Characteristics of soil stoichiometric in natural restoration process of Maolan karst forest vegetation, southwestern China
-
摘要:
目的研究茂兰喀斯特森林植被自然恢复过程中不同演替阶段土壤养分与化学计量的动态变化规律,探讨两者间的相互关系,定量评价各影响因子对其的解释程度,阐明群落演替与土壤性状演变间的内在耦合关系,旨在为该区域植被的恢复与重建提供理论依据。 方法以草本群落、灌木灌丛群落、乔林群落和顶极常绿落叶阔叶混交林群落等演替阶段为研究对象,每个演替阶段各设置3个固定样地,样地内根据不同小生境随机布设12个土壤剖面,分层取样,测定土壤有机碳(SOC)、全氮(TN)、全磷(TP)和全钾(TK)含量,并计算其化学计量比。 结果研究区土壤的SOC、TN、TP和TK含量均值分别为54.72、4.67、0.73和8.53 g/kg,且SOC、TP和TN含量相互间均存在显著或极显著正相关,表现出相对一致的变化规律;C:N、C:P、C:K、N:P、N:K和P:K分别为11.95、79.16、6.50、6.64、0.550 1和0.085 2;从变异系数来看,除TK含量和C:N属弱变异性以外,其余土壤养分含量及化学计量比均属中等变异性。随植被的正向演替,不同演替阶段的SOC、TN和TP含量基本上均呈上升趋势,而TK含量则呈倒“V”字型变化,表现为:乔林阶段 > 顶极阶段 > 灌木灌丛阶段 > 草本阶段;各演替阶段不同土层深度的SOC、TN和TP含量均表现为0 ~ 10 cm要高于10 ~ 20 cm,而TK含量则无明显变化。土壤化学计量特征随演替的进展其变化趋势差异较大;在土壤剖面层次上,各演替阶段除C:N不同土层深度间无显著差异以外,其余也均表现为0 ~ 10 cm要高于10 ~ 20 cm。冗余分析结果表明,土层深度和群落演替是调控该区域土壤养分含量和化学计量特征的主要因素,对其解释程度分别为32.82%和32.19%。 结论研究区土壤有机碳含量相对较高,氮、磷养分含量丰富,植物生长受氮(或磷)素限制的原因可能是土壤养分含量的有效性偏低所致;减少人为干扰、加之适当的保护,促进群落的正向演替,提高喀斯特森林生态系统的稳定性和抗干扰性,有利于土壤养分的积累;研究初步揭示了众多影响因子对土壤养分含量和化学计量特征的解释程度,对喀斯特森林的保护具有重要的指导意义。 Abstract:ObjectiveThe dynamics of soil nutrition and stoichiometric characteristics of different successional stages during the process of natural restoration in Maolan karst forest vegetation of southwestern China were studied to explore the relationship between them, and quantitatively evaluate the degree of explanation of impact factors on soil stoichiometric characteristics, and clarify the intrinsic coupling relationship between the vegetation community succession and soil property evolution, in order to provide the theoretical basis for restoration and reconstruction of degraded karst forest. MethodTaking he herb stage, shrub stage, arbor stage and climax stage as the research objects, three fixed sample plots were set up in each succession stage, 12 soil profiles were randomly set up according to different niche conditions and laminated sampling. The contents of SOC, TN, TP and TK were measured and the stoichiometric ratio was calculated. ResultThe mean contents of SOC, TN, TP and TK of soil in the research region were 54.72, 4.67, 0.73 and 8.53 g/kg, respectively. There were significantly or very significantly positive correlations between the contents of SOC, TP and TN, showing relatively consistent law of change. The ratios of C:N, C:P, C:K, N:P, N:K and P:K were 11.95, 79.16, 6.50, 6.64, 0.550 1 and 0.085 2, respectively. In terms of coefficient of variation, except TK content and C:N belonged to weak variability, the soil nutrient content and stoichiometric ratio were all medium variability. With the forward succession of vegetation, the SOC, TN and TP contents in different succession stages basically increased, but the change trend of TK content was reverse V-shape, showed arbor stage > climax stage > shrub stage > herb stage. The contents of SOC, TN and TP of different soil depth at each succession stage showed that 0–10 cm was higher than 10–20 cm, but the content of TK had no obvious change. The variation trend of the soil stoichiometric characteristics with the succession was quite different. At the soil profile level, except for no significant difference between the depth of different soil layers in C:N, the others showed that 0–10 cm was higher than 10–20 cm. The results of redundancy analysis showed that soil depth and community succession were the main factors to regulate soil nutrition content and stoichiometric characteristics in the region, with the explanatory degree of 32.82% and 32.19%, respectively. ConclusionSoil organic carbon content in the study area was relatively high, N and P contents were rich , plant growth restricted by N (or P) element may be caused by the low effectiveness of soil nutrient content.Reducing human disturbance, and appropriate protection can promote the positive succession of community, improve the stability and anti-interference of the karst forest ecosystem, and conducive to the accumulation of soil nutrients.The results preliminarily reveal the degree to which many influencing factors can explain soil nutrition content and stoichiometric characteristics, which is of important guiding significance to the protection of karst forest. -
Key words:
- karst forest /
- natural restoration /
- soil /
- stoichiometric characteristics /
- Maolan Natural Reserve
-
图 2 不同演替阶段土壤有机碳、全氮、全磷和全钾含量
数据为“平均值 ± 标准差”;不同小写字母的表示同一土层深度不同演替阶段间差异显著(P < 0.05);不同大写字母的表示同一演替阶段不同土层深度间差异显著(P < 0.05)。下同。The values are “mean ± SD”. Different lowercase indicates significant differences between different successional stages of the same soil depth (P < 0.05), and different capital letters indicate significant differences between different soil depths of the same successional stage (P < 0.05). The same below.
Figure 2. Contents of soil organic carbon, total nitrogen, total phosphorus and total potassium in the soils for different successional stages
图 4 群落演替、土层深度、群落多样性指数等与土壤化学计量特征的RDA排序
数字1 ~ 23分别代表土层深度、群落演替、凋落物现存量、物种丰富度Margalef指数、生态优势度Simpson指数、信息多样性Shannon-Wiener指数、均匀度Pielou指数、比叶面积、土壤pH值、土壤密度、土壤体积含水量、土壤非毛管孔隙度、土壤毛管孔隙度、植物叶片C、N、P、K含量、凋落物的C、N、P、K含量和N、P重吸收率。1−23 are the abbreviation of soil depth, community succession, biomass of forest litter, Margalef index, Simpson index, Shannon-Wiener index, Pielou index, specific leaf area, soil pH value, soil bulk density, soil volumetric water content, soil non-capillary porosity, soil capillary porosity, the content of carbon, nitrogen, phosphorus and potassium of leaves, the content of carbon, nitrogen, phosphorus and potassium of litter, nitrogen and phosphorus resorption rate, respectively.
Figure 4. RDA ordination of community succession, soil depth, community diversity indices and soil stoichiometric characteristics
表 1 样地基本概况
Table 1. Basic situation of sample plots
演替阶段
Successional stage样地号
Plot No.海拔
Altitude/m坡度 Slope
degree/(°)坡位
Slope position裸岩率
Bare rock ratio/%优势种
Dominant species土壤
SoilHS 2 626 25 ~ 30 中坡 Middle slope 65 马唐 Digitaria sanguinalis
白茅 Imperata cylindrical
蕨 Pteridium aquilinum
芒草 Miscanthus sp.石灰土Calcareous soil 10 706 25 ~ 30 中坡 Middle slope 55 11 692 20 ~ 25 中坡 Middle slope 75 SS 7 789 25 ~ 30 中坡 Middle slope 85 瓜木 Alangium platanifolium
火棘 Pyracantha fortuneana
南天竹 Nandina domestica
香叶树 Lindera communis
青篱柴 Tirpitzia sinensis石灰土Calcareous soil 8 775 20 ~ 25 中坡 Middle slope 85 12 779 25 ~ 30 中坡 Middle slope 80 AS 1 770 20 ~ 25 下坡 Lower slope 75 卵果海桐 Pittosporum lenticellatum
圆果化香 Platycarya longipes
木姜润楠 Machilus litseifolia
光皮梾木 Cornus wilsoniana
香叶树 Lindera communis
牛耳枫 Ficus microcarpa石灰土Calcareous soil 3 800 20 ~ 25 中坡 Middle slope 70 6 769 20 ~ 25 下坡 Lower slope 80 CS 4 741 30 ~ 35 中坡 Middle slope 75 多脉青岗 Cyclobalanopsis multinervis
云贵鹅耳枥 Carpinus pubescens
粗柄楠 Phoebe crassipedicella
光皮梾木 Cornus wilsoniana
丝栗栲 castanopsis fargesii
天峨槭 Acer wangchii石灰土Calcareous soil 5 744 30 ~ 35 下坡 Lower slope 85 9 779 15 ~ 20 下坡 Lower slope 80 注:HS、SS、AS和CS分别为草本阶段、灌木灌丛阶段、乔林阶段和顶极阶段。下同。 Notes: HS, SS, AS and CS represent herb stage, shrub stage, arbor stage and climax stage, respectively. The same below. 表 2 土壤养分与化学计量特征的统计分析表
Table 2. Statistical analysis of soil nutrients and stoichiometric characteristics
指标
Index样本数
Sample number最大值
Max./(g·kg− 1)最小值
Min./(g·kg− 1)平均值
Mean/(g·kg− 1)标准差
SD/(g·kg− 1)偏度系数
Skewness coefficient峰度系数
Kurtosis coefficient变异系数
CV/%SOC 24 82.45 28.61 54.72 14.12 0.35 − 0.44 25.80 TN 24 7.83 2.25 4.67 1.41 0.68 − 0.22 30.28 TP 24 1.08 0.36 0.73 0.22 − 0.27 − 0.95 30.12 TK 24 10.82 5.16 8.53 1.47 − 0.47 0.17 17.21 C:N 24 15.37 9.76 11.95 1.62 0.40 − 0.59 13.59 C:P 24 130.41 40.35 79.16 20.13 0.65 0.86 25.43 C:K 24 10.09 3.89 6.50 1.63 0.44 − 0.45 25.12 N:P 24 9.63 3.90 6.64 1.48 0.50 − 0.37 22.37 N:K 24 0.857 1 0.339 5 0.550 1 0.142 6 0.47 − 0.50 25.92 P:K 24 0.118 8 0.041 5 0.085 2 0.021 6 − 0.35 − 0.54 25.38 注:CV ≤ 20.0%属弱变异性,20.0% < CV < 50.0%属中等变异性,CV ≥ 50.0%属强变异性。Notes: CV ≤ 20.0%, weak variability; 20.0% < CV < 50.0%, medium variability; CV ≥ 50.0%, strong variability. 表 3 土壤养分与化学计量特征的相关分析
Table 3. Correlation analysis between soil nutrients and soil stoichiometric characteristics
土层深度
Soil depth/cm指标
Index对数转换 Log transformation ln(x + 1) SOC TN TP TK C:N C:P C:K N:P N:K P:K 0 ~ 10 ln(SOC + 1) 1.000 0.877** 0.854** 0.529 − − − − 0.348 0.720** 0.700* ln(TN + 1) 1.000 0.916** 0.676* − − 0.670* 0.265 − − 0.658* ln(TP + 1) 1.000 0.544 − 0.610* − 0.373 − 0.749** − ln(TK + 1) 1.000 − 0.593* − 0.380 − 0.014 − − 10 ~ 20 ln(SOC + 1) 1.000 0.795** 0.666* 0.661* − − − − 0.206 0.299 0.360 ln(TN + 1) 1.000 0.739** 0.597* − − 0.378 0.195 − − 0.494 ln(TP + 1) 1.000 0.585* − 0.324 − 0.064 − 0.303 − ln(TK + 1) 1.000 − 0.120 − 0.293 − − 0.238 − − 0 ~ 20 ln(SOC + 1) 1.000 0.875** 0.839** 0.656* − − − − 0.410 0.495 0.593* ln(TN + 1) 1.000 0.867** 0.672* − − 0.629* 0.177 − − 0.607* ln(TP + 1) 1.000 0.576* − 0.503 − 0.256 − 0.558 − ln(TK + 1) 1.000 − 0.395 − 0.365 − − 0.166 − − 注:*相关性显著(P < 0.05),**相关性极显著(P < 0.01),− 表示存在自相关关系,不宜进行相关分析。 Notes: * and ** indicate significant correlations at the 0.05 and 0.01 probability levels, respectively. − indicates that autocorrelation exists and no analysis is conducted. 表 4 RDA排序前2轴的基本特征
Table 4. General characteristics of the first two axis of RDA ordination
参数 Parameter 第1轴 Axis 1 第2轴 Axis 2 特征值 Eigenvalue 0.477 0.317 化学计量特征−影响因子相关系数 Stoichiometry-impact factors correlation 0.992 0.975 化学计量数据累计解释量 Cumulative percentage variance of stoichiometry/% 47.70 79.50 化学计量特征−影响因子关系累计解释量 Cumulative percentage variance of stoichiometry-impact relation/% 49.40 82.20 土层深度 Soil depth 0.723 0.434 群落演替 Community succession − 0.570 0.676 凋落物现存量 Biomass of forest litter 0.337 − 0.429 物种丰富度Margalef指数 Species richness Margalef index (R) − 0.369 0.582 生态优势度Simpson指数 Ecological dominance Simpson index (D) − 0.296 0.508 信息多样性Shannon-Wiener指数 Information diversity Shannon-Wiener index (H) − 0.359 0.553 均匀度Pielou指数 Evenness Pielou index (J) − 0.287 0.480 比叶面积 Specific leaf area 0.395 − 0.556 土壤pH值 Soil pH value − 0.140 0.437 土壤密度 Soil bulk density 0.788 − 0.128 土壤体积含水量 Soil volumetric water content − 0.542 0.098 土壤非毛管孔隙度 Soil non-capillary porosity − 0.483 − 0.029 土壤毛管孔隙度 Soil capillary porosity − 0.557 0.138 植物叶片C含量 Plant leaf carbon content 0.358 − 0.587 植物叶片N含量 Plant leaf nitrogen content 0.026 0.102 植物叶片P含量 Plant leaf phosphorus content 0.219 − 0.265 植物叶片K含量 Plant leaf potassium content 0.396 − 0.607 凋落物C含量 Litter carbon content 0.312 − 0.249 凋落物N含量 Litter nitrogen content − 0.410 0.700 凋落物P含量 Litter phosphorus content − 0.090 0.303 凋落物K含量 Litter potassium content − 0.280 0.629 N重吸收率 N resorption rate 0.441 − 0.696 P重吸收率 P resorption rate 0.421 − 0.721 表 5 群落演替、土层深度、群落多样性指数等对土壤化学计量特征的解释程度
Table 5. Interpretation degree of soil stoichiometric characteristics in community succession, soil depth, community diversity indices
影响因子 Impact factor 重要性排序
Importance sequencing解释程度
Interpretive degree/%F P 土层深度 Soil depth 1 32.82 10.215 0.002 群落演替 Community succession 2 32.20 17.578 0.002 凋落物现存量 Biomass of forest litter 12 1.04 1.633 0.240 物种丰富度 Margalef 指数 Species richness Margalef index (R) 11 1.14 1.492 0.214 生态优势度 Simpson 指数 Ecological dominance Simpson index (D) 9 1.45 2.058 0.128 均匀度 Pielou 指数 Evenness Pielou index (J) 10 1.35 2.239 0.120 比叶面积 Specific leaf area 5 5.07 4.488 0.012 土壤 pH 值 Soil pH value 16 0.73 0.982 0.324 土壤密度 Soil bulk density 17 0.41 0.710 0.550 土壤体积含水量 Soil volumetric water content 15 0.83 1.522 0.224 土壤非毛管孔隙度 Soil non-capillary porosity 6 3.83 4.020 0.014 土壤毛管孔隙度 Soil capillary porosity 13 0.93 1.211 0.324 植物叶片 N 含量 Plant leaf nitrogen content 7 2.28 2.605 0.066 植物叶片 P 含量 Plant leaf phosphorus content 14 0.83 1.031 0.378 凋落物 C 含量 Litter carbon content 4 5.80 4.388 0.010 凋落物 N 含量 Litter nitrogen content 8 1.86 2.234 0.114 凋落物 K 含量 Litter potassium content 3 7.45 4.751 0.006 -
[1] Elser J J, Dobberfuhl D, MacKay N A, et al. Organism size, life history, and N: P stoichiometry: Towards a unified view of cellular and ecosystem processes[J]. Bioscience, 1996, 46(1): 674−684. [2] 曾德惠, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6):1007−1019. doi: 10.3321/j.issn:1005-264X.2005.06.018Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica, 2005, 29(6): 1007−1019. doi: 10.3321/j.issn:1005-264X.2005.06.018 [3] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystem[J]. Ecology Letters, 2000, 3(6): 540−555. doi: 10.1046/j.1461-0248.2000.00185.x [4] 章广琦, 张萍, 陈云明, 等. 黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征[J]. 生态学报, 2018, 38(4):1328−1336.Zhang G Q, Zhang P, Chen Y M, et al. Stoichiometric characteristics of Robinia pseudoacacia and Pinus tabuliformis plantation ecosystems in the Loess hilly-gully region, China[J]. Acta Ecologica Sinica, 2018, 38(4): 1328−1336. [5] Sterner R W, Elser J J, Vitousek T. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002: 167−196. [6] 王树力, 郝玉琢, 周磊, 等. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态[J]. 北京林业大学学报, 2018, 40(10):24−33.Wang S L, Hao Y Z, Zhou L, et al. Seasonal variations of leaf nutrient element concentrations and their stoichiometric characteristics in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2018, 40(10): 24−33. [7] 屈凡柱, 孟灵, 付战勇, 等. 不同生境条件下滨海芦苇湿地C、N、P化学计量特征[J]. 生态学报, 2018, 38(5):1731−1738.Qu F Z, Meng L, Fu Z Y, et al. The stoichiometry characterization of carbon, nitrogen and phosphorus in different reed-dominated coastal wetland habitats[J]. Acta Ecologica Sinica, 2018, 38(5): 1731−1738. [8] 杨新芳, 鲍雪莲, 胡国庆, 等. 大兴安岭不同火烧年限森林凋落物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2016, 27(5):1359−1367.Yang X F, Bao X L, Hu G Q, et al. C: N: P stoichiometry characteristics of litter and soil of forests in Great Xing ’an Mountains with different fire years[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1359−1367. [9] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682.Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. [10] 陶冶, 张元明, 周晓兵. 伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J]. 应用生态学报, 2016, 27(7):2239−2248.Tao Y, Zhang Y M, Zhou X B. Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2239−2248. [11] 曹祥会, 龙怀玉, 周脚根, 等. 中温−暖温带表土碳氮磷生态化学计量特征的空间变异性:以河北省为例[J]. 生态学报, 2017, 37(18):6053−6063.Cao X H, Long H Y, Zhou J G, et al. Spatial variation of ecological stoichiometry characteristics of topsoil carbon, nitrogen and phosphorus in Hebei Province, China[J]. Acta Ecologica Sinica, 2017, 37(18): 6053−6063. [12] 吕金林, 闫美杰, 宋变兰, 等. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 2017, 37(10):3385−3393.Lü J L, Yan M J, Song B L, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in an oak forest and a blank locust plantation in the Loess hilly region[J]. Acta Ecologica Sinica, 2017, 37(10): 3385−3393. [13] 庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1):17−23.Pang S J, Zhang P, Jia H Y, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi Chinese[J]. Agricultural Science Bulletin, 2015, 31(1): 17−23. [14] 张伟, 王克林, 刘淑娟, 等. 喀斯特峰丛洼地植被演替过程中土壤养分的积累及影响因素[J]. 应用生态学报, 2013, 24(7):1801−1808.Zhang W, Wang K L, Liu S J, et al. Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1801−1808. [15] 朱双燕, 王克林, 曾馥平, 等. 广西喀斯特次生林地表碳库和养分库特征及季节动态[J]. 水土保持学报, 2009, 23(5):237−242. doi: 10.3321/j.issn:1009-2242.2009.05.051Zhu S Y, Wang K L, Zeng F P, et al. Carbon and nutrient pools and their seasonal changes of forest floor in secondary forest in karst region of Guangxi[J]. Journal of Soil and Water Conservation, 2009, 23(5): 237−242. doi: 10.3321/j.issn:1009-2242.2009.05.051 [16] 喻理飞, 朱守谦, 叶镜中, 等. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 2002, 38(1):1−7. doi: 10.3321/j.issn:1001-7488.2002.01.001Yu L F, Zhu S Q, Ye J Z, et al. Dynamics of a degraded karst forest in the process of natural restoration[J]. Scientia Silvae Sinicae, 2002, 38(1): 1−7. doi: 10.3321/j.issn:1001-7488.2002.01.001 [17] 唐成, 杜虎, 宋同清, 等. 喀斯特峰丛坡地不同土地利用方式下土壤N、P空间变异特征[J]. 生态学杂志, 2013, 32(7):1683−1689.Tang C, Du H, Song T Q, et al. Spatial heterogeneity of soil nitrogen and phosphorus under different land use patterns in depressions between karst hills[J]. Chinese Journal of Ecology, 2013, 32(7): 1683−1689. [18] 朱守谦. 喀斯特森林生态研究(Ⅱ)[M]. 贵阳: 贵州人民出版社, 1997.Zhu S Q. Ecological research of karst forest (Ⅱ)[M]. Guiyang: Guizhou Renmin Press, 1997. [19] 国家林业局. 中华人民共和国林业行业标准−森林土壤分析方法(LY/T 1210-1275-1999)[S]. 北京: 中国标准出版社, 1999.State Forestry Administration. Forestry industry standard of the People’s Republic of China: analysis method of forest soil (LY/T 1210-1275-1999)[S]. Beijing: China Standard Press, 1999. [20] 吴鹏. 茂兰喀斯特森林自然恢复过程中植物叶片−凋落物−土壤生态化学计量特征研究[D]. 北京: 中国林业科学研究院, 2017: 25−123.Wu P. Study on ecological stoichiometric characteristics of plant leaf-litter-soil in the process of natural restoration in Maolan karst forest[D]. Beijing: Chinese Academy of Forestry, 2017: 25−123. [21] 张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22):6538−6547.Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538−6547. [22] 李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6):1345−1355.Li H L, Gong L, Zhu M L, et al. Stoichiometric characteristics of soil in an oasis on Northern edge of Tarim Basin, China[J]. Acta Pedologica Sinica, 2015, 52(6): 1345−1355. [23] 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征[J]. 应用生态学报, 2014, 25(3):632−638.Hu Y S, Yao X Y, Liu Y H. N and P stoichiometric traits of plant and soil in different forest succession stages in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 632−638. [24] Leps J, Smilauer P. Multivariate analysis of ecological data using CANOCO[M]. Cambridge: Cambridge University Press, 2003. [25] McGroddy M E, Daufresne T, Hedin L O. Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351 [26] 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 55(5):533−544.Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 55(5): 533−544. [27] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 2015, 24(3):38−47.Qing Y, Sun F D, Li Y, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China[J]. Acta Prataculturae Sinica, 2015, 24(3): 38−47. [28] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139−151. [29] 杨阳, 刘秉儒, 杨新国, 等. 荒漠草原中不同密度人工柠条灌丛土壤化学计量特征[J]. 水土保持通报, 2014, 34(5):67−73.Yang Y, Liu B R, Yang X G, et al. Soil stoichiometry characteristics of artificial Caragana korshinskii shrubs with different density in desert steppe[J]. Bulletin of Soil and Water Conservation, 2014, 34(5): 67−73. [30] 罗亚勇, 张宇, 张静辉, 等. 不同退化阶段高寒草甸土壤化学计量特征[J]. 生态学杂志, 2012, 31(2):254−260.Luo Y Y, Zhang Y, Zhang J H, et al. Soil stoichiometry characteristics of alpine meadow at its different degradation stages[J]. Chinese Journal of Ecology, 2012, 31(2): 254−260. [31] 张忠华, 胡刚, 祝介东, 等. 喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J]. 植物生态学报, 2011, 35(10):1038−1049.Zhang Z H, Hu G, Zhu J D, et al. Spatial heterogeneity of soil nutrients and its impact on tree species distribution in a karst forest of Southwest China[J]. Chinese Journal of Plant Ecology, 2011, 35(10): 1038−1049. [32] 刘方, 刘元生, 卜通达, 等. 贵州喀斯特山区植被演替对土壤有效性氮磷含量及酶活性的影响[J]. 中国岩溶, 2012, 31(1):31−35. doi: 10.3969/j.issn.1001-4810.2012.01.006Liu F, Liu Y S, Bu T D, et al. Impact of vegetation community succession on available N, P and enzyme activity of the soil in karst hill of Guizhou Province[J]. Carsologica Sinica, 2012, 31(1): 31−35. doi: 10.3969/j.issn.1001-4810.2012.01.006 [33] 张向茹, 马露莎, 陈亚南, 等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报, 2013, 50(4):818−825.Zhang X R, Ma L S, Chen Y N, et al. Ecological stoichiometry characteristics of Robinia pseudoacacia forest soil in different latitudes of loess plateau[J]. Acta Pedologica Sinica, 2013, 50(4): 818−825. [34] 孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系[J]. 生态学报, 2016, 36(21):6879−6888.Sun J, Zhao F Z, Han X H, et al. Ecological stoichiometry of soil aggregates and relationship with soil nutrients of different-aged Robinia pseudoacacia forests[J]. Acta Ecologica Sinica, 2016, 36(21): 6879−6888. [35] Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235−252. doi: 10.1007/s10533-007-9132-0 [36] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151−163. doi: 10.1111/ejs.1996.47.issue-2 [37] 曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51(7):1−8.Cao J, Yan W D, Xiang W H, et al. Stoichiometry characterization of soil C, N and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China[J]. Scientia Silvae Sinicae, 2015, 51(7): 1−8. [38] Iii F S C, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. New york: Springer, 2011: 369−397. [39] 秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68−76.Qin J, Kong H Y, Liu H. Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests[J]. Journal of Northwest A&F University (National Science Edition), 2016, 44(2): 68−76. [40] 杨慧, 涂春艳, 李青芳, 等. 岩溶区次生林地不同地貌部位土壤C、N、P化学计量特征[J]. 南方农业学报, 2015, 46(5):777−781. doi: 10.3969/j:issn.2095-1191.2015.5.777Yang H, Tu C Y, Li Q F, et al. Analysis of C, N and P stoichiometry of secondary forest in different landforms in karst area[J]. Journal of Southern Agriculture, 2015, 46(5): 777−781. doi: 10.3969/j:issn.2095-1191.2015.5.777 [41] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205−220. doi: 10.1890/11-0416.1 -