高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

文冠果不同交配组合种实性状变异及综合评价

黄炎子 宋美华 郭永恒 王青 王俊杰 周祎鸣 向秋虹 王馨蕊 关文彬

黄炎子, 宋美华, 郭永恒, 王青, 王俊杰, 周祎鸣, 向秋虹, 王馨蕊, 关文彬. 文冠果不同交配组合种实性状变异及综合评价[J]. 北京林业大学学报, 2019, 41(1): 42-56. doi: 10.13332/j.1000-1522.20180105
引用本文: 黄炎子, 宋美华, 郭永恒, 王青, 王俊杰, 周祎鸣, 向秋虹, 王馨蕊, 关文彬. 文冠果不同交配组合种实性状变异及综合评价[J]. 北京林业大学学报, 2019, 41(1): 42-56. doi: 10.13332/j.1000-1522.20180105
Huang Yanzi, Song Meihua, Guo Yongheng, Wang Qing, Wang Junjie, Zhou Yiming, Xiang Qiuhong, Wang Xinrui, Guan Wenbin. Variation and comprehensive evaluation of fruit and seed phenotypic traits of different mating combinations in Xanthoceras sorbifolium[J]. Journal of Beijing Forestry University, 2019, 41(1): 42-56. doi: 10.13332/j.1000-1522.20180105
Citation: Huang Yanzi, Song Meihua, Guo Yongheng, Wang Qing, Wang Junjie, Zhou Yiming, Xiang Qiuhong, Wang Xinrui, Guan Wenbin. Variation and comprehensive evaluation of fruit and seed phenotypic traits of different mating combinations in Xanthoceras sorbifolium[J]. Journal of Beijing Forestry University, 2019, 41(1): 42-56. doi: 10.13332/j.1000-1522.20180105

文冠果不同交配组合种实性状变异及综合评价

doi: 10.13332/j.1000-1522.20180105
基金项目: 

植物新品种测试指南及已知品种数据库项目 2014009

国家星火计划项目 2013GA105004

详细信息
    作者简介:

    黄炎子。主要研究方向:生物多样性保护与利用。Email: shadowzicy@163.com 地址:100083北京市海淀区清华东路35号北京林业大学自然保护区学院

    责任作者:

    关文彬,教授,博士生导师。主要研究方向:生物多样性保护与利用。Email: swlab@bjfu.edu.cn 地址:同上

  • 中图分类号: S722.34

Variation and comprehensive evaluation of fruit and seed phenotypic traits of different mating combinations in Xanthoceras sorbifolium

  • 摘要: 目的文冠果是中国北方最具潜力的木本油料树种之一,但存在着雌、雄花败育及自交不亲和等制约丰产的问题。本文数据性分析了文冠果不同交配组合种实性状的变异并进行了综合评价,以期为提高文冠果产量提供科学依据。方法在内蒙古敖汉旗半干旱地区实验基地,采用优选的6个文冠果优良类型(2014年以文冠果作砧木嫁接)A、B、G1、G3、H5和N7,设计了3个随机区组,包括异株自交、互交等36个交配组合,同株上同时进行控制授粉与自由(开放)授粉对比实验,对果实质量、均单粒质量等10个种实性状进行了测定,并运用Canoco-PCA-TOPSIS构建了不同交配组合选优的评价方法。结果通过Canoco-PCA法对评价指标降维处理,提取了2个主成分,可代表 90%以上的信息,建立各交配组合主成分得分矩阵,运用TOPSIS法对36个交配组合的文冠果种实性状进行了综合评价和排序,并将结果按照是否适合作为优秀交配组合聚为3类,分别为最适合、比较适合和不适合,判别分析准确率达到96.3%。结论文冠果存在较高的交配优势(家系遗传率>30%),通过选择优良交配组合可获得较强的遗传增益,其中果实总质量最高的交配组合是G1×G3,种子均单粒质量最大的交配组合是H5×B;组合B×H5、G1×G3和B×N7为最佳母父本交配组合;新发现的自交(异花)优势,H5为最优的单系交配组合;新发现的互交优势,G1和G3为最优的双系交配组合;最优的3系交配组合为N7、B和H5。所建立的综合评价选优方法可以有效的对优良交配组合进行选择,为进一步提高文冠果产量提供科学依据与配置模式。

     

  • 图  1  36个交配组合的聚类分析

    Figure  1.  Cluster analysis of 36 mating combinations

    图  2  典型判别函数组中心图

    Figure  2.  Group centers of typical discriminant functions

    表  1  不同类型文冠果形态特征

    Table  1.   Different types of morphological characteristics of Xanthoceras sorbifolium

    类型
    Type
    形态特征
    Morphological characteristics
    A两性花早开,顶生花序两性花比例高,侧序结果,果柱型 Hermaphrodite flower bloom early and the ratio of hermaphrodite flowers to terminal inflorescence is high; the fruit grows on lateral inflorescence and the shape of fruit is pillar type
    B短粗枝型,顶生花序离分生点远,顶生花序粗壮,果实为桃型,果皮厚 The shape of branch is short and thick; apical inflorescence is far away from sub point and the apical inflorescence is sturdy; the shape of fruit is peach type with thick peel
    G1顶生花序离新生枝基部较远,顶生花序和侧生花序均有两性花,花梗长,果柱型;果皮绿色,物候期中偏晚 The apical inflorescence is far away from the base of the new branch; both apical inflorescence and lateral inflorescence have hermaphroditic flowers; the pedicel is long; the shape of fruit is pillar type with green peel. The phenophase period is late
    G3叶表面具蜡质,花序轴长,花大、花瓣倒卵形,果实形状为柱型,种子大 The leaf surface is waxy; the rachis is long and the flower is large, the petal is obovoid; the shape of fruit is pillar type and the seed is big
    H5新生枝微毛、红色,短粗枝型,果短桃型,可孕花比例高达50 %以上,果实相对较小;结果多、产量高 New branch is red and with tiny hair, the shape of branch is short and thick, the shape of fruit is short peach type and relatively small, the proportion of fertile flowers is above 50%. The yield is high
    N7短粗枝型,小叶略卷,侧花序有两性花,果实梨形 The shape of branch is short and thick and leaflet is slightly curly; lateral inflorescence has hermaphroditic flowers; the shape of fruit is pear type
    下载: 导出CSV

    表  2  试验中36个交配组合

    Table  2.   36 mating combinations in experiment

    交配类型
    Mating type
    交配组合(母×父)
    Mating combinations(female×male)
    A×BA×G1A×G3A×H5A×N7N7×A
    B×AB×G1B×G3B×H5B×N7N7×B
    异交 IntercrossingG1×AG1×BG1×G3G1×H5G1×N7N7×G1
    G3×AG3×BG3×G1G3×H5G3×N7N7×G3
    H5×AH5×BH5×G1H5×G3H5×N7N7×H5
    自交 Self-crossingA×AB×BG1×G1G3×G3H5×H5N7×N7
    下载: 导出CSV

    表  3  不同交配组合父本与母本交互作用方差分析

    Table  3.   Analysis of variance of paternal and maternal interaction between different mating combinations

    性状
    Trait
    母本 Female父本 Male母×父 Female×male误差Error
    MS
    (df=105)
    家系遗传率
    Family
    heritability
    MS
    (df=5)
    FMS
    (df=6)
    FMS
    (df=30)
    F
    结果数 Fruit number2.143.14*0.610.900.801.180.6815.12
    均长径 Average length3.133.86**1.141.410.991.210.8117.63
    均短径 Average width3.437.57**3.307.28**1.192.63**0.4561.96
    均短围 Average width circumference54.824.84**73.656.51**18.581.64*11.3239.07
    总质量 Total mass255.362.60*479.634.88**201.882.06**98.2051.36
    皮质量 Shell mass214.1510.03**68.243.20**43.872.05**21.3651.32
    种质量 Seed mass38.251.13147.424.36**65.081.92**33.8448.00
    粒数 Grain number62.632.79*49.982.23*39.441.76*22.4143.17
    均单粒质量 Average single grain mass0.404.68**0.293.32**0.141.60*0.0937.31
    均种质量比 Mean seed mass ratio82.972.88*226.017.84**96.803.36**28.8470.21
    注:*代表差异显著(P < 0.05),**代表差异极显著(P < 0.01)。
    Notes: * means significant difference among different fruits at P < 0.05 level; ** means extremely significant difference among different fruits at P < 0.01 level.
    下载: 导出CSV

    表  4  文冠果不同交配组合子代种实性状的均值与标准差

    Table  4.   Analysis of variance of paternal and maternal interaction between different mating combinations in Xanthoceras sorbifolium

    性状
    Trait
    母本
    Female
    自然授粉
    Open pollination
    父本 Male
    Mean
    P
    ♂A♂B♂G1♂G3♂H5♂N7
    结果数
    Fruit number
    ♀A1.00±0.00a1.00±0.00a2.00±1.00a1.67±1.15a2.00±1.00a2.67±1.53a2.00±1.00a1.890.74
    ♀B1.00±0.00a2.00±1.73a1.33±0.58a1.67±0.58a2.00±1.00a1.67±1.15a1.67±1.15a1.72
    ♀G11.23±0.44a1.00±0.00a1.00±0.00a1.00±0.00a2.67±1.53a1.00±0.00a1.67±0.58a1.39
    ♀G31.38±0.74a1.67±0.58a1.67±0.58a1.00±0.00a1.00±0.00a1.67±0.58a1.00±0.00a1.34
    ♀H51.90±0.74a3.00±1.73a2.00±0.00a2.00±1.73a2.67±1.53a1.67±0.58a1.67±1.15a2.17
    ♀N72.50±0.71a1.00±0.00a1.67±0.58a1.67±0.58a1.67±0.58a2.00±1.00a2.67±0.58a1.78
    均 Mean1.501.611.611.521.781.78
    均长径
    Average length/cm
    ♀A5.71±0.10ab6.33±0.42ab6.56±1.40ab7.14±1.51ab6.92±0.82ab6.88±0.51ab6.18±1.47ab6.670.02*
    ♀B6.72±0.40ab6.36±1.01ab6.02±0.60ab5.27±1.22ab5.80±1.09ab7.05±1.00ab6.53±0.41ab6.17
    ♀G16.05±0.78ab6.55±0.35ab8.18±0.20b6.84±0.43ab7.16±0.46ab6.02±0.69ab6.41±0.97ab6.86
    ♀G35.17±1.15a5.90±1.19ab5.99±1.45ab6.95±0.32ab5.30±1.27ab5.63±1.72ab5.93±1.33ab5.95
    ♀H55.61±1.02ab5.60±0.90ab5.50±0.91ab5.67±0.98ab6.37±0.41ab6.68±0.38ab5.34±0.97ab5.86
    ♀N75.44±0.44ab6.21±0.54ab5.99±0.46ab6.43±0.38ab6.12±0.25ab6.52±0.24ab6.02±0.05ab6.22
    均 Mean5.786.166.376.386.286.466.07
    均短径
    Average width/cm
    ♀A5.02±
    0.05a
    6.63±
    0.28abcde
    6.74±
    0.33bcde
    6.66±
    0.71abcde
    6.75±
    0.68bcde
    6.65±
    0.63abcd
    6.6±
    0.60abc
    6.670.00**
    ♀B7.03±
    0.22abcde
    7.22±
    0.42abcde
    6.39±
    0.89abcde
    5.50±
    1.05ab
    6.75±
    1.00abcde
    8.41±
    0.47abcd
    8.21±
    0.86abcd
    7.08
    ♀G15.46±
    0.82ab
    6.74±
    0.88abcde
    6.59±
    0.19abcde
    6.63±
    0.38abcde
    7.74±
    0.61cde
    7.22±
    0.42abcde
    7.23±
    0.90abc
    7.03
    ♀G35.74±
    0.80abc
    7.16±
    0.86abcde
    6.74±
    0.99abcde
    7.72±
    0.46cde
    5.91±
    0.67abc
    7.33±
    0.70abcde
    6.68±
    0.52abc
    6.92
    ♀H55.75±
    0.72abc
    6.23±
    0.79abcde
    6.31±
    0.93e
    6.82±
    0.51bcde
    7.07±
    0.02bcde
    6.83±
    0.25abcde
    6.28±
    1.15abcd
    6.59
    ♀N75.78±
    0.32abc
    6.00±
    0.30abcde
    6.13±
    0.30de
    6.05±
    0.20bcde
    6.01±
    0.49abcde
    6.21±
    0.12abcd
    5.05±
    0.14a
    5.91
    均 Mean5.806.666.486.566.717.116.68
    均短围
    Average width
    circumference/cm
    ♀A15.54±
    0.28a
    21.76±
    1.52abc
    22.73±
    1.59abc
    22.62±
    2.20abc
    24.45±
    3.81abc
    23.42±
    2.86abc
    22.13±
    1.64abc
    22.850.00**
    ♀B23.37±
    2.11abc
    23.73±
    2.28abc
    29.67±
    18.90c
    18.67±
    2.56ab
    22.41±
    2.57abc
    27.37±
    1.25bc
    27.50±
    3.34bc
    24.89
    ♀G117.66±
    2.44ab
    22.48±
    2.60abc
    22.38±
    0.38abc
    21.05±
    0.81abc
    26.05±
    0.33abc
    26.13±
    2.52abc
    24.24±
    1.84abc
    23.72
    ♀G317.31±
    2.47ab
    23.50±
    1.66abc
    22.82±
    2.61abc
    25.72±
    1.25abc
    17.49±
    1.77ab
    24.26±
    1.66abc
    23.06±
    2.16abc
    22.81
    ♀H518.30±
    2.57ab
    21.70±
    2.54abc
    21.80±
    2.63abc
    23.16±
    1.89abc
    24.92±
    1.83abc
    21.24±
    1.18abc
    21.66±
    3.31abc
    22.41
    ♀N717.29±
    0.80ab
    20.86±
    1.14abc
    21.17±
    1.18abc
    20.79±
    0.61abc
    20.73±
    1.45abc
    20.90±
    0.23abc
    16.05±
    0.27a
    20.08
    均 Mean18.2422.3423.432222.6823.8922.44
    总质量
    Total mass/g
    ♀A28.32±
    0.54ab
    44.60±
    2.23abcd
    49.14±
    12.10abcd
    43.94±
    12.73abcd
    48.05±
    10.83abcd
    50.82±
    14.53abcd
    43.21±
    9.67abcd
    46.630.00**
    ♀B49.46±
    6.16abcd
    49.37±
    5.65abcd
    40.61±
    6.08abcd
    30.03±
    4.37abc
    43.44±
    12.30abcd
    66.46±
    2.53d
    58.95±
    12.92bcd
    48.14
    ♀G132.68±
    11.47abc
    43.59±
    8.25abcd
    52.74±
    2.83abcd
    47.39±
    4.07abcd
    61.22±
    4.73cd
    37.77±
    4.56abcd
    49.97±
    9.04abcd
    48.78
    ♀G330.99±
    13.53abc
    44.00±
    12.27abcd
    42.91±
    15.91abcd
    55.44±
    8.59abcd
    27.04±
    7.81a
    49.83±
    17.98abcd
    41.05±
    10.01abcd
    43.38
    ♀H532.91±
    11.78abc
    35.32±
    12.61abcd
    36.43±
    7.15abcd
    40.57±
    9.93abcd
    47.94±
    1.46abcd
    49.00±
    0.84abcd
    38.78±
    13.68abcd
    41.34
    ♀N730.86±
    4.91ab
    38.39±
    4.67abcd
    44.73±
    9.01abcd
    44.76±
    7.89abcd
    36.56±
    3.73abcd
    47.23±
    4.73abcd
    39.21±
    1.94abcd
    41.81
    均 Mean34.2042.5544.4343.6944.0450.1845.2
    皮质量
    Shell mass/g
    ♀A13.29±
    0.03a
    23.31±
    1.51abc
    24.37±
    8.41abc
    22.71±
    5.58abc
    23.81±
    3.11abc
    23.28±
    5.34abc
    20.39±
    5.07ab
    22.980.00**
    ♀B27.63±
    3.72abc
    20.63±
    5.72ab
    21.38±
    5.88ab
    17.16±
    1.30a
    19.96±
    9.27ab
    34.43±
    2.37c
    32.00±
    7.79bc
    24.26
    ♀G117.45±
    4.79a
    20.54±
    2.74ab
    26.04±
    2.61abc
    22.73±
    1.08abc
    25.37±
    1.79abc
    17.65±
    2.09a
    23.32±
    1.35abc
    22.61
    ♀G315.98±
    5.61a
    18.43±
    6.04ab
    17.92±
    7.07a
    23.39±
    3.28abc
    16.37±
    3.67a
    22.88±
    8.12abc
    20.22±
    4.01ab
    19.87
    ♀H515.88±
    5.46a
    14.76±
    5.41a
    15.29±
    3.26a
    17.35±
    3.70a
    20.12±
    2.30ab
    23.43±
    1.33abc
    15.36±
    5.27a
    17.72
    ♀N713.86±
    1.67a
    15.45±
    1.67a
    17.02±
    2.36a
    17.58±
    2.85a
    14.59±
    1.26a
    17.79±
    1.33a
    16.66±
    1.35a
    16.52
    均 Mean17.3518.8520.3420.1520.0423.2421.33
    种质量
    Seed mass/g
    ♀A15.03±
    0.52ab
    21.29±
    0.79abc
    23.77±
    3.96abc
    20.23±
    7.60abc
    23.24±
    8.31abc
    26.54±
    9.50abc
    21.82±
    5.75abc
    22.820.00**
    ♀B21.83±
    2.52abc
    23.75±
    2.25abc
    19.23±
    0.31abc
    11.88±
    3.07a
    22.49±
    3.18abc
    31.03±
    0.76bc
    25.94±
    5.30abc
    22.39
    ♀G115.23±
    7.10ab
    18.06±
    5.52abc
    21.71±
    0.63abc
    24.66±
    3.03abc
    34.85±
    3.77c
    19.12±
    2.49abc
    25.65±
    7.83abc
    24.01
    ♀G315.01±
    8.07ab
    20.57±
    6.45abc
    19.99±
    8.90abc
    27.05±
    5.54abc
    10.67±
    4.15a
    25.95±
    9.88abc
    19.83±
    6.03abc
    20.68
    ♀H517.03±
    6.54abc
    15.56±
    7.30ab
    16.15±
    3.90ab
    18.23±
    6.42abc
    22.82±
    3.47abc
    25.57±
    0.74abc
    22.42±
    8.46abc
    20.13
    ♀N717.00±
    3.24abc
    17.94±
    3.09abc
    22.71±
    6.88abc
    22.18±
    5.05abc
    16.97±
    2.60abc
    24.44±
    3.44abc
    22.56±
    0.59abc
    21.13
    均 Mean16.8619.5320.5920.721.8425.4423.04
    粒数
    Grain number
    ♀A20.50±
    2.12ab
    16.67±
    1.53ab
    17.17±
    5.01ab
    12.33±
    5.13ab
    14.39±
    5.67ab
    17.39±
    6.02ab
    14.11±
    4.29ab
    15.340.00**
    ♀B16.25±
    1.50ab
    17.25±
    3.63ab
    14.33±
    0.58ab
    13.00±
    8.67ab
    16.22±
    0.69ab
    19.33±
    1.53ab
    17.44±
    3.36ab
    16.26
    ♀G116.04±
    4.99ab
    15.67±
    5.13ab
    19.67±
    1.15ab
    18.67±
    3.06ab
    25.00±
    3.61b
    16.33±
    2.08ab
    22.50±
    2.78ab
    19.64
    ♀G312.75±
    4.83ab
    15.33±
    1.15ab
    14.67±
    3.88ab
    17.33±
    4.04ab
    8.33±
    3.51a
    20.00±
    1.73ab
    14.67±
    6.11ab
    15.06
    ♀H515.90±
    7.72ab
    18.83±
    5.92ab
    7.50±
    1.32a
    12.00±
    9.64ab
    17.72±
    8.42ab
    20.67±
    1.53ab
    25.78±
    1.07b
    17.08
    ♀N712.75±
    1.06ab
    16.67±
    2.31ab
    21.33±
    5.80ab
    19.83±
    2.36ab
    17.33±
    5.51ab
    20.83±
    0.76ab
    22.39±
    0.98ab
    19.73
    均 Mean15.7016.7415.7815.5316.519.0919.48
    单粒质量
    Average single
    grain mass/g
    ♀A0.74±
    0.10a
    1.28±
    0.07ab
    1.50±
    0.14ab
    1.66±
    0.09ab
    1.69±
    0.11b
    1.60±
    0.16ab
    1.60±
    0.01ab
    1.560.002**
    ♀B1.34±
    0.04ab
    1.32±
    0.18ab
    1.34±
    0.03ab
    1.18±
    0.66ab
    1.46±
    0.18ab
    1.75±
    0.15b
    1.59±
    0.21ab
    1.44
    ♀G10.92±
    0.18ab
    1.05±
    0.05ab
    1.05±
    0.07ab
    1.33±
    0.05ab
    1.56±
    0.03ab
    1.21±
    0.06ab
    1.29±
    0.49ab
    1.25
    ♀G31.14±
    0.29ab
    1.25±
    0.43ab
    1.22±
    0.44ab
    1.49±
    0.06ab
    1.31±
    0.18ab
    1.38±
    0.47ab
    1.42±
    0.20ab
    1.35
    ♀H51.23±
    0.44ab
    0.92±
    0.76ab
    1.83±
    0.24b
    1.64±
    0.51ab
    1.41±
    0.60ab
    1.24±
    0.11ab
    0.98±
    0.33ab
    1.34
    ♀N71.33±
    0.14ab
    0.99±
    0.09ab
    1.02±
    0.15ab
    1.06±
    0.19ab
    0.96±
    0.33ab
    1.13±
    0.13ab
    1.01±
    0.05ab
    1.03
    均 Mean1.121.141.331.391.41.381.32
    种质量比
    Seed mass ratio
    ♀A53.06±
    0.80abcdef
    47.75±
    0.93abcd
    56.22±
    4.71cdef
    50.40±
    7.07abcdef
    53.65±
    9.20abcdef
    58.58±
    8.14cdef
    57.48±
    8.15cdef
    54.010.00**
    ♀B44.18±
    0.99abc
    53.30±
    8.11abcdef
    48.06±
    7.24abcd
    37.83±
    10.35a
    61.24±
    8.31def
    54.37±
    1.92bcdef
    50.76±
    2.47abcdef
    50.93
    ♀G144.98±
    5.96abcd
    43.80±
    6.23abc
    43.86±
    2.56abc
    51.93±
    1.93abcdef
    66.23±
    2.95f
    57.11±
    1.50cdef
    57.72±
    9.85cdef
    53.44
    ♀G346.30±
    6.44abcd
    51.47±
    3.77abcdef
    50.41±
    4.61abcdef
    52.62±
    3.23abcdef
    38.74±
    3.90ab
    59.06±
    3.46cdef
    53.12±
    6.65abcdef
    50.90
    ♀H551.34±
    3.67abcdef
    47.91±
    7.38abcd
    49.46±
    1.70abcde
    48.77±
    5.21abcd
    52.08±
    7.53abcdef
    52.21±
    2.07abcdef
    65.82±
    4.65ef
    52.71
    ♀N754.95±
    1.76bcdef
    52.37±
    2.98abcdef
    55.94±
    5.06cdef
    54.81±
    2.47bcdef
    52.37±
    2.95abcdef
    57.42±
    2.19cdef
    57.57±
    1.38cdef
    55.08
    均 Mean49.1349.4350.6649.4054.0556.4657.08
    注:*代表差异显著(P<0.05),**代表差异极显著(P<0.01);不同字母表示相互之间差异显著。
    Notes: * means significant difference among different fruits at P<0.05 level; ** means significant difference among different fruits at P<0.01 level. Different lowercases in each indicate significant differences.
    下载: 导出CSV

    表  5  不同类型种实性状得分(母本)

    Table  5.   Scores of different types as female

    性状 Trait得分(母本)Score(female)
    ABG1G3H5N7
    结果数 Fruit number532164
    均长径 Average length536214
    均短径 Average width365421
    均短围 Average width circumference465321
    总质量 Total mass456312
    皮质量 Shell mass564321
    种质量 Seed mass546312
    粒数 Grain number235146
    均单粒质量 Average single grain mass652143
    均种质量比 Mean seed mass ratio524136
    总分 Total score444345222630
    下载: 导出CSV

    表  6  不同类型种实性状得分(父本)

    Table  6.   Scores of different types as male

    性状 Trait得分(父本)Score(male)
    ABG1G3H5N7CK
    结果数 Fruit number5547664
    均长径 Average length3564721
    均短径 Average width4236751
    均短围 Average width circumference3625741
    总质量 Total mass2534761
    皮质量 Shell mass2543761
    种质量 Seed mass2345761
    粒数 Grain number5314672
    均单粒质量 Average single grain mass2467531
    均种质量比 Mean seed mass ratio2435671
    总分 Total score30423650655214
    下载: 导出CSV

    表  7  不同交配类型种实性状差异

    Table  7.   Difference of fruit and seed phenotypic traits in different mating types

    性状 Trait项目 Item交配类型 Mating type
    正交
    Cross
    反交
    Reciprocal
    cross
    自交
    Selfing
    cross
    对照
    Control
    结果数 Fruit number平均个数 Average number1.801.731.441.57
    优势率 Heterosis rate/%14.3810.15-8.21
    均长径 Average length果长 Fruit length/cm6.326.296.205.87
    优势率 Heterosis rate/%7.687.135.54
    均短径 Average width果宽 Fruit width/cm6.986.606.245.83
    优势率 Heterosis rate/%19.7113.136.96
    均短围 Average width circumference果周长 Fruit perimeter/cm23.7822.4421.2118.49
    优势率 Heterosis rate/%28.5821.3714.68
    总质量 Total mass平均 Average/g47.5144.0041.3135.58
    优势率 Heterosis rate/%33.5223.6516.09
    皮质量 Shell mass平均 Average/g19.8618.4620.6517.95
    优势率 Heterosis rate/%10.632.8315.02
    种质量 Seed mass平均 Average/g23.6520.5420.6617.63
    优势率 Heterosis rate/%34.1316.4917.18
    粒数 Grain number平均个数 Average number17.7116.8016.8416.44
    优势率 Heterosis rate/%7.722.172.44
    均单粒质量 Average single grain mass种质量 Seed mass/g1.461.221.251.12
    优势率 Heterosis rate/%30.209.1111.71
    均种质量比 Mean seed mass ratio种仁/种皮 Kemel/seed coat/%55.9751.1149.3848.81
    优势率 Heterosis rate/%14.684.711.17
    下载: 导出CSV

    表  8  基于Canoco-PCA的方差贡献率

    Table  8.   Variance contribution based on Canoco-PCA

    主成分
    Principal component
    特征值
    Eigenvalue
    累计特征值
    Cumulative eigenvalue/%
    贡献率
    Contribution/%
    累积贡献率
    Cumulative contribution/%
    F16.94769.4769.4769.47
    F22.14490.9121.4490.91
    F30.49895.894.9895.89
    F40.20197.902.0197.90
    下载: 导出CSV

    表  9  基于Canoco-PCA-TOPSIS的文冠果交配组合种实性状评价结果

    Table  9.   Evaluation on fruit and seed phenotypic traits of different mating combinations based on Canoco-PCA-TOPSIS

    交配组合
    Mating combination
    F1得分
    F1 score
    F2得分
    F2 score
    di+di-相对贴近度
    Relative closeness Ci
    名次
    Ranking
    B×H56.803 05.539 40.013 50.842 20.984 21
    G1×G37.016 2-3.527 80.142 70.829 20.853 22
    B×N74.209 45.909 30.162 30.700 40.811 93
    G3×G12.884 02.460 40.244 50.611 50.714 44
    G1×N72.618 4-1.598 40.278 40.581 80.676 35
    A×H52.438 1-0.914 80.284 10.573 70.668 96
    G3×H52.434 4-1.736 60.289 00.571 00.663 97
    A×B1.600 70.167 10.324 90.530 60.620 38
    H5×H51.554 50.256 90.327 10.528 40.617 79
    G1×B1.163 55.172 70.338 50.532 20.611 210
    A×G31.025 91.797 40.351 80.506 10.589 911
    B×A1.063 80.382 50.354 10.501 70.586 212
    G1×G10.884 90.596 10.363 40.492 70.575 513
    H5×G30.717 10.499 60.373 20.483 00.564 114
    N7×H50.894 9-3.445 60.381 10.478 70.556 815
    B×G30.402 7-3.269 20.406 70.451 30.526 016
    N7×B0.079 4-3.461 70.425 30.432 40.504 117
    A×A-0.456 52.542 00.435 00.430 50.497 418
    A×N7-0.195 9-1.308 50.431 00.424 60.496 319
    H5×N70.304 5-9.075 10.449 30.437 00.493 020
    N7×G1-0.161 4-2.523 20.434 10.421 80.492 921
    A×G1-0.724 02.651 40.450 10.417 10.481 022
    G3×A-0.793 20.391 70.459 10.400 00.465 623
    B×B-1.077 53.043 40.469 90.401 40.460 724
    G3×N7-1.111 90.140 10.477 90.381 50.443 925
    G3×B-1.332 20.544 50.489 40.372 00.431 926
    G1×H5-1.137 0-2.170 80.486 90.368 70.431 027
    G1×A-1.728 03.621 40.506 70.372 70.423 928
    N7×N7-1.024 8-5.999 80.498 50.363 10.421 429
    H5×G1-2.318 51.437 00.543 80.326 60.375 330
    N7×A-2.426 8-1.914 20.558 50.299 40.348 931
    N7×G3-2.854 8-2.587 40.584 90.272 60.317 932
    H5×A-3.384 4-1.534 90.611 70.251 10.291 033
    H5×B-3.930 61.089 60.637 00.246 10.278 734
    B×G1-6.183 53.247 40.764 10.196 40.204 535
    G3×G3-7.254 73.577 80.825 70.191 40.188 136
    下载: 导出CSV

    表  10  判别分析的结果

    Table  10.   Result of discriminant analysis

    组别
    Group
    判别分类结果
    Discriminant result
    合计
    Total
    123
    聚类分析结果
    Cluster analysis result
    13003
    2026127
    30066
    1100.000100.0
    准确率 Accuracy rate2096.33.7100.0
    300100.0100.0
    下载: 导出CSV
  • [1] 郭华, 王孝安, 肖娅萍.植物交配系统及其在植物保护中的应用[J].西北植物学报, 2003, 23(5): 852-859. doi: 10.3321/j.issn:1000-4025.2003.05.028

    Guo H, Wang X A, Xiao Y P. Plant mating system and application in plant conservation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(5): 852-859. doi: 10.3321/j.issn:1000-4025.2003.05.028
    [2] Glémin S, Galtier N. Genome evolution in outcrossing versus selfing versus asexual species[M]//Anisimova M. Evolutionary genomics. Totowa: Humana Press, 2012: 311-335.
    [3] 谭小梅.马尾松二代育种亲本选择及种子园交配系统研究[D].北京: 中国林业科学研究院, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82201-1011247059.htm

    Tan X M. Study on the selection of second-generation breeding parents and the mating system of seed orchard in Pinus massoniana[D]. Beijing: Chinese Academy of Forestry, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82201-1011247059.htm
    [4] Husband B C, Schemske D W. Evolution of the magnitude and timing of inbreeding depression in plants[J]. Evolution, 1996, 50(1): 54-70. doi: 10.1111/evo.1996.50.issue-1
    [5] 王崇云, 党承林.植物的交配系统及其进化机制与种群适应[J].武汉植物学研究, 1999, 17(2): 163-172. doi: 10.3969/j.issn.2095-0837.1999.02.013

    Wang C Y, Dang C L. Plant mating system and its evolutionary mechanism in relation to population adaptation[J]. Journal of Wuhan Botanical Research, 1999, 17(2): 163-172. doi: 10.3969/j.issn.2095-0837.1999.02.013
    [6] Morán-Palma P, Snow A A. The effect of interplant distance on mating success in federally threatened, self-incompatible Hymenoxys herbacea = H. acaulis var. glabra (Asteraceae)[J]. American Journal of Botany, 1997, 84(2): 233-238. doi: 10.2307/2446085
    [7] 王崇云.植物的交配系统与濒危植物的保护繁育策略[J].生物多样性, 1998, 6(4): 298-303. doi: 10.3321/j.issn:1005-0094.1998.04.011

    Wang C Y. Plant mating system in relation to strategies for the conservation and breeding of endangered species[J]. Chinese Biodiversity, 1998, 6(4): 298-303. doi: 10.3321/j.issn:1005-0094.1998.04.011
    [8] 张大勇, 姜新华.遗传多样性与濒危植物保护生物学研究进展[J].生物多样性, 1999, 7(1): 31-37. doi: 10.3321/j.issn:1005-0094.1999.01.006

    Zhang D Y, Jiang X H. Progress in studies of genetic diversity and conservation biology of endangered plant species[J]. Chinese Biodiversity, 1999, 7(1): 31-37. doi: 10.3321/j.issn:1005-0094.1999.01.006
    [9] 何亚平, 刘建全.植物繁育系统研究的最新进展和评述[J].植物生态学报, 2003, 27(2): 151-163. doi: 10.3321/j.issn:1005-264X.2003.02.002

    He Y P, Liu J Q. A review on recent advances in the studies of plant breeding system[J]. Acta Phytoecologica Sinica, 2003, 27(2): 151-163. doi: 10.3321/j.issn:1005-264X.2003.02.002
    [10] Fenster C B, Galloway L F. Population differentiation in an annual legume: genetic architecture[J]. Evolution, 2000, 54(4): 1157-1172. doi: 10.1111/evo.2000.54.issue-4
    [11] Fischer M, Matthies D. Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae)[J]. American Journal of Botany, 1997, 84(12): 1685-1692. doi: 10.2307/2446466
    [12] 吴征镒, 孙航, 周浙昆, 等.中国植物区系中的特有性及其起源和分化[J].云南植物研究, 2005, 27(6): 577-604. doi: 10.3969/j.issn.2095-0845.2005.06.001

    Wu Z Y, Sun H, Zhou Z K, et al. Origin and differentiation of endemism in the flora of China[J]. Acta Botanica Yunnanica, 2005, 27(6): 577-604. doi: 10.3969/j.issn.2095-0845.2005.06.001
    [13] 徐东翔, 于华忠, 乌志颜, 等.文冠果生物学[M].北京:科学出版社, 2010.

    Xu D X, Yu H Z, Wu Z Y, et al. Xanthoceras sorbifolium biology[M]. Beijing: Science Press, 2010.
    [14] 王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报, 2005, 23(5): 12-14. doi: 10.3321/j.issn:1000-7857.2005.05.005

    Wang T. A survey of the woody plant resources for biomass fuel oil in China[J]. Science & Technology Review, 2005, 23(5): 12-14. doi: 10.3321/j.issn:1000-7857.2005.05.005
    [15] 李在留, 李凤兰, 郑永唐, 等.文冠果种皮中的香豆素类化合物及抗HIV-1活性研究[J].北京林业大学学报, 2007, 29(5): 73-83. doi: 10.3321/j.issn:1000-1522.2007.05.016

    Li Z L, Li F L, Zheng Y T, et al. Inhibitory activities against HIV-1 of coumarins from the seed coats of Xanthoceras sorbifolia Bunge[J]. Journal of Beijing Forestry University, 2007, 29(5): 73-83. doi: 10.3321/j.issn:1000-1522.2007.05.016
    [16] 李在留, 罗兵, 程凡, 等.文冠果种皮的化学成分研究[J].时珍国医国药, 2007, 18(6): 1329-1330. doi: 10.3969/j.issn.1008-0805.2007.06.025

    Li Z L, Luo B, Cheng F, et al. Studies on the chemical constituents of the spermoderm of Xanthoceras sorbifolia Bunge[J]. Lishizhen Medicine and Materia Medica Research, 2007, 18(6): 1329-1330. doi: 10.3969/j.issn.1008-0805.2007.06.025
    [17] Sehrawat R, Nagatsu A. New flavonoids from seed skin of Xanthoceras sorbifolia[J]. Journal of Medicinal Plants Research, 2011, 5(6): 1034-1036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003650945
    [18] Lu P, Mamiya T, Lu L L, et al. Xanthoceraside attenuates amyloid β peptide25-35 -induced learning and memory impairments in mice[J]. Psychopharmacology, 2012, 219(1): 181-190. doi: 10.1007/s00213-011-2386-1
    [19] 毕泉鑫, 蔡龙, 马兴华, 等.中国特有能源植物文冠果的遗传学及产业化[J].中国野生植物资源, 2011, 30(5): 37-41. doi: 10.3969/j.issn.1006-9690.2011.05.009

    Bi Q X, Cai L, Ma X H, et al. Review on genetics and industrialization of Xanthoceras sorbifolia Bge., an indigenous energy species in China[J]. Chinese Wild Plant Resources, 2011, 30(5): 37-41. doi: 10.3969/j.issn.1006-9690.2011.05.009
    [20] 白金友, 孙文生.文冠果优树采穗圃的建立及管理技术的试验[J].林业科技通讯, 1985(1): 10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKT198501004.htm

    Bai J Y, Sun W S. The establishment of the Xanthoceras tree spikegarden and the test of management technology[J]. Forest Science and Technology, 1985(1): 10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKT198501004.htm
    [21] 马凯, 高述民, 胡青, 等.文冠果雄蕊发育的解剖学及雄性不育蛋白的研究[J].北京林业大学学报, 2004, 26(5): 40-42. doi: 10.3321/j.issn:1000-1522.2004.05.009

    Ma K, Gao S M, Hu Q, et al. Anatomy of stamen and male sterility-associated proteins in Xanthoceras sorbifolia Bunge[J]. Journal of Beijing Forestry University, 2004, 26(5): 40-42. doi: 10.3321/j.issn:1000-1522.2004.05.009
    [22] 张小方.文冠果雄花雌蕊选择性败育的细胞生物学观察[D].北京: 北京林业大学, 2009. http://d.wanfangdata.com.cn/Thesis/Y1489734

    Zhang X F. Cytobiology observation of the pistils' selectivity abortion in male flower of Xanthoceras sorbifolia Bunge[D]. Beijing: Beijing Forestry University, 2009. http://d.wanfangdata.com.cn/Thesis/Y1489734
    [23] 郑彩霞, 李凤兰.文冠果两性花花粉败育原因的进一步研究[J].北京林业大学学报, 1993, 15(1): 78-84. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199301010.htm

    Zheng C X, Li F L. An advanced study on the cause of pollen abortion in bisexual flowers of Xanthoceras sorbifolia Bunge[J]. Journal of Beijing Forestry University, 1993, 15(1): 78-84. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199301010.htm
    [24] 周庆源, 傅德志.文冠果生殖生物学的初步研究[J].林业科学, 2010, 46(1): 158-162. http://d.old.wanfangdata.com.cn/Periodical/lykx201001026

    Zhou Q Y, Fu D Z. Preliminary studies on the reproductive biology of Xanthoceras sorbifolia[J]. Scientia Silvae Sinicae, 2010, 46(1): 158-162. http://d.old.wanfangdata.com.cn/Periodical/lykx201001026
    [25] Wang Q, Huang Y Z, Wang Z Y, et al. Fruit shape and reproductive self and cross compatibility for the performance of fruit set in an andromonoecious species: Xanthoceras sorbifolium, Bunge[J]. Tree Genetics & Genomes, 2017, 13: 116. doi: 10.1007/s11295-017-1198-9
    [26] Ling J H, Liu L L, Wang Y X, et al. Characterization and quantification of the triterpenoids in different parts of Xanthoceras sorbifolia by HPLC-ESI-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55(2): 259-264. doi: 10.1016/j.jpba.2011.01.030
    [27] 刘波, 王力华, 阴黎明, 等.两种林龄文冠果的生长和结实特性[J].中国科学院大学学报, 2011, 28(1): 73-79. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201101011

    Liu B, Wang L H, Yin L M, et al. Growth and fruiting characteristics of two age Xanthoceras sorbifolia Bunge trees[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2011, 28(1): 73-79. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201101011
    [28] 杜希华, 陆海, 高述民, 等.文冠果花药总RNA提取方法研究[J].北京林业大学学报, 2003, 25(1):10-13. doi: 10.3321/j.issn:1000-1522.2003.01.003

    Du X H, Lu H, Gao S M, et al. Method for RNA isolating from anthers of Xanthoceras sorbifolia Bunge[J]. Journal of Beijing Forestry University, 2003, 25(1): 10-13. doi: 10.3321/j.issn:1000-1522.2003.01.003
    [29] 杜希华, 陆海, 高述民, 等.文冠果雄性可育性相关cDNA片段的克隆与序列分析[J].北京林业大学学报, 2003, 25(5): 29-33. doi: 10.3321/j.issn:1000-1522.2003.05.007

    Du X H, Lu H, Gao S M, et al. Cloning and sequencing of cDNAs associated with male-fertility in Xanthoceras sorbifolia Bunge[J]. Journal of Beijing Forestry University, 2003, 25(5): 29-33. doi: 10.3321/j.issn:1000-1522.2003.05.007
    [30] Zhang N, Guo J P, Zhang Y X, et al. Plant regeneration via direct organogenesis of Xanthoceras sorbifolia Bunge[J]. Propagation of Ornamental Plants, 2012, 12(1): 63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7e5e432314adb620d79e6cf069ff21a
    [31] 牟洪香, 侯新村, 刘巧哲.木本能源植物文冠果的表型多样性研究[J].林业科学研究, 2007, 20(3): 350-355. doi: 10.3321/j.issn:1001-1498.2007.03.010

    Mou H X, Hou X C, Liu Q Z. Study on the phenotype diversity of woody energy plant Xanthoceras sorbifolia[J]. Forest Research, 2007, 20(3): 350-355. doi: 10.3321/j.issn:1001-1498.2007.03.010
    [32] 高述民, 马凯, 杜希华, 等.文冠果(Xanthoceras sorbifolia)研究进展[J].植物学报, 2002, 19(3): 296-301. doi: 10.3969/j.issn.1674-3466.2002.03.006

    Gao S M, Ma K, Du X H, et al. Advances in research on Xanthoceras sorbifolia[J]. Chinese Bulletin of Botany, 2002, 19(3): 296-301. doi: 10.3969/j.issn.1674-3466.2002.03.006
    [33] 蔡龙.提高中国特有能源树种文冠果座果率的技术研究[D].北京: 北京林业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10022-1012350691.htm

    Cai L. The technological study for improving the fruit rate of Xanthoceras sorbifolia, an unique Chinese energy species[D]. Beijing: Beijing Forestry University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10022-1012350691.htm
    [34] Greipsson S, Davy A J. Seed mass and germination behaviour in populations of the dune-building grass Leymus arenarius[J]. Annals of Botany, 1995, 76(5): 493-501. doi: 10.1006/anbo.1995.1125
    [35] 陆钊华.尾叶桉种内种间交配遗传分析及F1选择研究[D].北京: 中国林业科学研究院, 2009. http://cdmd.cnki.com.cn/Article/CDMD-82201-2009194251.htm

    Lu Z H. Genetic analysis and F1 selection of Eucalyptus urophylla intraspecific and interspecific crossing combinations[D]. Beijing: Chinese Academy of Forestry, 2009. http://cdmd.cnki.com.cn/Article/CDMD-82201-2009194251.htm
    [36] 侯元凯, 黄琳, 高巍, 等.不同种源文冠果果实及种子表型性状变异的研究[J].中南林业科技大学学报, 2013, 33(7): 20-24. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201307004

    Hou Y K, Huang L, Gao W, et al. Study on phenotypic character variation of fruits and seeds of Xanthoceras sorbifolia from different provenances[J]. Journal of Central South University of Forestry & Technology, 2013, 33(7): 20-24. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201307004
    [37] 刘克武, 张海林, 张顺捷, 等.文冠果优良品系选择[J].中国林副特产, 2008(3): 15-18. doi: 10.3969/j.issn.1001-6902.2008.03.007

    Liu K W, Zhang H L, Zhang S J, et al. Selection of excellent strains of Xanthoceras sorbifolia Bunge[J]. Forest By-Product and Speciality in China, 2008(3): 15-18. doi: 10.3969/j.issn.1001-6902.2008.03.007
    [38] 柴春山, 芦娟, 蔡国军, 等.文冠果人工种群的果实表型多样性及其变异[J].林业科学研究, 2013, 26(2): 181-191. doi: 10.3969/j.issn.1001-1498.2013.02.009

    Chai C S, Lu J, Cai G J, et al. Fruit phenotypic diversity and variation of Xanthoceras sorbifolia artificial population[J]. Forest Research, 2013, 26(2): 181-191. doi: 10.3969/j.issn.1001-1498.2013.02.009
    [39] 刘迪, 刘继生, 全雪丽.文冠果表型多样性比较研究[J].林业实用技术, 2010 (12): 34-35. http://d.old.wanfangdata.com.cn/Periodical/lysyjs201012021

    Liu D, Liu J S, Quan X L. A comparative study on phenotypic diversity of Xanthoceras sorbifolium[J]. Forest Science and Technology, 2010(12): 34-35. http://d.old.wanfangdata.com.cn/Periodical/lysyjs201012021
    [40] 汪子洋, 黄炎子, 王俊杰, 等.文冠果不同果型种实性状的概率分布与选择[J].北京林业大学学报, 2017, 39(9): 17-31. doi: 10.13332/j.1000-1522.20170162

    Wang Z Y, Huang Y Z, Wang J J, et al. Probability distribution and selection of seed and fruit traits of different fruit types of Xanthoceras sorbifolium[J]. Journal of Beijing Forestry University, 2017, 39(9): 17-31. doi: 10.13332/j.1000-1522.20170162
    [41] 张振, 张含国, 周宇, 等.红松多无性系群体的种实性状变异研究[J].北京林业大学学报, 2015, 37(2):67-78. doi: 10.13332/j.cnki.jbfu.2015.02.020

    Zhang Z, Zhang H G, Zhou Y, et al. Variation of seed characters in Korean pine (Pinus koraiensis) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2):67-78. doi: 10.13332/j.cnki.jbfu.2015.02.020
    [42] 孙操稳, 贾黎明, 叶红莲, 等.无患子果实经济性状地理变异评价及与脂肪酸成分相关性[J].北京林业大学学报, 2016, 38(12):73-83. doi: 10.13332/j.1000-1522.20160143

    Sun C W, Jia L M, Ye H L, et al. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits[J]. Journal of Beijing Forestry University, 2016, 38(12):73-83. doi: 10.13332/j.1000-1522.20160143
    [43] 张敏.文冠果优良单株性状分析与RAPD指纹图谱构建[D].杨凌: 西北农林科技大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10712-1012436397.htm

    Zhang M. Analysis of characters and construction of fingerprint of superior individual in Xanthoceras sorbifolia Bunge by RAPD[D]. Yangling: Northwest A & F University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10712-1012436397.htm
    [44] 李秀, 苏东民, 席克忠.油用文冠果品质的主成分分析与聚类分析[J].河南工业大学学报(自然科学版), 2015, 36(5): 23-25, 30. http://d.old.wanfangdata.com.cn/Periodical/zzlsxyxb201505005

    Li X, Su D M, Xi K Z. Principal component and cluster analysis of the shiny-leaf yellowhorn for oil using[J]. Journal of Henan University of Technology (Natural Science Edition), 2015, 36(5): 23-25, 30. http://d.old.wanfangdata.com.cn/Periodical/zzlsxyxb201505005
    [45] 张萍, 王连军, 彭华.文冠果优良类型选择[J].中国林副特产, 2012(2):10-12. doi: 10.3969/j.issn.1001-6902.2012.02.004

    Zhang P, Wang L J, Peng H. Selection of fine type of Xanthoceras sorbifolia Bunge[J]. Forest By-Product and Speciality in China, 2012(2): 10-12. doi: 10.3969/j.issn.1001-6902.2012.02.004
    [46] 赵雪, 张秀珍, 牟洪香, 等.干旱胁迫对不同种源文冠果幼苗水分生理特性及渗透调节物质的影响[J].东北林业大学学报, 2017, 45(6): 17-21. doi: 10.3969/j.issn.1000-5382.2017.06.004

    Zhao X, Zhang X Z, Mou H X, et al. Effect of drought stress on the water physiological characteristics and the osmotic regulation substances of Xanthoceras sorbifolia seedings from different provenances[J]. Journal of Northeast Forestry University, 2017, 45(6): 17-21. doi: 10.3969/j.issn.1000-5382.2017.06.004
    [47] 敖妍.文冠果类型综合评价指标体系的构建[J].华南农业大学学报, 2016, 37(4): 46-50. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201604008

    Ao Y. Establishment of comprehensive evaluation index system of Xanthoceras sorbifolia types[J]. Journal of South China Agricultural University, 2016, 37(4): 46-50. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201604008
    [48] Hwang C L, Yoon K. Multiple attribute decision making[M]. Berlin: Springer-Verlag, 1981.
    [49] Wang Y M, Elhag T M S. Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment[J]. Expert Systems with Applications, 2006, 31(2): 309-319. http://www.sciencedirect.com/science/article/pii/S0957417405002174
    [50] Dewangan S, Gangopadhyay S, Biswas C K. Study of surface integrity and dimensional accuracy in EDM using fuzzy TOPSIS and sensitivity analysis[J]. Measurement, 2015, 63: 364-376. doi: 10.1016/j.measurement.2014.11.025
    [51] Suneel D. Multi-response optimization using grey relational analysis, TOPSIS and PCA-TOPSIS[D]. Guntur: Acharya Nagarjuna University, 2016.
    [52] 孙洋, 卢毅, 熊先明, 等.四川省21市州城市自然灾害脆弱性评估研究[J].自然灾害学报, 2017, 26(4): 116-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201704014

    Sun Y, Lu Y, Xiong X M, et al. Study of urban natural disaster vulnerability assessment on the 21 cities of Sichuan Province[J]. Journal of Natural Disasters, 2017, 26(4): 116-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201704014
    [53] 郑春雨, 刘晶淼, 丁裕国, 等.基于PCA-TOPSIS方法的河北省冬小麦气候适宜性评价[J].生态与农村环境学报, 2009, 25(1): 8-11, 17. doi: 10.3969/j.issn.1673-4831.2009.01.002

    Zheng C Y, Liu J M, Ding Y G, et al. PCA-TOPSIS-based evaluation of climate suitablility of winter wheat in Hebei Province[J]. Journal of Ecology and Rural Environment, 2009, 25(1): 8-11, 17. doi: 10.3969/j.issn.1673-4831.2009.01.002
    [54] 张萌, 倪乐意, 谢平, 等.基于聚类和多重评价法的河流质量评价研究[J].环境科学与技术, 2009, 32(12): 178-185. doi: 10.3969/j.issn.1003-6504.2009.12.041

    Zhang M, Ni L Y, Xie P, et al. Water quality assessment of a large river based on multiple assessment method and cluster analysis[J]. Environmental Science & Technology, 2009, 32(12): 178-185. doi: 10.3969/j.issn.1003-6504.2009.12.041
    [55] 赵旭炜, 贾树海, 李明, 等.对矸石山不同植被恢复模式的土壤质量评价[J].东北林业大学学报, 2014, 42(11): 98-102. doi: 10.3969/j.issn.1000-5382.2014.11.022

    Zhao X W, Jia S H, Li M, et al. Soil quality assessment by TOPSIS method based on PCA in the afforested coal gangue area[J]. Journal of Northeast Forestry University, 2014, 42(11): 98-102. doi: 10.3969/j.issn.1000-5382.2014.11.022
    [56] 罗建勋, 顾万春.云杉天然群体种实性状变异研究[J].西北农林科技大学学报(自然科学版), 2004, 32(8): 60-66. doi: 10.3321/j.issn:1671-9387.2004.08.013

    Luo J X, Gu W C. Cone and seed variation of natural population in Picea asperata[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2004, 32(8): 60-66. doi: 10.3321/j.issn:1671-9387.2004.08.013
    [57] Li P, Beaulieu J, Bousquet J. Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca)[J]. Canadian Journal of Forest Research, 1997, 27(2): 189-198. doi: 10.1139/x96-159
    [58] 邓红.文冠果种仁品质及其油脂和蛋白质资源利用研究[D].西安: 陕西师范大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10718-1011144035.htm

    Deng H. Study on the quality of seed and utilization of oil and protein resources of Xanthoceras sorbifolia[D]. Xi'an: Shaanxi Normal University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10718-1011144035.htm
    [59] 乐也, 王青, 杨韫嘉, 等.植物性状整合的不同软件PCA比较分析[J].中南林业科技大学学报, 2015, 35(9): 59-64. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201509010

    Yue Y, Wang Q, Yang Y J, et al. Comparative analysis on plant traits by using two soft-wares of PCA method[J]. Journal of Central South University of Forestry & Technology, 2015, 35(9): 59-64. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201509010
    [60] Gauch H G. Multivariate analysis in community ecology[M]. New York: Cambridge University Press, 1982: 652.
    [61] 宁东贤, 赵玉坤, 闫翠萍, 等.山西省南部花生品种产量稳定性的模型分析及评价[J].作物杂志, 2017(3): 39-43. http://d.old.wanfangdata.com.cn/Periodical/zwzz201703008

    Ning D X, Zhao Y K, Yan C P, et al. Analysis and evaluation of different models for yield stability of peanut cultivars in southern Shanxi[J]. Crops, 2017(3): 39-43. http://d.old.wanfangdata.com.cn/Periodical/zwzz201703008
    [62] 张子杰, 杨善勋, 曾彦江, 等.岑软油茶不同品种无性系和家系变异与优株选择[J].北京林业大学学报, 2016, 38(10): 59-68. doi: 10.13332/j.1000-1522.20160104

    Zhang Z J, Yang S X, Zeng Y J, et al. Variation within clones and families and superior individual selection in different cultivars of Camellia oleifera 'Ruanzhi'[J]. Journal of Beijing Forestry University, 2016, 38(10): 59-68. doi: 10.13332/j.1000-1522.20160104
    [63] 林萍, 王开良, 姚小华, 等.普通油茶杂交子代幼林经济性状的遗传分析[J].中南林业科技大学学报, 2017, 37(12): 31-38. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201712006

    Lin P, Wang K L, Yao X H, et al. Genetic analysis of the economic traits of Camellia oleifera F1 descendant inhalf-diallel cross design[J]. Journal of Central South University of Forestry & Technology, 2017, 37(12): 31-38. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201712006
    [64] 周庆源, 郑元润, 来利明, 等.文冠果有性生殖特征的观察研究[J].西北植物学报, 2017, 37(1): 14-22. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201701003

    Zhou Q Y, Zheng Y R, Lai L M, et al. Observations on sexual reproduction in Xanthoceras sorbifolium(Sapindaceae)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 14-22. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201701003
    [65] Delaplane K S. Bee pollination of Georgia crop plants[EB/OL].(2010-03-12)[2018-03-29].http://hdl.handle.net/10724/12165.
    [66] Way R D. Pollination and fruit set of fruit crops[EB/OL].(2006-07-19)[2018-03-29].https://hdl.handle.net/1813/3296.
    [67] 马克平, 张大勇.通过交配系统了解植物生殖生态学[J].植物生态学报, 2001, 25(2): 129. doi: 10.3321/j.issn:1005-264X.2001.02.001

    Ma K P, Zhang D Y. Understanding plant reproductive ecology through mating system[J]. Acta Phytoecologica Sinica, 2001, 25(2): 129. doi: 10.3321/j.issn:1005-264X.2001.02.001
  • 加载中
图(2) / 表(10)
计量
  • 文章访问数:  1958
  • HTML全文浏览量:  258
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-04-23
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回