.1 is cited from reference [7].
    下载: 导出CSV 
    | 显示表格

    F1F2的关系可由弹性系数求得。弹性系数k表示的是单位压缩力变化的弹簧常数[10],单位为N/mm,行程S的单位是mm。伸展阶段气弹簧弹性系数公式[11]为:

    k=(F2F1)/S (5)

    其中,k的大小可由厂家进行调节,其具体值可通过实验得出。一般商家提供的气弹簧的弹性系数k介于1.05和1.8之间,弹性系数越小意味着制造难度越高。

    以市场常见的床体规格为准,此处选取宽900 mm、长1 900 mm、质量为25 kg的床垫。选取匹配的床体框架结构的材质为钢,其质量约为25 kg。刨花板密度为650 kg/m3,则18 mm(厚) × 900 mm(宽) × 1 900 mm(长)的床板质量为20 kg。则床体总重力为:(25 + 25 + 20) × 9.8 = 686 N。如固定柜体目标深度为300 mm,为了保证AC两点安装位置距离柜体板前后两边有足够的距离保证强度,则取l = 160 mm。

    依据式(2),xF2 = 2 517.1 N,选取气弹簧个数x = 4,则F2 = 629.3 N。

    图4图5可知:取l为160 mm时,以BB1为圆心,以(S + 10)、(2S + 10)为半径作圆,作交点可得C点安装位置。并结合式(3)、式(4)、表1以及k的计算方程,可将相关参数整理成表2

    表  2  气弹簧相关参数及安装位置与行程S的关系
    Table  2.  Relationship between gas spring stroke and relevant parameters and installation position
    S/mmθF3/NFr/NF1/Nk
    17018643.2
    18020581.160461.10.934
    19023508.040428.01.059
    20026453.440373.41.280
    注:S为行程;θF0与垂直方向夹角;F3为最小压缩力;Fr为最大动态摩擦力;F1为最小伸展力;k为气弹簧弹性系数。表3同此。Notes:S, stroke; θ, angle of F0 with vertical direction; F3, minimum compress force; Fr, maximum dynamic friction; F1, minimum extension force; k, gas spring modulus coefficient. Same as Tab.3.
    下载: 导出CSV 
    | 显示表格

    表2可知:θ角越大,k则越大,气弹簧的制作难度越小。为减小安装宽度,选择S为190 mm,F1 = 428 N作为最小伸展力的气弹簧,则要求厂家提供的气弹簧弹性系数k为1.06。参考表3可知F1S的参数符合设计要求。

    表  3  气弹簧活塞杆直径与最小伸展力大小选择范围推荐表
    Table  3.  Recommended table of minimum extension force range and stroke range of gas spring
    序号
    No.
    活塞杆
    直径 Diameter of piston rod/mm
    最小伸展力
    Minimum extension force (F1)/N
    行程范围
    Stroke range/mm
    推荐范围
    Recommended
    range
    可选范围
    Optional
    range
    1650 ~ 25050 ~ 35050 ~ 400
    28200 ~ 450100 ~ 700100 ~ 700
    310300 ~ 700100 ~ 1 200150 ~ 1 100
    412450 ~ 1 000150 ~ 1 500150 ~ 1 600
    514600 ~ 1 400200 ~ 2 5001 600 ~ 2 200
    6201 250 ~ 3 1001 000 ~ 5 2002 200 ~ 4 500
    注:表3引自文献[12]。Note: Tab.3 is cited from reference [12].
    下载: 导出CSV 
    | 显示表格

    此时C点的安装位置如图6所示,BC = S + 10 = 200 mm,B1C = 2S + 10 = 390 mm。如果床体总质量加大,可以适当改变固定柜体深度以加大l的取值,使气弹簧机构获得更大的力臂。

    图  6  C点安装位置示意图
    A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端。A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring.
    Figure  6.  Diagram of installation location of point C

    翻转床旋转到任意角度时的受力图如图7所示。取气弹簧对床体弹力FB与矩心A点的力臂为aG1与矩心A点的力臂为bG2与矩心A点的力臂为c。矩心A点右侧力矩减去左侧合力矩可列式:

    图  7  任意位置下床架受力图
    A. 翻转中心;B′. 在β旋转角度下的床尾位置;C. 气弹簧固定端;β. 床体翻转框架翻转角度;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;a. FB对矩心A点的力臂;b. G1对矩心A点的力臂;c. G2对矩心A点的力臂。A, rotation center; B′, bed tail position at β rotation angle; C, fixed end of gas spring; β, flip angle of rotate frame; G1, bed mass on the left side of point A multiply gravity acceleration; G2, bed mass on the right side of point A multiply gravity acceleration; a, FB force arm to point A; b, G1 force arm to point A; c, G2 force arm to point A.
    Figure  7.  Diagram of foldable bed force at arbitrary degree
    MA=MA(xFB)+MA(G1)MA(G2)=xFBa+G1bG2c (6)

    式中:MA为合力对A点的力矩,单位N;x为气弹簧个数;FB为气弹簧对床体弹力,单位N;G1A点左侧床体重力,单位N;G2A点右侧床体重力,单位N;aFB对矩心A点的力臂,单位mm;bG1对矩心A点的力臂,单位mm;cG2对矩心A点的力臂,单位mm;MAxFB)为单边气弹簧对A点力矩,单位N·mm;MAG1)为G1A点力矩,单位N·mm;MAG2)为G2A点力矩,单位N·mm。

    气弹簧压缩和伸展两个过程曲线中任意点的值可以用伸展长度和k值求出,在不同旋转角度β下分别量取abc的值代入式(6),并作出βMA的关系曲线如图8所示。图8两条曲线为分别代入了弹簧伸展过程力值和压缩过程力值后的曲线。由图 8可知:床体在打开18°以内会弹回收纳状态;18° ~ 24°之间床体可悬停;大于24°以后,A点右侧力矩大于A点左侧合力矩。

    图  8  βMA关系曲线
    MA. 合力对A点的力矩;β. 床体翻转框架翻转角度。MA, torque to point Aβ, flip angle of rotate frame.
    Figure  8.  Diagram of β and MA curve

    基于静力学和力矩平衡原理完成了翻转床两个极限位置的受力分析,构建了翻转床气弹簧分析计算理论,运用该理论能够通过翻转床的床身质量和尺寸得到气弹簧的最小伸展力、行程和弹性系数,从而完成气弹簧选型;运用CAD工具做两圆相交的几何法得出气弹簧安装位置的确立方法;基于力矩平衡原理构建合力矩和翻转角度β的关系式,得出翻转床悬停范围。设定床体尺寸宽900 mm、长1 900 m、固定柜体目标深度300 mm,则可得气弹簧最小伸展力为428 N,行程为190 mm,弹性系数为1.06,悬停角度范围为18° ~ 24°,翻转角大于24°后则为自由下翻。本文构建的分析方法和结果可为家具行业的壁柜式翻转床设计、选型和性能分析提供理论支撑和实践指导。

  • 图  1   8对引物(左)/4对引物(右)分析油松种群的遗传距离UPGMA聚类图

    Figure  1.   Eight pairs of primers (left)/four pairs of primers (right) for analyzing genetic distance among populations of P. tabuliformis in Shanxi Province by UPGMA clustering

    表  1   供试油松山脉种群地理位置、气候条件和样本数

    Table  1   Geographical location, climatic conditions and sample number of the Pinus tabuliformis mountain range populations to be tested

    山脉
    Mountain range
    经度范围
    Longitude range
    纬度范围
    Latitude range
    年均温
    Annual mean temperature/℃
    1月均温
    Average temperature in January/℃
    7月均温
    Average temperature in July/℃
    年均降雨量
    Annual mean precipitation/mm
    样本数/林分数
    Sample number/stand number
    GCS 111°15′~112°33′E 38°10′~38°55′N 7.3 -8.7 21.5 447.6 52/6
    GDS 110°40′~111°50′E 36°48′~37°42′N 8.4 -7.2 22.0 489.6 66/6
    THS 113°24′~113°41′E 35°48′~38°47′N 7.1 -7.6 20.2 509.9 32/3
    TYS 112°01′~112°06′E 36°37′~38°36′N 10.5 -5.3 24.2 402.5 20/2
    ZTS 111°53′~112°08′E 35°32′~35°55′N 10.5 -3.4 23.2 567.8 18/2
    注:GCS代表管涔山,GDS代表关帝山,THS代表太行山,TYS代表太岳山,ZTS代表中条山。下同。Notes: GCS stands for Guancen Mountain, GDS stands for Guandi Mountain, THS stands for Taihang Mountain, TYS stands for Taiyue Mountain, ZTS stands for Zhongtiao Mountain. The same below.
    下载: 导出CSV

    表  2   油松PCR检测SSR引物

    Table  2   SSR primers for PCR detection of P. tabuliformis

    引物名称
    Primer name
    前引物序列
    Forward primer sequence(5′→3′)
    后引物序列
    Back primer sequence(5′→3′)
    荧光修饰
    Fluorescent modification
    片段长度
    Fragment length/bp
    J9 GTTTGCAGTGAAAGCATGAAAG GCACCAATTCCTTCTCAAATTC HEX 244~250
    J10 GTCGACACTCCAGGGTAGATTC ATATCATCAGCTAATTGTGCGG TAMRA 254~257
    J12 TATGCATGTAACGGTAGCCTTG GCAATTGTTCTATGGTCAGGGT ROX 471~477
    J20 CACCTCCGTAGTTTGATGTTCC CGATGTATCGTGTACACAGCCT FAM 150~171
    J29 AGTCCGAATGTCTTCTTTCTGC TATGGAACGAATCAGAGATGACG FAM 191~200
    J42 AACCTGTCATCCAGTTCCTGTT TTGTCAAATTCCAATTCAGCAC TAMRA 251~269
    J48 GAAGAGGAAGACGAAATGGATG CTTTACATTTACCGCCTCTGCT ROX 262~268
    J50 TCATCCATTTCAATAGCACGAC GTAGCTGCTTGGCCTGATTATC HEX 235~244
    下载: 导出CSV

    表  3   山西5山脉油松种群各位点等位标记频率

    Table  3   Frequency of the mark in five mountain populations of P. tabliformis in Shanxi Province

    标记Marker 群体Population 标记Marker 群体Population
    位点
    Loci
    等位标记
    Allele
    GCS GDS THS TYS ZTS 位点
    Loci
    等位标记
    Allele
    GCS GDS THS TYS ZTS
    J9 A 0.144 2 0.242 2 0.218 8 0.150 0 0.166 7 J42 A 0.038 5 0.045 5 0.171 9 0.025 0 0.027 8
    B 0.855 8 0.757 8 0.781 2 0.850 0 0.833 3 B 0.211 5 0.303 0 0.390 6 0.225 0 0.222 2
    J10 A 0.692 3 0.676 9 0.609 4 0.675 0 0.750 0 C 0.740 4 0.628 8 0.406 2 0.750 0 0.750 0
    B 0.307 7 0.323 1 0.390 6 0.325 0 0.250 0 D 0.000 0 0.022 7 0.000 0 0.000 0 0.000 0
    J12 A 0.823 5 0.882 8 0.937 5 0.875 0 1.000 0 E 0.009 6 0.000 0 0.015 6 0.000 0 0.000 0
    B 0.176 5 0.117 2 0.062 5 0.125 0 0.000 0 F 0.000 0 0.000 0 0.015 6 0.000 0 0.000 0
    J20 A 0.040 0 0.072 6 0.048 4 0.075 0 0.093 8 J48 A 0.200 0 0.269 2 0.312 5 0.289 5 0.027 8
    B 0.890 0 0.774 2 0.806 5 0.800 0 0.593 8 B 0.750 0 0.723 1 0.687 5 0.684 2 0.972 2
    C 0.070 0 0.137 1 0.129 0 0.075 0 0.312 5 C 0.050 0 0.007 7 0.000 0 0.026 3 0.000 0
    D 0.000 0 0.016 1 0.016 1 0.050 0 0.000 0 J50 A 0.000 0 0.015 2 0.000 0 0.000 0 0.000 0
    J29 A 0.009 6 0.015 2 0.000 0 0.000 0 0.000 0 B 0.125 0 0.159 1 0.187 5 0.175 0 0.166 7
    B 0.932 7 0.878 8 0.984 4 0.950 0 0.944 4 C 0.875 0 0.818 2 0.812 5 0.825 0 0.833 3
    C 0.048 1 0.098 5 0.000 0 0.050 0 0.055 6 D 0.000 0 0.007 6 0.000 0 0.000 0 0.000 0
    D 0.009 6 0.007 6 0.015 6 0.000 0 0.000 0
    下载: 导出CSV

    表  4   8个位点等位标记频率差异显著性χ2检测表

    Table  4   Eight pairs of polymorphic primers for chi-square detection

    引物Primer J20 J9 J42 J12 J29 J50 J10 J48
    PP value 0.019* 0.344 0.002** 0.034* 0.452 0.857 0.676 0.007**
    注:*代表群体中等位标记频率差异显著(P < 0.05),**代表群体中等位标记频率差异极显著(P < 0.01)。Notes:* represents allelic frequency in populations is significantly different (P<0.05),** represents allelic frequency in populations is very significantly different(P < 0.01).
    下载: 导出CSV

    表  5   山西5山脉油松种群遗传多样性参数

    Table  5   Genetic diversity parameters of five mountain populations of P. tabuliformis in Shanxi Province

    山脉Mountain range Na Ne I Ho He
    8对引物
    Eight pair primers
    4对引物
    Four pair primers
    8对引物
    Eight pair primers
    4对引物
    Four pair primers
    8对引物
    Eight pair primers
    4对引物
    Four pair primers
    8对引物
    Eight pair primers
    4对引物
    Four pair primers
    8对引物
    Eight pair primers
    4对引物
    Four pair primers
    GCS 2.7500 3.0000 1.4367 1.4992 0.5000 0.5733 0.3113 0.3198 0.2918 0.3264
    GDS 3.1250 3.2500 1.5825 1.6464 0.5970 0.6485 0.3722 0.3860 0.3559 0.3774
    THS 2.6250 3.2500 1.6442 1.8140 0.5536 0.6679 0.3876 0.4002 0.3407 0.3885
    TYS 2.5000 3.0000 1.4854 1.5621 0.5209 0.6129 0.3030 0.2809 0.3175 0.3588
    ZTS 2.1250 2.2500 1.4193 1.4670 0.4187 0.4178 0.2491 0.1788 0.2597 0.2531
    均值Mean 2.6250 2.9500 1.5136 1.5977 0.5180 0.5841 0.3246 0.3131 0.3131 0.3408
    注:Na.观测等位标记数;Ne.有效等位标记数;I. Shannon多样性指数;Ho.观测杂合度;He.期望杂合度。下同。Notes: Na, observed allelic marker number;Ne, effective allelic marker number;I, Shannon diversity index;Ho, observational heterozygosity;He, expected heterozygosity. The same below.
    下载: 导出CSV

    表  6   各位点在山西5山脉油松种群中的F统计量

    Table  6   F-statistic for each locus in the five mountain populations of P. tabuliformis in Shanxi Province

    标记Locus FIS FIT FST Nm
    J20 0.330 8 0.362 8 0.047 8 4.980 7
    J9 -0.238 6 -0.226 0 0.010 1 24.383 3
    J42 0.100 0 0.146 4 0.051 6 4.590 5
    J48 -0.232 3 -0.157 1 0.061 0 3.848 0
    J29 0.492 9 0.502 5 0.019 0 12.935 5
    J50 0.000 5 0.004 0 0.003 5 70.972 6
    J10 -0.482 8 -0.469 0 0.009 3 26.725 3
    J12 0.014 5 0.055 6 0.041 6 5.755 2
    8个位点平均值Mean value of eight locus -0.056 5 -0.021 9 0.032 8 7.380 8
    4个位点平均值Mean value of four locus 0.053 8 0.102 9 0.051 9 4.570 3
    注:FST.杂合性基因多样度的比率;FIT.个体相对于总居群的固定指数;FIS.个体所在居群的固定指数;Nm.基因流。Notes: FST, ratio of heterozygosity gene diversity; FIT, fixed index of individual relative to total population; FIS, fixed index of the population in which the individual resides; Nm, gene flow.
    下载: 导出CSV

    表  7   油松种群遗传距离和地理距离

    Table  7   Genetic distance and geographic distance among populations of P. tabuliformis in Shanxi Province

    山脉名称Mountain name GCS GDS THS TYS ZTS
    GCS —— 155.570 3 200.878 1 106.797 6 314.101 4
    GDS 0.006 7/0.009 8 —— 203.807 6 82.298 1 182.698 4
    THS 0.022 9/0.041 9 0.011 2/0.017 2 —— 134.989 2 221.989 3
    TYS 0.003 2/0.005 6 0.004 6/0.005 7 0.018 8/0.036 1 —— 208.215 3
    ZTS 0.026 2/0.051 2 0.021 2/0.038 9 0.040 7/0.074 4 0.025 4/0.049 3 ——
    注:表格左下方为油松种群遗传距离, 表格右上方为地理距离,km。遗传距离中“/”符号左方数据为8对引物分析结果,右方数据为4对引物分析结果。Notes: the bottom left of the table is the genetic distance of Pinus tabuliformis population. The upper right side of the table is geographic distance/km. The genetic distance data on the left of slash was analyzed by eight primers, and the genetic distance data on the right of slash was analyzed by four primers.
    下载: 导出CSV

    表  8   油松种群的遗传多样性参数与气象因子之间相关分析

    Table  8   Correlation analysis on genetic diversity parameters and meteorological factors of P. tabuliformis populations

    指标Index Na Ne I Ho He
    8对引物
    Eight pair of primers
    4对引物
    Four pair of primers
    8对引物
    Eight pair of primers
    4对引物
    Four pair of primers
    8对引物
    Eight pair of primers
    4对引物
    Four pair of primers
    8对引物
    Eight pair of primers
    4对引物
    Four pair of primers
    8对引物
    Eight pair of primers
    4对引物
    Four pair of primers
    年均温Annual mean temperature -0.598 -0.662 -0.532 -0.565 -0.517 -0.581 -0.727 -0.790 -0.451 -0.532
    1月均温Average temperature in January -0.761 -0.801 -0.430 -0.432 -0.644 -0.711 -0.709 -0.822 -0.539 -0.651
    7月均温Average temperature in July -0.417 -0.511 -0.623 -0.671 -0.409 -0.457 -0.707 -0.710 -0.394 -0.430
    年均降水Annual mean precipitation -0.367 -0.535 0.040 -0.040 -0.392 -0.535 -0.155 -0.277 -0.322 -0.503
    年均降水与1月均温比值Ratio of annul mean precipitation and average temperature in January 0.780 0.922 0.470 0.459 0.776 0.875 0.722 0.831 0.693 0.830
    年均降水与7月均温比值Ratio of annual mean precipitation and average temperature in July -0.118 -0.180 0.340 0.367 -0.115 -0.194 0.210 0.109 -0.057 -0.178
    年均降水与年均温比值Ratio of annual mean precipitation and annual mean temperature 0.280 0.307 0.528 0.573 0.242 0.252 0.570 0.551 0.237 0.230
    下载: 导出CSV
  • [1]

    White T L, Adams W T, Neale D B. Forest genetics[M]. London:CABI Publishing, 2007.

    [2] 徐化成, 孙肇凤, 郭广荣, 等.油松天然林的地理分布和种源区的划分[J].林业科学, 1981, 17(3):258-270. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE198103004.htm

    Xu H C, Sun Z F, Guo G R, et al. Geographtic distrbution of Pinus tabulaeformis and classification of provenance regions[J]. Scientia Silvae Sinicae, 1981, 17(3):258-270. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE198103004.htm

    [3] 孙祝宾, 王喜文, 刘珍, 等.油松种源试验幼林阶段研究初报[J].辽宁林业科技, 1991(4):3-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002120717

    Sun Z B, Wang X W, Liu Z, et al. Preliminary study on the stage of young plantation of Pinus tabulaeformis in different source[J]. Liaoning Forestry Science and Technology, 1991(4):3-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002120717

    [4] 翁殿伊, 王同立, 杨井全, 等.油松种源试验报告[J].河北林业科技, 1986(2):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002927850

    Weng D Y, Wang T L, Yang J Q, et al. Test report on the provenance of Pinus tabulaeformis[J]. The Journal of Hebei Forestry Science and Technology, 1986(2):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002927850

    [5] 油松种源试验协作组.油松种源试验[J].林业科技通讯, 1984(3):1-4. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-LYYZ198611001145.htm

    Cooperation group of provenance test of Pinus tabulaeformis. Provenance test of Pinus tabulaeformis[J]. Forest Science and Technology, 1984(3):1-4. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-LYYZ198611001145.htm

    [6] 富裕华, 张新波, 廉志刚, 等.山西省油松天然林的分布特点和自然地理区的划分[J].山西林业科技, 1988(1):6-15. http://www.cnki.com.cn/Article/CJFDTOTAL-SXLK198801002.htm

    Fu Y H, Zhang X B, Lian Z G, et al. The distribution characteristics of natural forest of Pinus tabulaeformis and the division of natural geographical area in Shanxi[J]. Shanxi Forestry Science and Technology, 1988(1):6-15. http://www.cnki.com.cn/Article/CJFDTOTAL-SXLK198801002.htm

    [7] 张新波, 李悦, 袁虎威, 等.山西油松天然林分21年子代生长性状遗传变异研究[J].北京林业大学学报, 2014, 36(3):104-109. doi: 10.13332/j.cnki.jbfu.2014.03.016

    Zhang X B, Li Y, Yuan H W, et al. Genetic variations of growth traits in a 21-year-old stand progeny of Shanxi natural Pinus tabuliformis forests[J]. Journal of Beijing Forestry University, 2014, 36(3):104-109. doi: 10.13332/j.cnki.jbfu.2014.03.016

    [8] 李毳, 柴宝峰, 王孟本.华北地区油松种群遗传多样性分析[J].植物研究, 2006, 26(1):99-103. http://d.old.wanfangdata.com.cn/Periodical/zwyj200601021

    Li C, Chai B F, Wang M B. Analysis of genetic diversity of Pinus tabuliformis population in North China[J]. Bulletin of Botanical Research, 2006, 26(1):99-103. http://d.old.wanfangdata.com.cn/Periodical/zwyj200601021

    [9]

    Chen K., Abbott R J, Milne R I, et al. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China[J]. Molecular Ecology, 2008, 17(19):76-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd2cd095f583ee2e7f797dbe19791d80

    [10]

    Mougel C, Thioulouse J, Perrière G, et al. A mathematical method for determining genome divergence and species delineation using AFLP[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2):573-586. doi: 10.1099/00207713-52-2-573

    [11]

    Krauss S L. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers[J]. Molecular Ecology, 2000, 9(9):1241-1245. doi: 10.1046/j.1365-294x.2000.01001.x

    [12]

    Guzman F A, Segura S, Aradhya M, et al. Evaluation of the genetic structure present in natural populations of four subspecies of black cherry (Prunus serotina Ehrh.) from North America using SSR markers[J]. Scientia Horticulturae, 2018, 232:206-215. doi: 10.1016/j.scienta.2018.01.013

    [13] 强海平, 余国辉, 刘海泉, 等.基于SSR标记的中美紫花苜蓿品种遗传多样性研究[J].中国农业科学, 2014, 47(14):2853-2862. http://d.old.wanfangdata.com.cn/Periodical/zgnykx201414015

    Qiang H P, Yu G H, Liu H Q, et al. Genetic diversity and population structure of Chinese and American alfalfa(Medicago Sativa L.)germplasm assessed by SSR markers[J]. Scientia Agricultura Sinica, 2014, 47(14):2853-2862. http://d.old.wanfangdata.com.cn/Periodical/zgnykx201414015

    [14]

    Urrestarazu J, Errea P, Miranda C, et al. Genetic diversity of Spanish Prunus domestica L. germplasm reveals a complex genetic structure underlying[J]. PloS One, 2018, 13(4): e0195591[2018-07-12]. http://doi.org110.13711journal.pone.0195591/.

    [15]

    Gutiérrez-Ozuna R, Hamilton M B. Identification and characterization of microsatellite loci in the tuliptree, Liriodendron tulipifera (Magnoliaceae)[J]. Applications in Plant Sciences, 2017, 5(8):1700032. doi: 10.3732/apps.1700032

    [16]

    Anestiadou K, Nikoloudakis N, Hagidlmitriou M, et al. Monumental olive trees of Cyprus contributed to the establishment of the contemporary olive germplasm[J/OL]. PloS One, 2017, 12(11): e0187697[2018-02-12]. http://doi.org/10.1371/journal.pone.0187697/.

    [17] 程祥, 张梅, 李悦, 等.油松种子园配置区无性系群体的遗传多样性与交配系统[J].北京林业大学报, 2016, 38(9):10-11. http://d.old.wanfangdata.com.cn/Thesis/Y3265960

    Cheng X, Zhang M, Li Y, et al. Gene diversity and mating system of design zone's clone population in Pinus tabuliformis seed orchard[J]. Journal of Beijing Forestry University, 2016, 38(9):10-11. http://d.old.wanfangdata.com.cn/Thesis/Y3265960

    [18]

    Hartl D L. A primer of population genetics[M]. Sunderland: Sinauer Associates, 2000.

    [19] 李明, 王树香, 高宝嘉.油松天然次生林居群遗传多样性及与产地地理气候因子的关联分析[J].生态学报, 2013, 33(12):3602-3610. http://d.old.wanfangdata.com.cn/Periodical/stxb201312005

    Li M, Wang S X, Gao B J. Analysis of genetic diversity of Chinese pine (Pinus tabuliformis) natural secondary forest population and correlation with theirs habitat ecological factors[J]. Acta Ecologica Sinica, 2013, 33(12):3602-3610. http://d.old.wanfangdata.com.cn/Periodical/stxb201312005

    [20] 徐化成, 郭广荣, 冯林, 等.油松天然林的生长与地理-气候因素的关系[J].北京林业大学, 1981, 3(4):9-13, 82. http://www.cqvip.com/Main/Detail.aspx?id=6884461

    Xu H C, Guo G R, Feng L, et al. The relativity between natural Pinus tabulaeformis forest growth and geographical climatic factors[J]. Journal of Beijing Forestry University, 1981, 3(4):9-13, 82. http://www.cqvip.com/Main/Detail.aspx?id=6884461

    [21] 李毳.油松天然种群遗传多样性及系统地位分析[D].太原: 山西大学, 2008.

    Li C. Genetic variation of natural populations of Pinus tabuliformis Carr. and its systematic positon[D]. Taiyuan: Shanxi University, 2008.

    [22] 李悦, 张春晓.油松无性系群体育种值与遗传多样性研究[J].北京林业大学学报, 1989, 20(4):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY804.002.htm

    Li Y, Zhang C X. A study on genetic diversity and breeding value of a series of clonal groups in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 1989, 20(4):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY804.002.htm

  • 期刊类型引用(2)

    1. 李红晨,杨洋,霍鸿飞,何盛,张仲凤. 水热处理黄杨木的成分变化分析. 林产工业. 2022(04): 14-19 . 百度学术
    2. 邓祥胜,李明蔓,何鹏,杨梅,申露,刘海宇,王超,程飞. 桉树伐桩分解过程中木质纤维素成分的变化特征. 中南林业科技大学学报. 2022(05): 160-169 . 百度学术

    其他类型引用(4)

图(1)  /  表(8)
计量
  • 文章访问数:  1955
  • HTML全文浏览量:  477
  • PDF下载量:  36
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-02-13
  • 修回日期:  2018-07-02
  • 发布日期:  2018-09-30

目录

/

返回文章
返回