Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years
-
摘要:目的近几年,关于城市树木的气候适应性研究在国际上已成为前沿和热点,然而,我国开展园林树木应对气候变化的适应性研究则较少。本文通过对上海1961—2015年55年间40种园林树种气候适应性的定量化评估,探讨了气候变化对树木健康生长产生的潜在影响,为适应未来气候的园林树种选择和科学管理提供依据。方法采用物种分布模型(Species distribution model)从世界范围内对目标树种的自然地理分布进行广泛而全面的信息收集,提取其地理分布所在区域的气候因子数据,构建树种气候因子数据库,确定树种最适气候幅度,最后采用欧式距离计算各树种最适气候因子与上海气候的差异,进行气候适应性评估。结果近55年来,上海年均温度由15.5℃上升至16.6℃,市区温差上升趋势最为突出,但未达到显著水平;年均降水量由1086.0mm上升至1198.9mm,湿季全市平均降水、郊区之间、市区与郊区之间变化均达到显著性水平;按年均生物温度和干湿指数可将目标树种分为4类:炎热干燥气候型、温暖湿润气候型、温凉干燥气候型和温凉湿润气候型;前30年,上海郊区气候条件最适宜温凉干燥的落叶树种生长,温凉湿润型树种次之,温暖湿润型树种再次,炎热干燥气候型树种居末;近30年,市区气候出现新变化,温暖湿润型树种适应性排名已占据绝对优势,温凉湿润型和温凉干燥型树种适应性依次下降。结论上海近55年来的气候变化以温度的普遍升高和湿季降水的显著增加为特征。上海气候变化对园林树种的适应性产生了潜在影响,改变了园林树种选择的优先序列。Abstract:ObjectiveIn recent years, research on tree's adapting to climate change has become a hot topic in the world. So far there are few researches on adaptability of landscape tree species response to climate change in China. Based on temperature and precipitation data from 1961 to 2015 in Shanghai, climate adaptation of 40 landscape tree species was assessed quantitatively, and the potential impacts of climate change on their growth were analyzed in the future scenarios.MethodThe SDM (Species distribution model) was used to collect the comprehensive geographical information of the target species worldwide, then the climatic data of all occurrences were extracted to identify their climate characters. The most suitable climatic characters were finally determined by the Euclidean Distance Method to calculate the differences between the optimal factors and state of Shanghai climate in different periods.ResultIn the past 55 years, annual mean temperature (AMT) of Shanghai rose from 15.5 to 16.6℃. The increasing trend of temperature difference in the downtown was most prominent, but it did not reach a significant level. Annual mean precipitation (AMP) also went up from 1086.0 to 1198.9mm, and in humidity season, changes of average precipitation in overall city, among suburban areas, between urban and suburban areas all reached significant levels. According to annual mean biological temperature (ABT) and dry-wet index (HI), 40 target tree species can be categorized into 4 types: hot-dry climate type, warm-humid climate type, cool-dry climate type and cool-humid climate type. In the first 30 years, the climate conditions in suburbs are suitable for the growth of deciduous trees preferring cool-dry climate, followed by cool-humid tree species, and warm-humid tree species, then hot-dry climate type tree species. However, in the recent 30 years, the climate in the downtown has changed dramatically. The adaptability of the warm-humid tree species has taken the advantage, and the cool-humid tree species and the cool-dry tree species have declined in turn.ConclusionIn the past 55 years, the characteristics of climate change in Shanghai can be summarized as temperature warming and precipitation increasing in the rainy season. Climate change has potential impacts on the adaptability of landscape tree species, and has changed the priority sequence for tree species selection.
-
近年来,木材被广泛应用于室外领域,如木结构建筑、木栈道、木围栏等。然而在室外应用时,木材会不可避免地受到自然环境因素的影响,产生腐朽等生物劣化现象[1],不仅缩短了其使用寿命,还会造成安全隐患。目前,户外木材主要采用南方松(Pinus spp.)和欧洲赤松(Pinus sylvestris)等松木为原料。并且有研究表明:相比于采绒革盖菌(Coriolus versicolor)等白腐菌,松木等针叶材更易受密黏褶菌(Gloeophyllum trabeum)和绵腐卧孔菌(Poria vaporaria)等褐腐菌侵害,且褐腐菌能够在较短时间内快速降解木材,在质量损失较低的情况下导致木材力学强度急剧下降[2],严重影响其使用价值。因此,阐明木材在褐腐初期的微观结构和化学成分变化对于木材防腐保护具有重要意义。
在褐腐过程中,轴向排列的细胞有利于真菌沿木材的顺纹方向蔓延生长,但实际应用中,木材通常要经过封端处理以防止端裂、腐朽等劣化发生。而对于花纹美观且直接暴露的弦切面与径切面,菌丝进入木材内部的通道主要为射线薄壁组织、细胞壁纹孔等[3-5]。随着褐腐的进行,木材中的纤维素和半纤维素被陆续降解,而木质素基本不被破坏[6],因此残留的木质素使得木材在宏观上通常呈现出红褐色[7]。研究表明:在褐腐过程中半纤维素首先发生降解,其降解速度比纤维素更快[8-9]。此外,腐朽材中纤维素的结晶度也明显降低,有研究显示:褐腐15周后的马尾松(Pinus massoniana)相对结晶度下降了60.05%[10],这表明结晶纤维素在褐腐过程中遭到破坏,原本排列有序的分子链被打乱,分子间作用力减小,进而导致分子间间隙增加。褐腐初期对于木材性能的影响非常显著。Witomski等[11]利用粉孢革菌(Coniophora puteana)对欧洲赤松进行腐朽试验,发现褐腐初期纤维素的聚合度由6 000降至1 800,而此时的质量损失仅为7%。尽管褐腐初期木材的质量损失较低(通常不超过10%[12]),但会使木材力学强度急剧下降[13]。
综上所示,以往研究的褐腐周期一般较长(12周),且大多关注腐朽带来的最终结果。对腐朽各阶段,尤其是褐腐初期,木材组分及宏、微观变化的研究并不深入。因此,本研究对户外常用的南方松边材进行不同时长的褐腐处理,重点关注腐朽初期木材的各项变化,揭示褐腐菌进入木材内部的通道,并阐明其对木材微观结构和化学成分变化的影响,为深入探究木材褐腐机理奠定理论基础。
1. 材料与方法
1.1 材 料
南方松边材,试件尺寸为10 mm (轴向) × 20 mm (弦向) × 20 mm (径向);饲木选用南方松边材,尺寸为3 mm(轴向) × 20 mm (弦向) × 20 mm(径向)。褐腐菌采用密黏褶菌,购自中国普通微生物菌种保藏管理中心。
1.2 褐腐试验
参照GB/T 13942.1—2009 《木材耐久性能第一部分:天然耐腐性实验室试验方法》[14]进行土壤木块法测试,腐朽时长分别为0、10、20、40 d。试件在腐朽过程中的质量损失率(L)按公式(1)计算:
L=m0−m1m0×100% (1) 式中:L为试件质量损失率,%;m0为试件腐朽前的绝干质量,g;m1为试件腐朽后的绝干质量,g。
1.3 颜色测定
利用色差仪(三恩施NH310,中国)对木材腐朽前后弦切面的颜色进行表征,测得CIE色度系统中的参数L*、a*和b*。L*为明度值(白色为100,黑色为0),a*为红绿色品指数(a*值越大,颜色越偏红,反之偏绿),b*为黄蓝色品指数(b*值越大,颜色越偏黄,反之偏蓝)。每块试件选取5个点位进行测试,并计算平均值。腐朽过程中的总色差(ΔE)按式(2)计算:
ΔE=√ΔL∗2+Δa∗2+Δb∗2 (2) 式中:ΔE为腐朽前后木材的总色差;ΔL*、Δa*、Δb*分别为不同腐朽时间后腐朽材与健康材的L*、a*、b*差值。
1.4 化学成分测定
试件的苯−乙醇抽提物、酸不溶木质素、综纤维素、纤维素含量,分别根据GB/T 2677.6—94《造纸原料有机溶剂抽出物含量的测定》[15]、ASTM D 1106—96 “Standard Test Method for Acid-Insoluble Lignin in Wood”[16]、Browning(1967)的综纤维素改进测定法[17]、硝酸−乙醇纤维素测定法[18]进行测试。半纤维素含量由综纤维素与纤维素含量之差得到。
1.5 微观形貌表征
收集不同腐朽时长的试件,并在其弦切面与横切面上分别制取5 mm × 5 mm薄片,利用场发射扫描电子显微镜(FE-SEM,日立SU8010,日本)进行观察。同时,使用ImageJ软件测量木材在腐朽过程中细胞壁厚度的变化。
1.6 红外光谱表征
利用傅里叶红外光谱仪(FTIR,Nicolet IS 10,美国),通过KBr法测定试件的红外光谱,扫描范围为400 ~ 4 000 cm−1,扫描次数为64次,分辨率为4 cm−1。
1.7 相对结晶度测定
利用X射线衍射仪(XRD,Bruker D8 ADVANCE,德国)、Jade 6.0软件对试件进行测试与分析。扫描角度范围为5° ~ 40°(2θ),扫描速率为2.0°/min,步长0.02°。
根据Scherrer公式计算微晶尺寸[19]:
Cs=Kλβcosθ (3) 式中:Cs为微晶尺寸,Å;K为校正系数,取0.90;λ为X射线衍射波长,取1.54 Å;β为衍射峰的半高宽,°;θ为布拉格角,°。
根据Segal公式计算相对结晶度[20]:
Cr=I200−IamI200×100% (4) 式中:Cr为相对结晶度,%;I200为(200)晶格衍射角的总强度,2θ = 22.4°,即结晶区的衍射强度;Iam为(110)与(200)晶格之间最小强度,即非结晶区衍射的散射强度,2θ = 18.4°。
2. 结果与讨论
2.1 宏观颜色变化分析
由图1可知:经褐腐菌侵染后,木材的表面(弦切面)颜色发生明显变化,从原来的偏黄色变为灰褐色。随着腐朽的进行,木材表面的ΔL*值持续降低,表明木材颜色变暗(图1b)。同时,Δa*与Δb*值总体呈增加趋势,表明腐朽后木材表面更偏向红褐色。随着腐朽程度的深入,木材中的综纤维素被大量脱除,残留的木质素使木材呈现为红褐色,色差值进一步增大。
2.2 微观形貌变化分析
图2和图3分别为南方松边材在腐朽不同时长后的弦切面和横切面电镜照片。在此过程中,木材的质量变化和细胞壁厚度变化情况如图4所示。由图2可知:未经腐朽的试件显示出较为光滑平整的弦切面(图2a),然而其横切面表面(图3a)还残留着一些破碎的木材组织,这主要由试件的锯切加工过程导致。腐朽10 d后,这些残留的木材组织被逐步降解,在横切面上裸露出木材的细胞腔与细胞壁(图3b)。同时,对于径向排列的射线薄壁细胞,可以观察到其内部菌丝已经穿透细胞壁(矩形框线内的截取图像),并横穿细胞腔,有延伸到下一个细胞的趋势。此外,在弦切面上(图2b)可以发现,木材表面被菌丝附着,同时细胞壁上部分具缘纹孔的纹孔膜被降解并发生破裂(矩形框内的放大图像),菌丝穿透纹孔进入木材细胞腔。研究表明,纹孔膜的主要成分为半纤维素与少量纤维素[21],为褐腐菌降解木材的主要成分。褐腐10 d后,木材内部残留的菌丝较少,结合图4可知,此时的木材质量损失率较低,仅为2.77%。腐朽20 d后,木材的质量损失率增大为16.60%,表明褐腐菌的生长迅速,对营养物质的代谢更剧烈,加快了对木材的降解进程。此时,在木材的管胞内(图2c、图3c)观察到大量交叉缠绕的菌丝,部分菌丝正从纹孔处进入细胞腔(图2c箭头位置),并在细胞腔内蔓延生长,表明褐腐菌逐步完成初期定植。此外,从横切面上可以观察到,木材的S2层被严重降解,细胞壁厚度损失率高达18.24%(图4b)。随着腐朽天数的延长,菌丝的数量不断增加,木材的质量和细胞壁厚度进一步降低。腐朽40 d后,木材的弦切面基本被菌丝覆盖(图2d),而横切面上的木材细胞壁也不再完整,由于纤维素的降解,细胞壁结构逐渐失去支撑作用,出现溃烂瓦解的现象(图3d)。此时,木材的质量损失率和细胞壁厚度损失率分别为20.35%和20.86%(图4),相比于之前,木材的降解速度有所减缓,据此推测腐朽20 d时菌丝已基本完成初期定植。
2.3 化学成分变化分析
腐朽过程中,木材中各组分的变化如表1所示,其对应的FTIR谱图如图5所示。由图5可知:相比于健康材,腐朽10 d后,木材中各特征峰的强度变化较小,质量损失率较低(仅为2.77%),表明褐腐初期木材的降解速度缓慢。由表1可知:此时的质量损失主要来源于抽提物和半纤维素含量的减少,两者的质量损失率分别为47.55%和49.19%。木材中抽提物的绝对含量很少,且成分复杂,除能够被腐朽菌利用外,部分还具有抑菌作用[22],因此其在褐腐初期的变化还有待进一步探讨。由此推测,在腐朽初期,褐腐菌主要降解木材中的半纤维素。随着腐朽时间的延长,木材中综纤维素相对质量分数不断降低,而木质素的相对质量分数有所增加。褐腐20 d时,腐朽材在1 736 cm−1(半纤维素中的乙酰基和羰基的C=O伸缩振动)、1 372 cm−1(纤维素中的C—H变形振动)、897 cm−1(纤维素中的C—H变形振动)和810 cm−1(半纤维素中的葡甘露聚糖)[23-26]处的峰强开始明显降低,表明木材中的碳水化合物发生了严重的降解。碳源作为营养物质被真菌代谢,以及大分子解聚导致3 342 cm−1(纤维素中的O—H伸缩振动)和2 860 cm−1(对称CH2的伸缩振动)[27]处的峰强增加。此时,半纤维素的质量损失率高达85.88%,而纤维素质量分数仅下降了3.54%。相反,木质素特征峰的强度显著增加,如1 510 cm−1(芳环的C=C骨架振动)、1 225 cm−1(C—O伸缩振动)处[23-26],此时木质素相对质量分数增加了16.07%。
表 1 不同腐朽时间后木材的质量损失及化学成分变化Table 1. Mass loss and chemical composition of wood samples at different decay times腐朽时间
Decay
time/d质量损失率
Mass loss
rate/%抽提物质量分数
Extract mass
fraction/%木质素质量分数
Lignin mass
fraction/%综纤维素质量分数
Holocellulose mass
fraction/%纤维素质量分数
Cellulose mass
fraction/%半纤维素质量分数
Hemicellulose mass
fraction/%0 0 3.26 28.07 68.67 50.05 18.62 10 2.77 1.71 28.11 60.12 50.66 9.46 20 16.60 2.77 31.29 50.91 48.28 2.63 40 20.35 3.04 32.58 48.91 46.68 2.23 综上可知,腐朽10 ~ 20 d内是褐腐菌定植木材的重要阶段,此时木材的质量急剧降低,其中的半纤维素和纤维素被迅速降解,细胞壁和纹孔的结构发生破坏,为褐腐菌深入木材进行后续降解奠定了基础。
2.4 相对结晶度分析
由化学成分变化分析可知,褐腐初期半纤维素的降解优先于纤维素,且降解程度更加剧烈。尽管纤维素在这一过程中的损失较少,但其结构也发生了不同程度的变化。本研究对腐朽不同时长后,木材中纤维素的晶格间距d200、微晶尺寸Cs、相对结晶度Cr变化进行了表征,结果如表2所示。总体而言,各阶段的腐朽材的(200)晶面均位于22.4°附近(介于22.30° ~ 22.45°之间),说明腐朽过程对纤维素结晶区的影响相对较小。相比于健康材,腐朽材的晶格间距减小,这主要是因为纤维素结晶区外部松散的非晶区域或不完全结晶的物质被脱除,导致剩余的结晶区更加有序地排列[28]。褐腐20 d后,由于半纤维素含量急剧降低,结晶区在氢键作用下紧密靠拢,因而此时晶格间距d200最小(3.962 Å),相对结晶度Cr从原来的38.63%增加到47.02%。结晶度的增加及晶格间距的减小将阻碍褐腐菌的代谢产物渗透进入纤维素结晶区,因此20 d后木材的腐朽降解速率变缓。然而,随着半纤维素的大量脱除,木材中的孔隙结构增多,褐腐菌将以酶降解的方式进一步对木材细胞壁进行破坏[29]。因此,腐朽40 d后,褐腐菌对半纤维素的降解速度减缓,逐步开始降解纤维素,因而导致其相对结晶度有所降低(降低为44.21%),晶格间距逐渐变大(3.972 Å)。此外,在腐朽过程中,由于微纤丝的不断聚集,使得其微晶尺寸逐渐增加。
表 2 不同腐朽时间后木材的微晶尺寸和相对结晶度变化Table 2. Changes in crystallite sizes and relative crystallinity of wood samples at different decay times腐朽时间
Decay
time/d2θ/(°) 晶格间距
Lattice distance
(d200)/Å微晶尺寸
Crystallite size
(Cs)/Å相对结晶度
Relative crystallinity
(Cr)/%0 22.31 3.982 75.29 38.63 10 22.33 3.979 78.97 39.61 20 22.42 3.962 80.79 47.02 40 22.37 3.972 81.93 44.21 3. 结 论
本研究主要聚焦于褐腐初期阶段,通过表征南方松边材内部的化学成分变化及宏观、微观结构变化等,阐明褐腐菌进入木材内部的路径及初步降解进程,得出以下结论:
(1)木材腐朽后表面颜色有偏红褐色的趋势。
(2)菌丝通过横向排列的射线薄壁细胞和轴向排列的管胞进入木材,并穿透细胞壁上的纹孔膜,从而抵达木材内部的细胞腔,并于20 d时基本完成初期定植;此时木材的质量损失速率增速最大,同时细胞壁S2层发生严重降解,细胞壁厚度损失率达到18.24%。
(3)腐朽初期,木材细胞壁中的半纤维素最先发生降解,木质素的相对含量增加。对于褐腐初期尚未发生显著降解的纤维素而言,其结晶结构发生变化;褐腐20 d时,纤维素的晶格间距最小,相对结晶度最大,可能会阻碍褐腐菌代谢产物对纤维素的分解。
-
图 1 40种园林树种的气候因子最适范围统计
AMT:年均温度Annual mean temperature;ABT:年均生物温度Annual biotemperature;MTCM:最冷月平均气温Mean temperature of the coldest month;MTWM:最热月平均气温Mean temperature of the warmest month;AP:年均降水量Annual mean precipitation;PWM:最湿月平均降水量Mean precipitation of the wettest month;PDM:最干月平均降水量Mean precipitation of the driest month;WI:温暖指数Warmth index;HI:干湿指数Humid/arid index
Figure 1. Optimum range of 9 climatic factors of 40 landscape tree species
表 1 上海40种园林树种的用途与分布信息
Table 1 Function and distribution information of 40 landscape tree species in Shanghai
编号
No.树种
Tree species缩写
Abbreviation功能与用途
Function and useCVH树种分布数据
Data of tree species distribution in CVHGBIF树种分布数据
Data of tree species distribution in GBIF树种分布数据合计
Sum of tree species distribution data1 银杏Ginkgo biloba GB 观叶Foliage tree 195 332 527 2 广玉兰Magnolia grandiflora MG 行道树Street tree 49 346 395 3 乐昌含笑Michelia chapensis MC 观花Flower watching tree 52 0 52 4 含笑M. figo MF 观花Flower watching tree 121 19 140 5 鹅掌楸Liriodendron chinense LC 观叶Foliage tree 106 12 118 6 玉兰Yulania denudata YD 观花Flower watching tree 150 10 160 7 香樟Cinnamomum camphora CC 行道树Street tree 272 220 492 8 天竺桂C. japonicum CJ 庭荫树Shade tree 33 40 73 9 白栎Quercus fabri QF 建群种Constructive species 273 0 273 10 麻栎Q. acutissima QA 建群种Constructive species 291 83 374 11 弗吉尼亚栎Q. virginiana QV 新优New and potential tree 0 149 149 12 榉树Zelkova serrata ZS 行道树Street tree 55 126 181 13 朴树Celtis sinensis CS 庭荫树Shade tree 234 123 357 14 梧桐Firmiana simplex FS 观叶Foliage tree 143 42 185 15 悬铃木Platanus× acerifolia PA 行道树Street tree 54 165 219 16 红豆树Ormosia hosiei Oho 庭荫树Shade tree 47 0 47 17 花榈木O. henryi Ohe 庭荫树Shade tree 95 0 95 18 刺槐Robinia pseudoacacia RP 建群种Constructive species 157 1794 1951 19 无患子Sapindus saponaria SS 行道树Street tree 153 852 1005 20 复羽叶栾树Koelreuteria bipinnata KB 行道树Street tree 104 0 104 21 全缘叶栾树K. paniculata‘Integrifoliola’ KPI 行道树Street tree 30 0 30 22 七叶树Aesculus chinensis ACh 观叶Foliage tree 31 141 172 23 三角枫Acer buergerianum AB 观叶Foliage tree 167 210 377 24 樟叶槭A. coriaceifolium ACor 庭荫树Shade tree 304 299 603 25 梣叶槭A. negundo AN 观叶Foliage tree 76 2 78 26 五角枫A. pictum ssp. mono APM 观叶Foliage tree 98 44 142 27 红花槭A. rubrum AR 新优New and potential tree 85 0 85 28 柚Citrus maxima CM 观果Fruit watching tree 77 2267 2344 29 柑橘C. reticulata CR 观果Fruit watching tree 219 22 241 30 紫薇Lagerstroemia indica LI 观花Flower watching tree 3 1626 1629 31 南酸枣Choerospondias axillaris CHA 庭荫树Shade tree 197 11 208 32 黄连木Pistacia chinensis PCh 观叶Foliage tree 296 119 415 33 枫香树Liquidambar formosana LF 观叶Foliage tree 296 19 315 34 毛叶山桐子Idesia polycarpa var. vestita IPV 观果Fruit watching tree 82 0 82 35 乌桕Triadica sebifera TS 观叶Foliage tree 419 264 683 36 重阳木Bischofia polycarp BPo 行道树Street tree 80 0 80 37 冬青Ilex chinensis ICh 观果Fruit watching tree 197 32 229 38 桂花Osmanthus fragrans OF 观花Flower watching tree 217 23 240 39 构树Broussonetia papyrifera BPa 庭荫树Shade tree 422 344 766 40 光皮梾木Cornus wilsoniana CW 建群种Constructive species 51 0 51 总计Total 5931 9736 15667 注:CVH代表中国数字植物标本馆(http://www.cvh.ac.cn/);GBIF代表全球生物信息机构网站(https://www.gbif.org/)。Notes: CVH, Chinese Virtual Herbarium,http://www.cvh.ac.cn/;GBIF,Global Biodiversity Information Facility,https://www.gbif.org/. 表 2 上海气温1961—1990年与1986—2015年的变化
Table 2 Temperature changes between 1961-1990 and 1986-2015 in Shanghai
℃ 气温变化
Temperature change年均
Annual average干季
Dry season湿季
Rainy season市郊之间between urban and suburban areas 0.477(0.791) 1.902(0.373) 1.407(0.411) 市区之间between urban areas 1.421(0.693) 1.632(0.598) 1.125(0.654) 郊区之间between suburban areas 1.017(0.349) 1.206(0.181) 0.753(0.289) 全市平均Mean temperature changes at overall city 1.054(0.308) 1.244(0.147) 0.787(0.244) 注:括号内数值为P值。下同。Notes: the value in parenthese is P value. The same below. 表 3 上海降水1961—1990年与1986—2015年的变化
Table 3 Precipitation changes between 1961-1990 and 1986-2015 in Shanghai
mm 降水变化
Precipitation change年均
Annual average干季
Dry season湿季
Rainy season市郊之间between urban and suburban areas 6.69(0.486) 4.49(0.691) 34.35(0.049 *) 市区之间between urban areas 11.25(0.604) 4.67(0.718) 20.46(0.567) 郊区之间between suburban areas 9.23(0.105) 3.22(0.441) 17.63(0.044 *) 全市平均Mean temperature changes at overall city 9.41(0.088) 3.36(0.395) 17.89(0.035 *) 注:*表示差异显著(P<0.05)。Note:* indicate significant difference (P<0.05). 表 4 40种园林树种气候因子均值与标准差
Table 4 Mean value and standard deviation of climatic factors of 40 landscape tree species
气候指标Climatic index 均值Mean 标准差SD ABT/℃ 3.137 0.698 AMT/℃ 3.442 1.476 MTCM/℃ 4.610 2.363 MTWM/℃ 3.883 3.966 HI 31.484 8.549 WI/(℃·month) 40.664 11.423 PDM/mm 22.172 12.448 PWM/mm 68.754 22.903 AP/mm 401.063 183.362 -
[1] Guédon Y, Legave J M. Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context[J]. Ecological Modelling, 2008, 219(1-2): 189-199. doi: 10.1016/j.ecolmodel.2008.08.010
[2] Luo Z, Sun O J, Ge Q, et al. Phenological responses of plants to climate change in an urban environment[J]. Ecological Research, 2007, 22(3): 507-514. doi: 10.1007/s11284-006-0044-6
[3] Roetzer T, Wittenzeller M, Haeckel H, et al. Phenology in central Europe: differences and trends of spring phenophases in urban and rural areas[J]. International Journal of Biometeorol, 2000, 44(2): 60-66. doi: 10.1007/s004840000062
[4] Lu P, Yu Q, Liu J, et al. Advance of tree-flowering dates in response to urban climate change[J]. Agricultural and Forest Meteorology, 2006, 138(1-4): 120-131. doi: 10.1016/j.agrformet.2006.04.002
[5] He X, Xu S, Xu W, et al. Effects of climate warming on phenological characteristics of urban forest in Shenyang City, China[J]. Chinese Geographical Science, 2016, 26(1): 1-9. doi: 10.1007/s11769-015-0782-x
[6] 张德顺, 刘鸣.上海木本植物早春花期对城市热岛效应的时空响应[J].中国园林, 2017, 33(1): 72-77. doi: 10.3969/j.issn.1000-6664.2017.01.015 Zhang D S, Liu M. The temporal and spatial flowering response of early spring woody plants to the urban heat island effect in Shanghai[J]. Chinese Landscape Architecture, 2017, 33(1): 72-77. doi: 10.3969/j.issn.1000-6664.2017.01.015
[7] Gillner S, Rüger N, Roloff A, et al. Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.)[J]. Forest Ecology and Management, 2013, 302: 372-378. doi: 10.1016/j.foreco.2013.03.032
[8] 李阔, 许吟隆.适应气候变化技术识别标准研究[J].科技导报, 2015, 33(16): 95-101. doi: 10.3981/j.issn.1000-7857.2015.16.015 Li K, Xu Y L. On critera for identification of adaptation to climate change[J]. Science & Technology Review, 2015, 33(16): 95-101. doi: 10.3981/j.issn.1000-7857.2015.16.015
[9] Ordóñez C, Duinker P N. Climate change vulnerability assessment of the urban forest in three Canadian cities[J]. Climatic Change, 2015, 131(4): 531-543. doi: 10.1007/s10584-015-1394-2
[10] Roloff A, Korn S, Gillner S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change[J]. Urban Forestry & Urban Greening, 2009, 8(4): 295-308. http://cn.bing.com/academic/profile?id=9ab2c6f4475e574eb5766138f59a62bb&encoded=0&v=paper_preview&mkt=zh-cn
[11] Yang J. Assessing the impact of climate change on urban tree species selection: a case study in Philadelphia[J]. Journal of Forestry, 2009, 107(7): 364-372. http://cn.bing.com/academic/profile?id=b48aa3fbe6318c257b8c7a302283685d&encoded=0&v=paper_preview&mkt=zh-cn
[12] Brandt L, Derby L A, Fahey R, et al. A framework for adapting urban forests to climate change[J]. Environmental Science & Policy, 2016, 66: 393-402. http://cn.bing.com/academic/profile?id=f8e9feebe332a42e6e96403835aca8d8&encoded=0&v=paper_preview&mkt=zh-cn
[13] Kourgialas N N, Karatzas G P. A flood risk decision making approach for Mediterranean tree crops using GIS: climate change effects and flood-tolerant species[J]. Environmental Science & Policy, 2016, 63: 132-142. http://cn.bing.com/academic/profile?id=5563a86246db9b70379aa7003b9b71ff&encoded=0&v=paper_preview&mkt=zh-cn
[14] Fan P, Ouyang Z, Basnou C, et al. Nature-based solutions for urban landscapes under post-industrialization and globalization: Barcelona versus Shanghai[J]. Environmental Research, 2017, 156: 272-283. doi: 10.1016/j.envres.2017.03.043
[15] Wang H, Qin J, Hu Y, et al. Detecting the plant species composition and diversity among the farmers' settlement types in Shanghai[J]. Landscape and Ecological Engineering, 2015, 11(2): 313-325. doi: 10.1007/s11355-014-0255-x
[16] 上海科学院.上海植物志[M].上海:上海科学技术文献出版社, 1999:1-2. Shanghai Academy of Science & Technology. The plants of Shanghai (Part Ⅱ)[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1999:1-2.
[17] 沈泽昊, 张新时.中国亚热带地区植物区系地理成分及其空间格局的数量分析[J].植物分类学报, 2000, 38(4): 366-380. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200004006 Shen Z H, Zhang X S. A quantitative analysis on the floristic elements of the Chinese subtropical region and their spatial patterns[J]. Acta Phytotaxonomica Sinica, 2000, 38(4): 366-380. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200004006
[18] Banta J A, Ehrenreich I M, Gerard S, et al. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana[J]. Ecology Letters, 2012, 15(8): 769-777. doi: 10.1111/j.1461-0248.2012.01796.x
[19] Brandt L A, Benscoter A M, Harvey R, et al. Comparison of climate envelope models developed using expert-selected variables versus statistical selection[J]. Ecological Modelling, 2017, 345: 10-20. doi: 10.1016/j.ecolmodel.2016.11.016
[20] Buma B, Wessman C A. Forest resilience, climate change, and opportunities for adaptation: a specific case of a general problem[J]. Forest Ecology and Management, 2013, 306: 216-225. doi: 10.1016/j.foreco.2013.06.044
[21] Miller J. Species distribution modeling[J]. Geography Compass, 2010, 4(6): 490-509. doi: 10.1111/geco.2010.4.issue-6
[22] 阎洪.计算机引种决策支持系统的建立及其应用Ⅰ:引种区划[J].林业科学, 1989, 25(5): 395-400. doi: 10.3321/j.issn:1001-7488.1989.05.002 Yao H. A decision support system for introduction of exotics (Ⅰ): delineation of suitable zones[J]. Scientia Silvae Sinicae, 1989, 25(5): 395-400. doi: 10.3321/j.issn:1001-7488.1989.05.002
[23] 吴中伦.园林化树种的选择与规划[J].林业科学, 1959, 5(2): 1-27. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE195902000.htm Wu Z L. Selection and planning of landscape tree species[J]. Scientia Silvae Sinicae, 1959, 5(2): 1-27. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE195902000.htm
[24] Zhang M, Slik J W F, Ma K. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Scientific Reports, 2016, 6(1):1-9. doi: 10.1038/s41598-016-0001-8
[25] 陈新美, 雷渊才, 张雄清, 等.样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J].林业科学, 2012, 48(1): 53-59. http://d.old.wanfangdata.com.cn/Periodical/lykx201201010 Chen X M, Lei Y C, Zhang X Q, et al. Effects of sample sizes on accuracy and stability of maximum entropy model in predicting species distribution[J]. Scientia Silvae Sinicae, 2012, 48(1): 53-59. http://d.old.wanfangdata.com.cn/Periodical/lykx201201010
[26] Mckenney D W, Pedlar J H, Lawrence K, et al. Beyond traditional hardiness zones: using climate envelopes to map plant range limits[J]. Bioscience, 2007, 57(11): 929-937. doi: 10.1641/B571105
[27] Holdridge L R.Determination of world plant formations from simple climatic data[J].Science, 1947, 105:367-368. doi: 10.1126/science.105.2727.367
[28] Kira T.On the altitudinal arrangement of climatic zones in Japan[J]. Kanti-Nougaku, 1948, 2:143-173.
[29] Bailey H P.Semi-arid climates:their definition and distribution[J].EcolStudy, 1973, 34:73-97. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223682473/
[30] Higa M, Tsuyama I, Nakao K, et al. Influence of nonclimatic factors on the habitat prediction of tree species and an assessment of the impact of climate change[J]. Landscape and Ecological Engineering, 2013, 9(1): 111-120. doi: 10.1007/s11355-011-0183-y
[31] Booth T H. Estimating potential range and hence climatic adaptability in selected tree species[J]. Forest Ecology and Management, 2016, 366: 175-183. doi: 10.1016/j.foreco.2016.02.009
[32] 徐文铎.东北主要树种的分布与热量关系的初步研究[J].东北林学院学报, 1982, 1(4): 1-10. http://www.cnki.com.cn/Article/CJFD1982-DBLY198204000.htm Xu W D. Preliminary study of correlations between distribution of main forest trees and thermal climate in Northeast China[J]. Journal of Northeastern Forestry Institute, 1982, 1(4): 1-10. http://www.cnki.com.cn/Article/CJFD1982-DBLY198204000.htm
[33] 洪必恭, 李绍珠.江苏主要常绿阔叶树种的分布与热量关系的初步研究[J].生态学报, 1981, 1(2): 105-111. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB198102001.htm Hong B G, Li S Z. The preliminary study of the correlations between the distribution of main everygreen broadleaf tree species in Jiangsu and climate[J]. Acta Ecologica Sinica, 1981, 1(2): 105-111. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB198102001.htm
[34] 张粤, 陈玮, 何兴元, 等.中国东北城市森林树种选择与气候的关系[J].生态学杂志, 2003, 22(6): 173-176. doi: 10.3321/j.issn:1000-4890.2003.06.036 Zhang Y, Chen W, He X Y, et al. Relationship between the selection of urban forest species and climate in northeastern China[J]. Chinese Journal of Ecology, 2003, 22(6): 173-176. doi: 10.3321/j.issn:1000-4890.2003.06.036
[35] 史军, 崔林丽, 杨涵洧, 等.上海气候空间格局和时间变化研究[J].地球信息科学学报, 2015, 17(11): 1348-1354. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201511009 Shi J, Cui L L, Yang H W, et al. Spatial pattern and temporal change of climate in Shanghai[J]. Journal of Geo-information Science, 2015, 17(11): 1348-1354. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201511009
[36] 史军, 崔林丽, 田展, 等.上海百余年来气温日间波动特征及城市化影响[J].资源科学, 2011, 33(5): 989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026 Shi J, Cui L L, Tian Z, et al. Two-day fluctuations of temperature and the impacts of urbanizationin Shanghai during the period 1873-2009[J]. Resources Science, 2011, 33(5): 989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026
[37] 崔林丽, 史军, 周伟东.上海极端气温变化特征及其对城市化的响应[J].地理科学. 2009, 29(1): 93-97. doi: 10.3969/j.issn.1000-0690.2009.01.015 Cui L L, Shi J, Zhou W D. Characteristics of extreme temperature variations and their response to ubanization in Shanghai[J]. Scientia Geographica Sinica, 2009, 29(1): 93-97. doi: 10.3969/j.issn.1000-0690.2009.01.015
[38] 王轩, 尹占娥, 迟潇潇, 等.气候变化下上海市降水问题[J].热带地理, 2015, 35(3): 324-333. http://d.old.wanfangdata.com.cn/Periodical/rddl201503005 Wang X, Yin Z E, Chi X X, et al. Precipitation in Shanghai under climate change[J]. Tropical Geography, 2015, 35(3): 324-333. http://d.old.wanfangdata.com.cn/Periodical/rddl201503005
[39] Zhang K, Wang R, Shen C, et al. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China[J]. Environmental Monitoring and Assessment, 2010, 169(1-4): 101-112. doi: 10.1007/s10661-009-1154-8
[40] 卞娟娟, 郝志新, 郑景云, 等. 1951—2010年中国主要气候区划界线的移动[J].地理研究, 2013, 32(7): 1179-1187. http://www.cqvip.com/QK/95732X/201307/46793120.html Bian J J, Hao Z X, Zheng J Y, et al. The shift on boundary of climate regionalization in China from 1951 to 2010[J]. Geographical Research, 2013, 32(7): 1179-1187. http://www.cqvip.com/QK/95732X/201307/46793120.html
[41] 郑景云, 卞娟娟, 葛全胜, 等.中国1951-1980年及1981-2010年的气候区划[J].地理研究. 2013, 32(6): 987-997. http://d.old.wanfangdata.com.cn/Periodical/dlyj201306001 Zheng J Y, Bian J J, Ge Q S, et al. The climate regionalization in China for 1951-1980 and 1981-2010[J]. Geographical Research, 2013, 32(6): 987-997. http://d.old.wanfangdata.com.cn/Periodical/dlyj201306001
[42] Fang J Y, Li Y. Climatic factors for limiting northward distribution of eight temperate tree species in eastern North America[J]. Acta Botanica Sinica, 2002, 44(2):199-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74e1c371960d27f8b25fac2eaf9033e2
[43] 《上海园林志》编纂委员会.上海园林志[M].上海:上海社会科学院出版社, 2000: 502-504. Compilation Committee of Annals of Shanghai Landscape Architecture. Annals of Shanghai landscape architecture[M]. Shanghai: Shanghai Academy of Social Sciences Publishers, 2000: 502-504.
[44] 周伟东, 朱洁华, 梁萍.近134年上海冬季气温变化特征及其可能成因[J].热带气象学报, 2010, 26(2): 211-217. doi: 10.3969/j.issn.1004-4965.2010.02.011 Zhou W D, Zhu J H, Liang P. Characteristics of winter temperature variation in Shanghai during 1873-2006 and their probable causes[J]. Journal of Tropical Meteorology, 2010, 26(2): 211-217. doi: 10.3969/j.issn.1004-4965.2010.02.011
[45] 贺芳芳, 赵兵科.近30年上海地区暴雨的气候变化特征[J].地球科学进展, 2009, 24(11): 1260-1267. doi: 10.3321/j.issn:1001-8166.2009.11.011 He F F, Zhao B K. The characteristics of climate change of torrential rains in Shanghai region in recent 30 Years[J]. Advances in Earth Science, 2009, 24(11): 1260-1267. doi: 10.3321/j.issn:1001-8166.2009.11.011
[46] 殷杰, 尹占娥, 于大鹏, 等.基于情景的上海台风风暴潮淹没模拟研究[J].地理科学, 2013, 33(1): 110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201301016 Yin J, Yin Z E, Yu D P, et al. Flood simulation study of typhoon storm surge based on scenarios in Shanghai[J]. Scientia Geographica Sinica, 2013, 33(1): 110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201301016
[47] Gillner S, Vogt J, Roloff A. Climatic response and impacts of drought on oaks at urban and forest sites[J]. Urban Forestry & Urban Greening, 2013, 12(4): 597-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d21438958f7bf4eea01cd20602c59ddc
[48] Gillner S, Korn S, Roloff A. Leaf-gas exchange of five tree species at urban street sites[J]. Arboriculture & Urban Forestry, 2015, 41(3): 113-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af27dadd20e530bf4d702a32e1d414b0
-
期刊类型引用(2)
1. 李建建,贺宸靖,黄小平,向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展. 生物技术通报. 2023(01): 48-58 . 百度学术
2. 黄杰,陈勇,高日芳,毛莹莹,郑柏艳,张帆涛,谢建坤. 长链非编码RNA:与植物发育和胁迫响应相关的新型调控因子. 江西师范大学学报(自然科学版). 2023(06): 615-625 . 百度学术
其他类型引用(3)