高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种林用主动步态底盘双缸轮腿越障及位置优化研究

韩东涛 刘晋浩 王典 李大维

韩东涛, 刘晋浩, 王典, 李大维. 一种林用主动步态底盘双缸轮腿越障及位置优化研究[J]. 北京林业大学学报, 2018, 40(6): 117-124. doi: 10.13332/j.1000-1522.20180092
引用本文: 韩东涛, 刘晋浩, 王典, 李大维. 一种林用主动步态底盘双缸轮腿越障及位置优化研究[J]. 北京林业大学学报, 2018, 40(6): 117-124. doi: 10.13332/j.1000-1522.20180092
Han Dongtao, Liu Jinhao, Wang Dian, Li Dawei. Optimization on the obstacle crossing ability and position of a forestry chassis with double-cylinder wheeled-legs[J]. Journal of Beijing Forestry University, 2018, 40(6): 117-124. doi: 10.13332/j.1000-1522.20180092
Citation: Han Dongtao, Liu Jinhao, Wang Dian, Li Dawei. Optimization on the obstacle crossing ability and position of a forestry chassis with double-cylinder wheeled-legs[J]. Journal of Beijing Forestry University, 2018, 40(6): 117-124. doi: 10.13332/j.1000-1522.20180092

一种林用主动步态底盘双缸轮腿越障及位置优化研究

doi: 10.13332/j.1000-1522.20180092
基金项目: 

中央高校基本科研业务费专项资金项目 TD2013-4

详细信息
    作者简介:

    韩东涛,讲师,博士。主要研究方向:森林工程装备及其自动化。Email:843140189@qq.com 地址:021008 内蒙古呼伦贝尔市学府路83号呼伦贝尔学院

    责任作者:

    刘晋浩,教授,博士生导师。主要研究方向:林业与环境特种装备的研制与开发。Email:liujinhao@vip.163.com 地址:100083 北京市海淀区清华东路35号北京林业大学工学院

  • 中图分类号: S776

Optimization on the obstacle crossing ability and position of a forestry chassis with double-cylinder wheeled-legs

  • 摘要: 目的底盘是林业装备的关键部件,底盘技术性能中的越障性能及地形适应性能尤为关键,直接决定了林业装备是否能够上山入林。我国典型人工林具有多矮小障碍、多沟壑等立地条件特点,传统林业装备底盘在复杂立地条件下作业的能力就凸显不足,因此本研究旨在提高林业装备底盘越障性能。方法针对一种林用新型步态六轮变幅轮腿底盘,运用D-H参数法对底盘轮腿机构建立运动学模型。通过空间几何位置坐标变换方法对变幅轮腿底盘单缸控制轮腿与双缸控制轮腿越障能力进行理论计算和分析比较。运用D-H运动学正解方法计算得出双缸的最佳布置位置参数。通过仿真测试、样机测试与理论分析进行对比研究。结果双缸控制轮腿机构的越障高度始终大于单缸控制轮腿机构。理论分析、仿真分析与样机测试在最大越障高度数值的切合度分别为99.7%和97.8%。底盘轮腿越障高度可达285.9mm, 具有较强的越障性能和地形适应性,其越障能力完全满足我国林业生产对林业装备底盘越障性能的要求,充分验证了理论研究方法的正确性。结论为解决我国林业装备底盘越障性能较差这一难题提供了新的思路,为双缸控制轮腿机构运动特性、变幅轮腿底盘越障性能及大规模林业机械智能化采伐底盘的研究和发展应用提供了理论依据。

     

  • 图  1  六轮变幅轮腿底盘结构示意图

    1.控制缸1;2.右前轮腿; 3.右前轮“人”字形轮腿; 4.控制缸2;5.右前轮腿车体铰接点; 6.前后车架联接折腰控制缸; 7.右后轮腿车体铰接点; 8.右后轮腿; 9.右后轮腿控制缸; 10.后车架; 11.前后车架铰接点; 12.前车架; 13.左前轮腿“人”字形支腿。

    Figure  1.  Schematic diagram of six-wheeled-leg chassis

    1, control cylinder 1; 2, right front wheeled-leg; 3, right front "人" shape wheeled-leg; 4, control cylinder 2; 5, hinged point of right front wheeled-leg; 6, control cylinder of connection point between front frame and back frame; 7, hinged point of right back wheeled-leg; 8, right back wheeled-leg; 9, control cylinder of right back wheeled-leg; 10, back frame; 11, hinged point of front frame and back frame; 12, front frame; 13, left front "人" shape wheeled-leg.

    图  2  双缸控制变幅轮腿结构状态图

    Figure  2.  Structure state diagram of double-cylinder wheeled-legs

    图  3  前轮腿单、双缸控制系统结构简图

    A点为控制缸1车架安装点,O点为前轮腿车架铰接点,C点为控制缸1前轮腿安装点,D点为控制缸2前轮腿安装点,F点为控制缸2“人”字形轮腿安装点,E点为“人”字形轮腿铰接点,G点为“人”字形轮腿前轮轮心,H点为“人”字形轮腿后轮轮心,I点为前轮支腿延长线上点,O为基坐标系,1为前轮腿坐标系,3为“人”字形轮腿坐标系,5为“人”字形轮腿前轮轮心坐标系。

    Figure  3.  Structure diagram of the front wheeled-legs with single cylinder and double cylinders

    A is the frame installation point of control cylinder 1, O is the frame hinged point of front wheeled-legs, C is the front wheeled-legs installation point of control cylinder 1, D is the front wheeled-legs installation point of control cylinder 2, F is the "人" shape wheeled-legs installation point of control cylinder 2, E is the hinged point of "人" shape wheeled-legs, G is the front wheel center point of "人" shape wheeled-legs, H is the back wheel center point of "人" shape wheeled-legs, I is the piont of front wheeled-legs extended line, O is the basic joint coordinate system, 1 is the joint coordinate system of front wheeled-legs, 3 is the joint coordinate system of "人" shape wheeled-legs, 5 is the front wheel center joint coordinate system of "人" shape wheeled-legs.

    图  4  基于D-H法前轮腿坐标系

    θ1为绕Z0轴的旋转角;θ3为绕Z1轴的旋转角;L1为沿X2轴平移距离;L3为沿X3轴平移距离。

    Figure  4.  Front wheeled-legs coordinate system based on D-H method

    θ1 is the rotation angle around Z axis, θ3 is the rotation angle around Z1 axis, L1 is the translation length along the X2 axis, L3 is the translation length along the X3 axis.

    图  5  双缸控制轮腿越障过程分析示意图

    Figure  5.  Analysis schematic for obstacle crossing process of double-cylinder wheeled-legs

    图  6  单缸控制轮腿越障过程分析示意图

    Figure  6.  Analysis schematic for obstacle crossing process of single-cylinder wheeled-legs

    图  7  双缸最佳布置形式示意图

    x1AO的长度,x2OC的长度,x3DE的长度,x4EF长度,∠AOCθ1,∠GEIθ3, ∠DEFδ

    Figure  7.  Best double-cylinder arrangement diagram

    x1 is the length of AO, x2 is the length of OC, x3 is the length of DE, x4 is the length of EF, ∠AOC is θ1, ∠GEI is θ3, ∠DEF is δ.

    图  8  x1x2x3x4变化时轮腿变幅机构实现最大越障高度时的仿真情景

    Figure  8.  Simulation scenarios of the mechanism achieving the maximum obstacle crossing height with x1, x2, x3, x4 changing

    图  9  变幅轮腿运动状态图

    Figure  9.  Motion states of variable wheeled-legs

    图  10  理论计算、仿真实验及实测实验对比

    Figure  10.  Comparison among theoretical calculations, simulation experiment and test experiment

    表  1  D-H参数表

    Table  1.   D-H parameter list

    连杆Link θ/(°) d/mm a/mm α/(°)
    1 0 0 0 0
    3 θ1 0 L1 0
    5 θ3 0 L3 0
    注:θ为两连杆夹角,d为两连杆距离,a为连杆长度,α为连杆扭角。Notes: θ is the angle between two connecting rods,d is the distance between two connecting rods,a is the length of connecting rod,and α is the twist angle of connecting rod.
    下载: 导出CSV

    表  2  理论数据

    Table  2.   Theoretical data

    mm
    Py x1 x2 x3 x4
    -285.9 550 300 406 190
    -285.9 560 370 406 190
    -285.9 570 390 406 190
    -285.9 610 400 406 190
    -285.9 650 410 406 190
    -285.9 670 420 406 190
    注:Py为越障高度,x1为控制缸1在车架上安装点A与前轮腿车架铰接点O之间的距离, x2为控制缸1在前轮腿上的安装点C与前轮腿车架铰接点O之间的距离, x3为控制缸2在前轮腿上的安装点D与控制缸2在“人”字形轮腿铰接点E之间的距离, x4为控制缸2在“人”字形轮腿上的安装点F与“人”字形轮腿铰接点E之间的距离。Notes: Py is the obstacle crossing height, x1 is the distance between installation point A on the body and hinged point O of front wheeled-legs on the body, x2 is the distance between installation point C of control cylinder 1 on the front wheeled-legs and hinged point O of front wheeled-legs on the body, x3 is the distance between installation point D of control cylinder 2 on the front wheeled-legs and hinged point E of control cylinder 2 on the “人” shaped wheeled-legs, x4 is the distance between installation point F on the “人” shaped wheeled-legs of control cylinder 2 and hinged point E of “人” shaped wheeled-legs.
    下载: 导出CSV

    表  3  仿真数据

    Table  3.   Simulation data

    mm
    Py x1 x2 x3 x4
    -782.1 350 190 480 270
    -611.6 420 230 470 260
    -598.3 480 260 465 243
    -492.1 490 260 425 217
    -371.2 500 270 421 200
    -312.9 520 270 413 190
    -283.6 550 280 409 195
    -288.3 560 370 409 190
    -281.7 570 390 409 190
    -286.1 610 400 405 190
    -285.7 650 410 405 190
    -289.0 670 420 400 190
    -315.5 680 430 400 190
    -350.1 680 430 390 170
    -562.3 690 440 350 150
    -671.6 690 460 290 120
    下载: 导出CSV

    表  4  实测数据

    Table  4.   Actual measurement data

    mm
    Py x1 x2 x3 x4
    -791.5 300 300 500 270
    -772.9 350 400 490 260
    -621.3 390 426 470 233
    -588.6 430 426 420 226
    -369.5 500 431 410 203
    -312.8 550 300 409 192
    -285.3 560 370 409 185
    -294.5 570 390 407 195
    -286.2 610 400 409 193
    -287.0 650 410 406 188
    -283.9 670 420 405 190
    -315.8 680 435 405 190
    -566.1 690 433 350 155
    -701.9 700 435 290 126
    -730.6 700 430 290 120
    下载: 导出CSV
  • [1] 迟宝山, 权清达, 刘西侠, 等.轮腿式行走系统研究综述[J].农业装备与车辆工程, 2013, 51(6): 46-49. doi: 10.3969/j.issn.1673-3142.2013.06.014

    Chi B S, Quan Q D, Liu X X, et al. Research on wheel-legged walking system[J]. Agricultural Equipment & Vehicle Engineering, 2013, 51(6): 46-49. doi: 10.3969/j.issn.1673-3142.2013.06.014
    [2] 谢霞, 康少华, 侍才洪.复杂地形移动底盘技术研究[J].工程机械, 2015, 46(3): 45-52. doi: 10.3969/j.issn.1000-1212.2015.03.010

    Xie X, Kang S H, Shi C H. Study on mobile chassis traveling in complex terrains[J]. Construction Machinery and Equipment, 2015, 46(3): 45-52. doi: 10.3969/j.issn.1000-1212.2015.03.010
    [3] 刘凯.仿人机器人运动控制系统和步态规划算法的研究及实现[D].上海: 上海交通大学, 2010.

    Liu K. Motion control and gait planning for humanoid robot[D]. Shanghai: Shanghai Jiao Tong University, 2010.
    [4] 李涛.机器人规划与智能控制的研究及其仿真[D].淮南: 安徽理工大学, 2009.

    Li T. Research and simulation about robot planning and intelligent control[D]. Huainan: Anhui University of Science and Technology, 2009.
    [5] 赵之光.基于SVM的双足机器人步态自学习控制方法[D].广州: 广东工业大学, 2012.

    Zhao Z G. Research of biped robot gait self-learning control algorithms based on SVM[D]. Guangzhou: Guangdong University of Technology, 2012.
    [6] 孟廷豪.基于模糊控制的机器人避障研究[D].太原: 中北大学, 2013.

    Meng T H. The study of obstacle avoidance system based on fuzzy control for mobile robot[D]. Taiyuan: North University of China, 2013.
    [7] 江道根.六自由度并联机器人RBF神经网络PID控制研究[D].镇江: 江苏大学, 2010.

    Jiang D G. Study on RBFNN PID control for a 6-DOF parallel robot[D]. Zhenjiang: Jiangsu University, 2010.
    [8] Han D T, Liu J H, Kan J M, et al. Analysis of a kinematic model for a forestry six-wheeled luffing articulatedvehicle chassis[J]. Open Mechanical Engineering Journal, 2015, 9(1): 670-677. doi: 10.2174/1874155X01509010670
    [9] 蔡自兴.机器人学基础[M].北京:机械工业出版社, 2009: 6.

    Cai Z X. Fundamentals of robotics[M]. Beijing:Engineering Industry Press, 2009: 6.
    [10] 于靖军, 刘辛军, 丁希仑, 等.机器人机构学的数学基础[M].北京:机械工业出版社, 2008: 7.

    Yu J J, liu X J, Ding X L, et al. Mathematical foundations of robotic mechanisms[M]. Beijing: Engineering Industry Press, 2008: 7.
    [11] Craig J J.机器人学导论[M].北京:机械工业出版社, 2006.

    Craig J J. Introduction to robotics mechanics and control[M]. Beijing: Engineering Industry Press, 2006.
    [12] 宋小康, 谈大龙, 吴镇炜, 等.全地形轮式移动机器人运动学建模与分析[J].机械工程学报, 2008, 44(6): 148-154. doi: 10.3321/j.issn:0577-6686.2008.06.023

    Song X K, Tan D L, Wu Z W, et al. Kinematics modeling and analyses of all-terrain wheeled mobile robots[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 148-154. doi: 10.3321/j.issn:0577-6686.2008.06.023
    [13] 于涌川, 原魁, 邹伟.全驱动轮式机器人越障过程模型及影响因素分析[J].机器人, 2008, 30(1): 1-6. doi: 10.3321/j.issn:1002-0446.2008.01.001

    Yu Y C, Yuan K, Zou W. Dynamic model of all-wheel-drive mobile robot climbing over obstacles and analysis on its influential factors[J]. Robot, 2008, 30(1): 1-6. doi: 10.3321/j.issn:1002-0446.2008.01.001
    [14] 魏巍.基于区间分析的轮式摆动车身车辆越野性能研究[D].长春: 吉林大学, 2012.

    Wei W. Research on off-road performance of wheeled vehicle with oscillating body based on interval analysis[D]. Changchun: Jilin University, 2012.
    [15] 韩军, 陈高杰, 王红坚, 等.步行式挖掘机越障能力分析[J].中国工程机械学报, 2005, 3(1): 25-28. doi: 10.3969/j.issn.1672-5581.2005.01.006

    Han J, Chen G J, Wang H J, et al. Climbing ability analysis for walking mobile excavator[J].Chinese Journal of Construction Machinery, 2005, 3(1): 25-28. doi: 10.3969/j.issn.1672-5581.2005.01.006
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  932
  • HTML全文浏览量:  237
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回