Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于积温的文冠果开花物候期预测模型的构建

周祎鸣, 张莹, 田晓华, 唐桂辉, 张东旭, 王俊杰, 王馨蕊, 关文彬

周祎鸣, 张莹, 田晓华, 唐桂辉, 张东旭, 王俊杰, 王馨蕊, 关文彬. 基于积温的文冠果开花物候期预测模型的构建[J]. 北京林业大学学报, 2019, 41(6): 62-74. DOI: 10.13332/j.1000-1522.20180128
引用本文: 周祎鸣, 张莹, 田晓华, 唐桂辉, 张东旭, 王俊杰, 王馨蕊, 关文彬. 基于积温的文冠果开花物候期预测模型的构建[J]. 北京林业大学学报, 2019, 41(6): 62-74. DOI: 10.13332/j.1000-1522.20180128
Zhou Yiming, Zhang Ying, Tian Xiaohua, Tang Guihui, Zhang Dongxu, Wang Junjie, Wang Xinrui, Guan Wenbin. Establishment of the flowering phenological model of Xanthoceras sorbifolium based on accumulated temperature[J]. Journal of Beijing Forestry University, 2019, 41(6): 62-74. DOI: 10.13332/j.1000-1522.20180128
Citation: Zhou Yiming, Zhang Ying, Tian Xiaohua, Tang Guihui, Zhang Dongxu, Wang Junjie, Wang Xinrui, Guan Wenbin. Establishment of the flowering phenological model of Xanthoceras sorbifolium based on accumulated temperature[J]. Journal of Beijing Forestry University, 2019, 41(6): 62-74. DOI: 10.13332/j.1000-1522.20180128

基于积温的文冠果开花物候期预测模型的构建

基金项目: 同科异属砧木嫁繁育接红花文冠果新品种“金冠霞帔”的技术体系研究(201803D221016-3),文冠果植物新品种测试指南及已知品种数据库项目(2014009),中国特有生物产业树种文冠果良种培育集成技术与示范(2013GA105004)
详细信息
    作者简介:

    周祎鸣。主要研究方向:野生植物保护生物学。Email:15010819797 @163.com 地址:100083 北京市海淀区清华东路35号北京林业大学自然保护区学院

    责任作者:

    关文彬,教授。主要研究方向:生物多样性保护与利用。Email:swlab@bjfu.edu.cn 地址:同上

  • 中图分类号: S722.34

Establishment of the flowering phenological model of Xanthoceras sorbifolium based on accumulated temperature

  • 摘要:
    目的建立不同地区及不同类型的文冠果物候模型,为文冠果的经营活动和旅游管理提供理论依据。
    方法以北京市大东流苗圃文冠果3个遗传类型:白花类型及“金冠霞帔”“匀冠锦霞”两个文冠果新品种为研究对象,于2017年进行了花期表型调查与物候的观测,结合全国文冠果主要分布区的8个省份15个地点白花文冠果初花期、盛花期、末花期的观测数据,应用中国气象数据网上共享气象数据,对花性状与3个开花物候期进行了时间和空间尺度上的分析。
    结果(1)3个不同花色遗传类型开花先后顺序为白花类型、“金冠霞帔”“匀冠锦霞”,物候期差异显著或极显著,花序生长随0、3、5、7、10 ℃积温的变化与Logistic生长模型拟合结果较好;花朵数随时间和积温的变化与二次多项式模型拟合较好;(2)各个地区之间同一积温指数各物候期所需积温相差不大,不同积温指数所需积温有显著性差异;不同积温指数和不同物候时期都对物候所需积温影响差异极显著,两个因素交互作用影响差异极显著;(3)5 ℃积温指数(即温暖指数)与物候期日序具有高度相关性,可用于花期预测;(4)白花类型文冠果3个物候期5 ℃积温的日序与经纬度、海拔呈极显著的多元线性回归关系,各观测地点日序的回归模拟值与观测值单因素方差分析证实该回归模型可用于花期预测;(5)用克里金插值法,采用上述预测模型,绘制白花文冠果3个开花物候期的时空分布图。
    结论基于5 ℃积温指数(即温暖指数)建立的积温模型可用于文冠果花期预测。
    Abstract:
    Objective Establishing different regions and different types of phenology model aims to provide theoretical basis for tourism and business activity management.
    Method We choose the three genetic types of the Dadongliu Nursery Garden in Beijing, i.e., the white flower; the new varieties as ‘Jinguanxiapei’ and ‘Junguanjinxia’ as the research objects and performed the observation of flowering phenotypes in 2017. Referring to the observed data of the early flowering stage, the full flowering stage and late flowering stage of the white yellowhorn in 15 different locations of 8 provinces in main distribution area of Xanthoceras sorbifolium, we used the sharing meteorological data from the Chinese meteorological data website to analyze floral traits and three flowering phenology periods in different space-time scales.
    Result (1) The flowering sequences of three different genetic types of yellowhorn, i.e., the white flower, " Jinguanxiapei” and " Junguanjinxia” as well as the differences in phenological period were significant or extremely significant. In addition, the changes of inflorescence growth with 0, 3, 5, 7, and 10 ℃ accumulative temperature fit the Logistic growth model better and the number of flowers changed with time and accumulative temperature fit the quadratic polynomials better. (2) The required accumulated temperature for each phenology in different locations with same accumulated temperature index showed no difference, the required accumulated temperature in different accumulated temperature index showed significant difference. However, both accumulated temperature index and phenology showed significant influence on required accumulated temperature and there was a significant difference on interaction between them. (3) The 5 ℃ cumulative temperature index (the warmth index) was highly correlated with the phenological date and could be used for flowering prediction. (4) The 5 ℃ accumulated temperature date of three flowering phenologies of white flowers showed an extremely significant multivariable regression relationship with longitude, latitude and altitude. The one-way ANOVO and simulated values at different observation sites confirmed that this regression model could be used for flowering prediction. (5) The Krisking model can be used to draw the space-time distribution maps of the three flowering phenologies of the white flower yellowhorn.
    Conclusion The flowering phenological model of Xanthoceras sorbifolium based on 5 ℃ cumulative temperature index (the warmth index) can be used to predict flowering period.
  • 图  1   观测地的分布

    Figure  1.   Distribution of observation points

    图  2   不同花色文冠果花朵数与积温和日期的拟合曲线

    Figure  2.   Change of flower numbers for yellowhorn and its coeerlation and linear fitting with accumulated temperature and date

    图  3   不同花色花序长度随积温和时间变化的Logistic模型

    Figure  3.   Change of inflorescence length for yellowhorn and its coeerlation and linear fitting with accumulated temperature and day number

    图  4   15个地区5年平均各积温线

    Figure  4.   5-year average accumulated temperature for the 15 districts

    图  5   全国文冠果初花期时空分布预测

    Figure  5.   Prediction of spatial and temporal distribution of early blooming period of yellowhorn

    图  6   全国文冠果盛花期时空分布预测

    Figure  6.   Prediction of spatial and temporal distribution of full blossom period of yellowhorn

    图  7   全国文冠果末花期时空分布预测

    Figure  7.   Prediction of spatial and temporal distribution of final flowering period of yellowhorn

    表  1   3种类型文冠果平均开花物候期及多重比较

    Table  1   Average flowering time of three types of yellowhorn and multiple comparisons

    物候期
    Phenological phase
    类型
    Type
    平均日序
    Average day number
    初花期 Early blooming periodYGJX19.78 ± 1.30a
    JGXP18.33 ± 0.50a
    WF17.78 ± 0.97b
    盛花期 Full blossom periodYGJX20.67 ± 1.41a
    JGXP21.33 ± 10.00ab
    WF22.22 ± 1.09b
    末花期 Final flowering periodYGJX29.33 ± 0.71a
    JGXP30.11 ± 0.78b
    WF30.67 ± 0.50b
    注:YGJX.‘匀冠锦霞’;JGXP.‘金冠霞帔’;WF.白花。不同小写字母表示差异显著(P < 0.05),日序用连续变量表示(从4月1日记起,4月1日记为1,4月2日记为2,,以此类推)。Notes: YGJX, Xanthoceras sorbifolium cv.‘Yunguanjinxia’; JGXP, X. sorbifolium cv. ‘Jinguanxiapei’; WF, white flower. Different lowercases mean significant difference at P < 0.05 level, and the day number is represented by continuous variables (starting from April 1st, April 1st is recorded as 1, April 2nd is recorded as 2,, and so on).
    下载: 导出CSV

    表  2   不同花色文冠果花朵数变化与积温和时间的二次多项式模型

    Table  2   A quadratic polynomial model of variation and accumulation of temperature and time of different flower colors of yellowhorn

    自变量
    Independent
    variable
    因变量
    Dependent
    variable
    参数 Parameter 模型 Model
    系数a
    Coefficient a
    系数b
    Coefficient b
    常数A
    Constant A
    方程
    Equation
    F Sig.
    0 ℃ YGJX 14.883** − 0.012** − 4 422.569 Y = 14.833t − 0.012t2 − 4 422.569 28.877 **
    JGXP 15.91** − 0.013** − 4 656.348 Y = 15.91t − 0.013t2 − 4 656.348 49 **
    WF 16.013** − 0.013** − 4 635.468 Y = 16.013t − 0.013t2 − 4 635.468 50 **
    3 ℃ YGJX 15.736** − 0.018** − 3 244.867 Y = 15.736t − 0.018t2 − 3 244.867 31.147 **
    JGXP 17.581** − 0.019** − 3 357.824 Y = 17.581t − 0.019t2 − 3 357.824 48.844 **
    WF 17.579** − 0.02** − 3 312.383 Y = 17.579t − 0.02t2 − 3 312.383 47.917 **
    5 ℃ YGJX 17.517 − 0.025 − 2 545.662 Y = 17.517t − 0.025t2 − 2 545.662 33.347 **
    JGXP 17.175 − 0.026 − 2 592.188 Y = 17.175t − 0.026t2 − 2 592.188 48.079 **
    WF 17.066 − 0.027 − 2 534.785 Y = 17.066t − 0.027t2 − 2 534.785 45.434 **
    7 ℃ YGJX 22.581 − 0.079 − 1 428.913 Y = 22.581t − 0.079t2 − 1 428.913 43.388 **
    JGXP 22.107 − 0.079 − 1 354.315 Y = 22.107t − 0.079t2 − 1 354.315 38.497 **
    WF 21.334 − 0.078 − 1 272.325 Y = 21.334t − 0.078t2 − 1 272.325 31.853 **
    10 ℃ YGJX 17.918 − 0.037 − 1 997.914 Y = 17.918t − 0.037t2 − 1 997.914 36.444 **
    JGXP 18.305 − 0.038 − 1 991.451 Y = 18.305t − 0.038t2 − 1 991.451 46.206 **
    WF 18.036 − 0.038 − 1 924.551 Y = 18.036t − 0.038t2 − 1 924.551 41.657 **
    日序 Day number YGJX 156.854 − 3.142 − 1 782.115 Y = 156.854t − 3.142t2 − 1 782.115 19.782 **
    JGXP 176.402 − 3.622 − 1 955.656 Y = 176.402t − 3.622t2 − 1 955.656 42.735 **
    WF 180.808 − 3.766 − 1 969.161 Y = 180.808t − 3.766t2 − 1 969.161 52.779 **
    注:**表示在P < 0.01水平上差异显著。下同。Notes: ** means significant difference at P < 0.01 level. The same below.
    下载: 导出CSV

    表  3   不同花色文冠果花序长度变化与积温和时间的Logistic模型

    Table  3   Logistic model of inflorescence length for yellowhorn and its coeerlation and linear fitting with accumulated temperature and date

    自变量
    Independent
    variable
    因变量
    Dependent
    variable
    参数 Parameters 模型 Model
    常数A
    Constant A
    系数k
    Coefficient k
    系数B
    Coefficient B
    方程
    Equation
    F Sig.
    0 ℃ YGJX 195.96 0.018** 1 564.74* Y = 195.96/(1 + 1 564.74e^(− 0.018t)) 456.664 **
    JGXP 223.45 0.034** 861 289.14 Y = 223.45/(1 + 861 289.14e^(− 0.034t)) 148.733 **
    WF 207.075 0.022** 10 988.85 Y = 207.075/(1 + 10 988.85e^(− 0.022t)) 509.331 **
    3 ℃ YGXP 195.96 0.022** 372.91* Y = 195.96/(1 + 372.91e^(− 0.022t)) 462.891 **
    JGXP 223.45 0.042** 55 810.21* Y = 223.45/(1 + 55 810.21e^(− 0.042t)) 153.248 **
    WF 207.075 0.027** 1 783.95* Y = 207.075/(1 + 1 783.95e^(− 0.027t)) 512.382 **
    5 ℃ YGJX 195.96 0.026** 141.29** Y = 195.96/(1 + 141.29e^(− 0.026t)) 465.164 **
    JGXP 223.45 0.05** 8 765.72* Y = 223.45/(1 + 8 765.72e^(− 0.05t)) 156.395 **
    WF 207.075 0.033** 521.62* Y = 207.075/(1 + 521.62e^(− 0.033t)) 510.585 **
    7 ℃ YGJX 195.96 0.033** 61.14** Y = 195.96/(1 + 61.14e^(− 0.033t)) 461.41 **
    JGXP 223.45 0.062** 1 776.65* Y = 223.45/(1 + 1 776.65e^(− 0.062t)) 160.364 **
    WF 207.075 0.041** 180.36** Y = 207.075/(1 + 180.36e^(− 0.041t)) 499.611 **
    10 ℃ YGJX 195.96 0.049** 24.50** Y = 195.96/(1 + 24.50e^(− 0.049t) ) 411.135 **
    JGXP 223.45 0.094** 311.04* Y = 223.45/(1 + 311.04e^(− 0.094t)) 166.454 **
    WF 207.075 0.063** 56.32** Y = 207.075/(1 + 56.32e^(− 0.063t)) 427.489 **
    日序 Day number YGJX 195.96 0.274** 30.96** Y = 195.96/(1 + 30.96e^(− 0.274t)) 397.143 **
    JGXP 223.45 0.523** 468.13* Y = 223.45/(1 + 468.13e^(− 0.523t)) 132.709 **
    WF 207.075 0.348** 76.20** Y = 207.075/(1 + 76.20e^(− 0.348t)) 451.133 **
    注:*表示在P < 0.05水平上差异显著。Note: * means significant difference at P < 0.05 level.
    下载: 导出CSV

    表  4   观测地区不同年份不同积温单因素方差分析

    Table  4   One-way ANOVA result of diversity of accumulated temperature in different years

    积温类别
    Accumulated temperature
    自由度 df单因素方差分析
    One-way ANOVA
    显著度
    Significance
    组间 Between groups组内 Within group
    0 ℃44 57029.681**
    3 ℃44 57034.593**
    5 ℃44 57037.117**
    7 ℃44 57034.035**
    10 ℃44 57021.727**
    下载: 导出CSV

    表  5   15个地区各开花物候期所需积温

    Table  5   Average accumulated temperature in different phenological periods of yellowhorn

    积温
    Accumulated temperature
    物候期
    Phenological period
    观测数
    Number
    平均值 ± 标准差
    Mean ± SD/℃
    最大值
    Max./℃
    最小值
    Min./℃
    变异系数
    CV/℃
    平均值
    Mean/℃
    0 ℃初花期 Early blooming period15508.13 ± 26.55540.8454.45.23590.63 ± 13.33a
    盛花期 Full blossom period15557.57 ± 26.98590.4500.84.84
    末花期 Final flowering period15706.19 ± 30.44745.4642.14.31
    3 ℃初花期 Early blooming period15347.71 ± 18.10372.6311.95.2 415.21 ± 10.79b
    盛花期 Full blossom period15388.15 ± 18.86415 349.34.86
    末花期 Final flowering period15509.77 ± 23.14548.2463.64.54
    5 ℃初花期 Early blooming period15257.36 ± 13.19276.2234.75.1 314.86 ± 61.41c
    盛花期 Full blossom period15291.80 ± 14.38312.6266.14.93
    末花期 Final flowering period15395.42 ± 20.15428.3362.45.1
    7 ℃初花期 Early blooming period15179.67 ± 10.70193.8160.16 227.17 ± 51.04d
    盛花期 Full blossom period15208.11 ± 11.90224.2189 5.72
    末花期 Final flowering period15293.73 ± 19.40322 263.66.6
    10 ℃初花期 Early blooming period15 88.19 ± 10.57107 67.21.2 120.74 ± 36.20e
    盛花期 Full blossom period15107.63 ± 10.80126.5 88.61
    末花期 Final flowering period15166.39 ± 18.42196.4138 1.11
    下载: 导出CSV

    表  6   白花文冠果不同地区开花所需积温的单因素方差分析

    Table  6   One-way ANOVA result of diversity district for the accumulated temperature of flowering phenophase

    项目 Item    SSdfMSFP
    组间 Between groups53 516.518 14 3 822.6080.1191.000
    组内 Within group6 751 560.268 21032 150.287
    总计 Total6 805 076.786 224
    下载: 导出CSV

    表  7   白花文冠果的不同物候期和积温指数的双因素方差分析

    Table  7   Two-way ANOVA result of diversity type of accumulated temperature and flowering phenophase district for the accumulated temperature of flowering phenophase

    因子 FactorSSdfMSFPR2
    积温类型 Accumulated temperature5 837 033.32 41 459 258.333 933.08< 0.010.988
    物候期 Phenological period774 916.82 2 387 458.411 044.30< 0.01
    积温类型 × 物候期 Accumulated temperature × phenological period67 720.14 8 8 465.02 22.82< 0.01
    误差 ERR77 914.51210 371.02
    总计 Total31 815 551.69 225
    修正后总计 Total after correction6 757 584.79 224
    下载: 导出CSV

    表  8   开花日序与各积温相关性分析

    Table  8   Analysis of correlation between flowering day number and accumulated temperature

    指标
    Factor
    日序
    Day number
    0 ℃积温
    0 ℃ accumulated temperature
    3 ℃积温
    3 ℃ accumulated temperature
    5 ℃积温
    5 ℃ accumulated temperature
    7 ℃积温
    7 ℃ accumulated temperature
    10 ℃积温
    10 ℃ accumulated temperature
    日序
    Day number
    1
    0 ℃积温
    0 ℃ accumulated temperature
    − 0.948**1
    3 ℃积温
    3 ℃ accumulated temperature
    − 0.955** 0.996**1
    5 ℃积温
    5 ℃ accumulated temperature
    − 0.956** 0.985** 0.995**1
    7 ℃积温
    7 ℃ accumulated temperature
    0.969** 0.982** 0.995**1
    10 ℃积温
    10 ℃ accumulated temperature
    − 0.915** 0.948** 0.960** 0.975** 0.983**1
    注:**表示在P < 0.01水平上显著。Notes: ** means significant difference at P < 0. 01 level.
    下载: 导出CSV

    表  9   日序与积温逐步回归模型排除的变量

    Table  9   Flowering day number and variables excluded from accumulated temperature stepwise regression model

    积温
    Accumulated temperature
    系数β
    Coefficient β
    t检验
    t test
    显著性
    Sig.
    偏相关
    Partial correlation
    共线性统计 Collinearity statistics
    容差
    Tolerance
    方差膨胀因子
    VIF
    最小容差
    Min tolerance
    0 ℃− 0.206− 0.3880.705− 0.1110.0332.8180.03
    3 ℃− 0.398− 0.4260.678− 0.1220.01102.301 0.01
    7 ℃ 0.829 0.9610.356 0.267 0.01192.487 0.011
    10 ℃ 0.462 1.1590.269 0.317 0.04920.381 0.049
    下载: 导出CSV

    表  10   日序与积温逐步回归模型检验

    Table  10   The test of the day number of flowering and accumulated temperature stepwise regression model

    积温 Accumulated temperature系数 Coefficient方程 Equation
    系数 Coefficient值 ValuetPFPR2
    5 ℃k42.58022.8920111.9<0.0010.896
    a− 0.215 − 10.578 0
    下载: 导出CSV

    表  11   全国地区文冠果初花期日序与经纬度海拔回归模型

    Table  11   The day number and latitude and longitude elevation regression model of early flowering stage of Xanthoceras sorbifolium in China

    时期
    Phenological period
    参数 Parameters 模型 Model
    系数a
    Coefficient a
    系数b
    Coefficient b
    系数c
    Coefficient c
    常数A
    Constant A
    方程
    Equation
    F Sig.
    初花期
    Early blooming period
    − 0.215** 0.07** 0.01** 113.922** y = − 0.215x1 + 0.07x2 + 0.01x3 + 113.922 55.906 **
    盛花期
    Full blossom period
    − 0.221** 0.072** 0.011** 117.651** y = − 0.221x1 + 0.072x2 + 0.011x3 + 117.651 57.777 **
    末花期
    Final flowering period
    − 0.243** 0.079** 0.011** 127.007** y = − 0.243x1 + 0.079x2 + 0.011x3 + 127.007 66.2 **
    注:x1表示纬度,x2表示经度,x3表示海拔。Notes: x1, latitude; x2, longitude; x3, altitude.
    下载: 导出CSV
  • [1] 吴征镒, 孙航, 周浙昆, 等. 中国植物区系中的特有性及其起源和分化[J]. 云南植物研究, 2005, 27(6):577−604. doi: 10.3969/j.issn.2095-0845.2005.06.001

    Wu Z Y, Sun H, Zhou Z K, et al. Origin and differentiation of endemism in the Flora of China[J]. Acta Botanica Yunnanica, 2005, 27(6): 577−604. doi: 10.3969/j.issn.2095-0845.2005.06.001

    [2] 王荷生. 华北植物区系的演变和来源[J]. 地理学报, 1999, 54(3):213−223. doi: 10.3321/j.issn:0375-5444.1999.03.003

    Wang H S. The evolution and sources of in north China ’s flora[J]. Acta Geographica Sinca, 1999, 54(3): 213−223. doi: 10.3321/j.issn:0375-5444.1999.03.003

    [3] 毕泉鑫, 蔡龙, 马兴华, 等. 中国特有能源植物文冠果的遗传学及产业化[J]. 中国野生植物资源, 2011, 30(5):49−55.

    Bi Q X, Cai L, Ma X H, et al. Review on genetics and industrialization of Xanthoceras sorbifolia, an indigenous energy species in China[J]. Chinese Wild Plant Resources, 2011, 30(5): 49−55.

    [4] 戚建华, 姚增玉. 文冠果的生殖生物学与良种繁育研究进展[J]. 西北林学院学报, 2012, 27(3):91−96. doi: 10.3969/j.issn.1001-7461.2012.03.19

    Qi J H, Yao Z Y. Review on reproductive biology, propagation and breeding of Xanthoceras sorbifolia[J]. Journal of Northwest Forestry University, 2012, 27(3): 91−96. doi: 10.3969/j.issn.1001-7461.2012.03.19

    [5] 马芳, 王俊, 王姮, 等. 文冠果树花部形态与开花物候的研究[J]. 北方园艺, 2014(22):80−84.

    Ma F, Wang J, Wang H, et al. Study on floral characters and flowering phenology in Xanthoceras sorbifolia Bunge[J]. Northern Horticulture, 2014(22): 80−84.

    [6] 马利苹, 王力华, 阴黎明, 等. 乌丹地区文冠果生物学特性及物候观测[J]. 应用生态学报, 2008, 19(12):2583−2587.

    Ma L P, Wang L H, Yin L M, et al. Biology and phenology of Xanthoceras sorbifolia in Wudan area[J]. Chinese Journal of Applied Ecology, 2008, 19(12): 2583−2587.

    [7] 高媛, 贾黎明, 苏淑钗, 等. 无患子物候及开花结果特性[J]. 东北林业大学学报, 2015, 43(6):34−40. doi: 10.3969/j.issn.1000-5382.2015.06.007

    Gao Y, Jia L M, Su S C, et al. Phenology and blossom-fruiting characteristics of Sapindus mukorossi[J]. Journal of Northeast Forestry University, 2015, 43(6): 34−40. doi: 10.3969/j.issn.1000-5382.2015.06.007

    [8] 汪智军, 张东亚, 卓立. 准噶尔盆地南缘文冠果物候与气温变化的关系[J]. 经济林研究, 2013, 31(1):102−105.

    Wang Z J, Zhang D Y, Zhuo L. Relationship of phenology in Xanthoceras sorbifolia Bunge and temperature variation in southern Junggar Basin[J]. Nonwood Forest Research, 2013, 31(1): 102−105.

    [9]

    Hopkins A D. Bioclimaties: a science of life and climate relations[M].Washington: United States Government Printing Office, 1938: 188.

    [10] 徐相明, 顾品强, 陈丛敏, 等. 莎车巴旦姆物候期对气象条件的响应及花期预测模型[J]. 应用生态学报, 2016, 27(2):421−428.

    Xu X M, Gu P Q, Chen C M, et al. Response of phenophase to meteorological conditions and flowering forecast model on Amygdalus communis in Shache County, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 421−428.

    [11]

    Chuine I, Yiou P, Viovy N, et al. Historical phenology: grape ripening as a past climate indicator[J]. Nature, 2004, 432: 289−290. doi: 10.1038/432289a

    [12] 王焕炯, 戴君虎, 葛全胜. 1952—2007年中国白蜡树春季物候时空变化分析[J]. 中国科学(地球科学), 2012, 42(5):701−710.

    Wang H J, Dai J H, Ge Q S. The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007[J]. Scientia Sinica (Terrae), 2012, 42(5): 701−710.

    [13] 孔冬冬, 张强, 黄文琳, 等. 1982—2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1):39−52.

    Kong D D, Zhang Q, Huang W L, et al. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors[J]. Acta Geographica Sinica, 2017, 72(1): 39−52.

    [14]

    Morin X, Viner D, Chuine I. Tree species range shifts at a continental scale: new predictive insights from a process-based model[J]. Journal of Ecology, 2008, 96(4): 784. doi: 10.1111/jec.2008.96.issue-4

    [15]

    Morin X, Lechowicz M J, Augspurger C, et al. Leaf phenology in 22 North American tree species during the 21st century[J]. Global Change Biology, 2010, 15(4): 961−975.

    [16]

    Ge Q, Wang H, Dai J. Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century[J]. International Journal of Biometeorology, 2014, 58(4): 473−484. doi: 10.1007/s00484-013-0671-x

    [17] 徐琳, 陈效逑, 杜星. 中国东部暖温带刺槐花期空间格局的模拟与预测[J]. 生态学报, 2013, 33(12):3584−3593.

    Xu L, Chen X Q, Du X. Simulation and prediction of spatial patterns of Robinia pseudoacacia flowering dates in eastern China ’s warm temperate zone[J]. Acta Ecologica Sinica, 2013, 33(12): 3584−3593.

    [18] 李荣平, 周广胜, 王笑影, 等. 不同物候模型对东北地区作物发育期模拟对比分析[J]. 气象与环境学报, 2012, 28(3):25−30. doi: 10.3969/j.issn.1673-503X.2012.03.005

    Li R P, Zhou G S, Wang X Y, et al. Comparative analysis of simulation on crop development stage using different phenological models in Northeast China[J]. Journal of Meteorology and Environment, 2012, 28(3): 25−30. doi: 10.3969/j.issn.1673-503X.2012.03.005

    [19] 戴君虎, 王焕炯, 葛全胜. 近50年中国温带季风区植物花期春季霜冻风险变化[J]. 地理学报, 2013, 68(5):593−601. doi: 10.7605/gdlxb.2013.05.047

    Dai J H, Wang H J, Ge Q S. Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years[J]. Acta Geographica Sinica, 2013, 68(5): 593−601. doi: 10.7605/gdlxb.2013.05.047

    [20]

    Peñuelas J, Filella I. Responses to a Warming World[J]. Science, 2001, 294: 793−795. doi: 10.1126/science.1066860

    [21] 张厚瑄, 张翼. 中国活动积温对气候变暖的相应[J]. 地理学报, 1994, 49(1):27−36. doi: 10.3321/j.issn:0375-5444.1994.01.004

    Zhang H X, Zhang Y. Preliminary discussion on the response of active accumulated temperature of China to climate warming[J]. Acta Geographica Sinca, 1994, 49(1): 27−36. doi: 10.3321/j.issn:0375-5444.1994.01.004

    [22]

    Yim Y J, Kira T. Distribution of forest vegetation and climate in the Korean Peninsula: (I) distribution of some indices of thermal climate[J]. Japanese Journal of Ecology, 1975, 26(5): 77−88.

    [23]

    Abbaspour M, Jafari M J, Mansouri N, et al. Thermal comfort evaluation in Tehran metro using relative warmth index[J]. International Journal of Environmental Science & Technology, 2008, 5(3): 297−304.

    [24] 徐文铎. 吉良的热量指数及其在中国植被中的应用[J]. 生态学杂志, 1985(3):35−39.

    Xu W D. Kira’s temperature indices and their application in the study of vegetation[J]. Chinese Journal of Ecology, 1985(3): 35−39.

    [25]

    Wang H, Zhang B, Zhao C, et al. The spatio-temporal characteristics of temperature change in recent 57 years in Northern China[J]. Progress in Geography, 2009, 28(4): 643−650.

    [26]

    Xia N H, Gadek P A. Sapindaceae[M]//Wu Z Y, Raven P H. Flora of China: Tomus 12. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2007: 5−24.

    [27]

    Ranjitkar S, Xu J, Shrestha K K, et al. Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species[J]. Ecological Modelling, 2014, 282: 18−24. doi: 10.1016/j.ecolmodel.2014.03.003

    [28]

    Wang Q, Huang Y, Wang Z, et al. Fruit shape and reproductive self and cross compatibility for the performance of fruit set in an and romonoecious species: Xanthoceras sorbifolium Bunge[J]. Tree Genetics & Genomes, 2017, 13(6): 116.

    [29] 李典谟, 马祖飞, 等. 展望数学生态学与生态模型的未来[J]. 生态学报, 2000, 20(6):1083−1089. doi: 10.3321/j.issn:1000-0933.2000.06.029

    Li D M, Ma Z F, et al. Prospect of mathematical ecology and ecological modeling[J]. Acta Ecologica Sinica, 2000, 20(6): 1083−1089. doi: 10.3321/j.issn:1000-0933.2000.06.029

    [30] 王烁, 董利虎, 李凤日. 人工长白落叶松枝条存活模型[J]. 北京林业大学学报, 2018, 40(1):57−66.

    Wang L, Dong L H, Li F R. Branch survival models of planted Larix olgensis tree[J]. Journal of Beijing Forestry University, 2018, 40(1): 57−66.

    [31]

    Gerstmann H, Doktor D, Gläßer C, et al. PHASE: a geostatistical model for the Kriging-based spatial prediction of crop phenology using public phenological and climatological observations[J]. Computers & Electronics in Agriculture, 2016, 127: 726−738.

    [32]

    Robertson G P. Geostatistics in ecology: interpolating with known variance[J]. Ecology, 1987, 68(3): 744−748. doi: 10.2307/1938482

    [33]

    Legendre P, Fortin M J. Spatial pattern and ecological analysis[J]. Vegetatio, 1989, 80(2): 107−138. doi: 10.1007/BF00048036

    [34]

    Burrough P A. GIS and geostatistics: Essential partners for spatial analysis[J]. Environmental & Ecological Statistics, 2001, 8(4): 361−377.

    [35]

    García-Mozo H, Galán C, Vázquez L. The reliability of geostatistic interpolation in olive field floral phenology[J]. Aerobiologia, 2006, 22(2): 95−106. doi: 10.1007/s10453-006-9026-y

    [36] 国家气象局. 农业气象观测规范[M]. 北京: 气象出版社, 1993.

    China Meteorological Administration. Observation criterion of agricultural meteorology[M]. Beijing: China Meteorological Press, 1993.

    [37] 赵曦阳, 张志毅. 毛白杨种内杂交无性系苗期生长模型的构建[J]. 北京林业大学学报, 2013, 35(5):15−21.

    Zhao X Y, Zhang Z Y. Model construction of seedling growth for hybrid clones of Populus tomentosa[J]. Journal of Beijing Forestry University, 2013, 35(5): 15−21.

  • 期刊类型引用(0)

    其他类型引用(4)

图(7)  /  表(11)
计量
  • 文章访问数:  2437
  • HTML全文浏览量:  826
  • PDF下载量:  68
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-05-19
  • 网络出版日期:  2019-06-17
  • 发布日期:  2019-05-31

目录

    /

    返回文章
    返回