高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙地樟子松人工林叶片—枯落物—土壤有机碳含量特征

任悦 高广磊 丁国栋 张英 朴起亨 郭米山 曹红雨

任悦, 高广磊, 丁国栋, 张英, 朴起亨, 郭米山, 曹红雨. 沙地樟子松人工林叶片—枯落物—土壤有机碳含量特征[J]. 北京林业大学学报, 2018, 40(7): 36-44. doi: 10.13332/j.1000-1522.20180138
引用本文: 任悦, 高广磊, 丁国栋, 张英, 朴起亨, 郭米山, 曹红雨. 沙地樟子松人工林叶片—枯落物—土壤有机碳含量特征[J]. 北京林业大学学报, 2018, 40(7): 36-44. doi: 10.13332/j.1000-1522.20180138
Ren Yue, Gao Guanglei, Ding Guodong, Zhang Ying, Park Kihyung, Guo Mishan, Cao Hongyu. Characteristics of organic carbon content of leaf-litter-soil system in Pinus sylvestris var. mongolica plantations[J]. Journal of Beijing Forestry University, 2018, 40(7): 36-44. doi: 10.13332/j.1000-1522.20180138
Citation: Ren Yue, Gao Guanglei, Ding Guodong, Zhang Ying, Park Kihyung, Guo Mishan, Cao Hongyu. Characteristics of organic carbon content of leaf-litter-soil system in Pinus sylvestris var. mongolica plantations[J]. Journal of Beijing Forestry University, 2018, 40(7): 36-44. doi: 10.13332/j.1000-1522.20180138

沙地樟子松人工林叶片—枯落物—土壤有机碳含量特征

doi: 10.13332/j.1000-1522.20180138
基金项目: 

国家自然科学基金项目 31600583

中央高校基本科研业务费专项 2017PT03

中央高校基本科研业务费专项 2015ZCQ-SB-02

详细信息
    作者简介:

    任悦。主要研究方向:荒漠化防治。Email: renyue2017@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    高广磊,博士,副教授。主要研究方向:荒漠化生态学。Email: gaoguanglei@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.55+4.2

Characteristics of organic carbon content of leaf-litter-soil system in Pinus sylvestris var. mongolica plantations

  • 摘要: 目的有机碳在生态系统物质循环和全球碳循环中扮演着重要的角色,沙地樟子松是我国北方风沙区农田防护林和防风固沙林的重要造林树种之一,通过对不同生物气候带沙地樟子松人工林叶片、枯落物、土壤有机碳含量及相关性的分析,阐明沙地樟子松人工林叶片—枯落物—土壤连续体有机碳分布特征。方法本研究以呼伦贝尔沙地、科尔沁沙地和毛乌素沙地中龄、近熟和成熟3个龄组沙地樟子松人工林为研究对象。在测定叶片、枯落物和土壤有机碳含量的基础上,采用单因素方差分析和LSD多重比较法分析不同地区和龄组叶片、枯落物和土壤有机碳含量的差异性,采用双因素方差分析气候带和林龄对有机碳含量影响的显著性,并采用Pearson相关系数分析不同生物气候带叶片、枯落物和土壤有机碳含量相关性。结果(1) 研究区沙地樟子松人工林叶片、枯落物和土壤有机碳含量分别在604.06~675.69 g/kg、343.02~538.51 g/kg和0.72~11.73 g/kg之间;(2)随着林龄的增加,沙地樟子松人工林叶片、枯落物和土壤有机碳含量均呈现先增加后减小的趋势,即近熟林>中龄林>成熟林;(3)气候带和林龄对沙地樟子松人工林叶片有机碳含量影响不显著(P>0.05),对枯落物和土壤有机碳含量影响差异显著(P < 0.05),且不同组分有机碳含量呈显著(P < 0.05)或极显著(P < 0.01)正相关关系。结论沙地樟子松人工林叶片—枯落物—土壤连续体中存在有机碳的运输和转换。沙地樟子松能够通过自身结构与功能适应环境变化,其叶片表现出较高的环境适应能力。研究结果有助于进一步揭示沙地樟子松人工林碳循环过程,并为沙地樟子松人工林经营管理提供理论支撑。

     

  • 图  1  沙地樟子松人工林叶片有机碳含量

    HL.呼伦贝尔沙地红花尔基樟子松国家森林公园; HQ.科尔沁沙地章古台沙地森林公园; MU.毛乌素沙地红石峡沙地植物园。不同大写字母表示同一林龄不同沙地间差异显著(P < 0.05),不同小写字母表示同一沙地不同林龄间差异显著(P < 0.05)。下同。
    HL,national forest park of P. sylvestris var. mongolica in Honghuaerji Region of Hulunbuir Sandyland;HQ,Zhanggutai sand forest park in Horqin Sandyland;MU,Hongshixia sandy botanical garden in Mu Us Sandyland. Different capital letters indicate significant difference between different sandyland on the same forest ages at P < 0.05 level, different lowercase letters indicate significant difference between different forest ages on the same sandy land. The same below.

    Figure  1.  Organic carbon content of leaf in P. sylvestris var. mongolica plantations

    图  2  沙地樟子松人工林枯落物有机碳含量

    Figure  2.  Organic carbon content of litter in P. sylvestris var. mongolica plantations

    图  3  沙地樟子松人工林土壤有机碳含量

    Figure  3.  Organic carbon content of soil in P. sylvestris var. mongolica plantations

    表  1  研究样地概况

    Table  1.   Sample area survey

    地区
    Area
    林型
    Forest type
    林龄
    Age/a
    平均树高
    Averagetree height/m
    平均胸径
    AverageDBH/cm
    林分密度/(株·hm-2)
    Forest density/(plant·ha-1)
    郁闭度
    Canopy density
    呼伦贝尔沙地红花尔基樟子松国家森林公园National forest park of P. sylvestris var. mongolica in Honghuaerji Region of Hulunbuir Sandyland 人工林Plantation 24 11.98±1.62 14.66±3.40 1 650 0.75
    33 12.63±1.71 18.36±2.42 1 650 0.82
    42 13.40±2.36 22.74±1.98 1 650 0.71
    科尔沁沙地章古台沙地森林公园Zhanggutai sand forest park in Horqin Sandyland 人工林Plantation 26 10.26±1.47 16.93±2.81 2 500 0.72
    33 10.61±1.03 14.06±2.44 2 500 0.75
    43 11.12±1.74 21.07±1.02 1 650 0.68
    毛乌素沙地红石峡沙地植物园Hongshixia sandy botanical garden in Mu Us Sandyland 人工林Plantation 26 12.48±3.69 11.76±3.72 1 650 0.79
    32 13.95±2.38 13.58±3.44 1 650 0.86
    43 14.14±1.84 14.92±3.52 1 650 0.73
    下载: 导出CSV

    表  2  双因素无重复实验方差分析

    Table  2.   Variance analysis of two factors without repeat experiment

    组分Component 方差来源Source of variance 平方和Sum of square 均方Mean square FF value PP value
    叶片Leaf 地区Area 2 453.66 1 226.83 5.94 0.06
    龄组Age group 1 729.52 864.761 4.12 0.10
    误差Error 826.04 206.51
    总计Total 3 857 684.65
    枯落物Litter 地区Area 192.16 96.08 15.04 0.00
    龄组Age group 1 456.70 728.35 114.00 0.00
    误差Error 268.33 6.39
    总计Total 76 505.01
    土壤Soil 地区Area 1.86 0.93 27.74 0.00
    龄组Age group 0.94 0.47 13.81 0.00
    误差Error 0.89 0.03
    总计Total 9.14
    注:表中P<0.05,代表该因素对有机碳含量存在显著影响。Notes: P value in the table is less than 0.05, indicating that the factor has significant influence on organic carbon content.
    下载: 导出CSV

    表  3  沙地樟子松人工林叶片—枯落物—土壤有机碳含量

    Table  3.   Organic carbon content of leaf-litter-soil in P. sylvestris var. mongolica plantations

    g·kg-1
    项目Item 有机碳含量Organic carbon content
    叶片Leaf 枯落物Litter 土壤Soil
    呼伦贝尔沙地红花尔基樟子松国家森林公园National forest park of P. sylvestris var. mongolica in Honghuaerji Region of Hulunbuir Sandyland 669.84±6.62A 489.65±37.33A 7.37±4.31A
    科尔沁沙地章古台沙地森林公园Zhanggutai sand forest park in Horqin Sandyland 661.57±12.30A 373.20±31.76B 3.15±0.53AB
    毛乌素沙地红石峡沙地植物园Hongshixia sandy botanical garden in Mu Us Sandyland 631.42±32.90A 361.74±19.60B 1.47±0.68C
    中龄林Middle-aged forest 652.24±26.26a 405.13±72.80a 3.96±2.93a
    近熟林Near-mature forest 672.18±3.93a 434.83±70.18b 5.86±5.16b
    成熟林Mature forest 638.40±30.57a 384.63±69.91c 2.18±1.28c
    均值Mean 654.27±20.22 410.86±75.38 4.00±3.04
    注:表中不同大写字母表示同一组分不同地区差异显著(P < 0.05),不同小写字母表示同一组分不同林龄差异显著(P < 0.05)。Notes: different capital letters indicate significant differences between different sandy lands on the same component at P < 0.05 level. Different lowercase letters indicate significant difference between different forest ages on the same component at P < 0.05 level.
    下载: 导出CSV

    表  4  叶片、枯落物、土壤有机碳含量的相关系数

    Table  4.   Correlation coefficients between carbon content in leaf, litter and soil

    项目Item 叶片与枯落物Leaf and litter 叶片与土壤Leaf and soil 枯落物与土壤Litter and soil
    有机碳含量Organic carbon content 0.745* 0.689* 0.859**
    注:*表示相关性显著(P < 0.05),**表示相关性极显著(P < 0.01)。Notes: * indicates significant correlation at P < 0.05 level, ** indicates extremely significant correlation at P < 0.01 level.
    下载: 导出CSV
  • [1] Ågren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39: 153-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad7d33b156bb550bd0dbb9239a9919b5
    [2] 王维奇, 徐玲琳, 曾从盛, 等.河口湿地植物活体—枯落物—土壤的碳氮磷生态化学计量特征[J].生态学报, 2011, 31(23): 7119-7124. http://d.old.wanfangdata.com.cn/Periodical/stxb201123016

    Wang W Q, Xu L L, Zeng C S, et al. Carbon, nitrogen and phosphorus ecological stoichiometric ratios among living plant-litter-soil systems in estuarine wetland[J]. Acta Ecologica Sinica, 2011, 31(23): 7119-7124. http://d.old.wanfangdata.com.cn/Periodical/stxb201123016
    [3] 杨佳佳, 张向茹, 马露莎, 等.黄土高原刺槐林不同组分生态化学计量关系研究[J].土壤学报, 2014, 51(1): 133-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201401016

    Yang J J, Zhang X R, Ma L S, et al. Ecological stoichiometric relationships between components of Robinia pseudoacacia forest in Loess Plateau[J]. Acta Pedolocica Sinica, 2014, 51(1): 133-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201401016
    [4] Reeder J D. Theoretical ecosystem ecology: understanding element cycles[J]. Quarterly Review of Biology, 1998, 163(97): 421-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0021859699236441
    [5] 赵维俊, 刘贤德, 金铭, 等.祁连山青海云杉林叶片—枯落物—土壤的碳氮磷生态化学计量特征[J].土壤学报, 2016, 53(2): 477-489. http://d.old.wanfangdata.com.cn/Periodical/trxb201602020

    Zhao W J, Liu X D, Jin M, et al. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in leaf-litter-soil system of Picea crassifolia forest in the Qilian Mountains[J]. Acta Pedolocica Sinica, 2016, 53(2): 477-489. http://d.old.wanfangdata.com.cn/Periodical/trxb201602020
    [6] 陆媛, 陈云明, 曹扬, 等.黄土高原子午岭辽东栎林植物和土壤碳氮磷化学计量学特征[J].水土保持学报, 2015, 29(3): 196-201. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201503036

    Lu Y, Chen Y M, Cao Y, et al. C, N and P stoichiometric characteristics of plants and soil in Quercus liaotungensis forest on Ziwuling Mountain of Loess Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(3): 196-201. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201503036
    [7] 郑帷婕, 包维楷, 辜彬, 等.陆生高等植物碳含量及其特点[J].生态学杂志, 2007, 26(3): 307-313. http://d.old.wanfangdata.com.cn/Periodical/stxzz200703002

    Zheng W J, Bao W K, Gu B, et al. Carbon concentration and its characteristics in terrestrial higher plants[J]. Chinese Journal of Ecology, 2007, 26(3): 307-313. http://d.old.wanfangdata.com.cn/Periodical/stxzz200703002
    [8] Gorissen A, Tietema A, Joosten N N, et al. Climate change affects carbon allocation to the soil in shrublands[J]. Ecosystems, 2004, 7(6): 650-661. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29166ff95198727b2045d8472e6f1319
    [9] 郭广芬, 张称意, 徐影.气候变化对陆地生态系统土壤有机碳储量变化的影响[J].生态学杂志, 2006, 25(4): 435-442. doi: 10.3321/j.issn:1000-4890.2006.04.017

    Guo G F, Zhang C Y, Xu Y. Effects of climate change on soil organic carbon storage in terrestrial ecosystem[J]. Chinese Journal of Ecology, 2006, 25(4): 435-442. doi: 10.3321/j.issn:1000-4890.2006.04.017
    [10] 徐小锋, 田汉勤, 万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报, 2007, 31(2): 175-188. doi: 10.3321/j.issn:1005-264X.2007.02.002

    Xu X F, Tian H Q, Wan S Q. Climate warming impacts on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 175-188. doi: 10.3321/j.issn:1005-264X.2007.02.002
    [11] 王继和, 满多清, 刘虎俊.樟子松在甘肃干旱区的适应性及发展潜力研究[J].中国沙漠, 1999, 19(4): 390-394. doi: 10.3321/j.issn:1000-694X.1999.04.015

    Wang J H, Man D Q, Liu H J. Adaptability and developing potential of Pinus sylvestris var. mongolica in Gansu arid area[J]. Journal of Desert Research, 1999, 19(4): 390-394. doi: 10.3321/j.issn:1000-694X.1999.04.015
    [12] 李蒙蒙, 丁国栋, 高广磊, 等.樟子松(Pinus sylvestris var. mongolica)在中国北方10省(区)引种的适宜性[J].中国沙漠, 2016, 36(4): 1021-1028.

    Li M M, Ding G D, Gao G L, et al. Introduction suitability of Pinus sylvestris var. mongolica in 10 northern provinces of China[J]. Journal of Desert Research, 2016, 36(4): 1021-1028.
    [13] 康宏樟, 朱教君, 许美玲.沙地樟子松人工林营林技术研究进展[J].生态学杂志, 2005, 24(7): 799-806. doi: 10.3321/j.issn:1000-4890.2005.07.017

    Kang H Z, Zhu J J, Xu M L. Silviculture of Mongolian pine (Pinus sylvestris var. mongolica) plantations on sandy land[J]. Chinese Journal of Ecology, 2005, 24(7): 799-806. doi: 10.3321/j.issn:1000-4890.2005.07.017
    [14] 郭旭欣.容量法测定土壤有机质2种加热方法比较研究[J].现代农业科技, 2016(9):206. doi: 10.3969/j.issn.1007-5739.2016.09.124

    Guo X X. Comparison of two heating methods for measuring soil organic matter by volumetric method[J]. Modern Agricultural Science and Technology, 2016(9): 206. doi: 10.3969/j.issn.1007-5739.2016.09.124
    [15] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578. doi: 10.1038/35046058
    [16] 姜沛沛, 曹扬, 陈云明, 等.不同林龄油(Pinus tabuliformis)人工林植物、凋落物与土壤C、N、P化学计量特征[J].生态学报, 2016, 36(19): 6188-6197. http://d.old.wanfangdata.com.cn/Periodical/stxb201619021

    Jiang P P, Cao Y, Chen Y M, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabuliformis plantation[J]. Acta Ecologica Sinica, 2016, 36(19): 6188-6197. http://d.old.wanfangdata.com.cn/Periodical/stxb201619021
    [17] 马钦彦, 陈遐林.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报, 2002, 24(5): 96-100. doi: 10.3321/j.issn:1000-1522.2002.05.019

    Ma Q Y, Chen X L. Carbon content rate in constructive species of main forest types in northern China[J]. Journal of Beijing Forestry University, 2002, 24(5): 96-100. doi: 10.3321/j.issn:1000-1522.2002.05.019
    [18] 王晶苑, 王绍强, 李纫兰, 等.中国四种森林类型主要优势植物的C:N:P化学计量学特征[J].植物生态学报, 2011, 35(6): 587-595. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201106001

    Wang J Y, Wang S Q, Li R L, et al. C:N:P stoichiometric characteristics of four forest types' dominant tree species in China[J]. Chinese Journal of Plant Ecology, 2011, 35(6): 587-595. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201106001
    [19] 姜沛沛, 曹扬, 陈云明.陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征[J].应用生态学报, 2016, 27(2): 365-372. http://d.old.wanfangdata.com.cn/Periodical/yystxb201602004

    Jiang P P, Cao Y, Chen Y M. C, N, P stoichiometric characteristics of tree, shrub, herb leaves and litter in forest community of Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 365-372. http://d.old.wanfangdata.com.cn/Periodical/yystxb201602004
    [20] 王维奇, 曾从盛, 钟春棋, 等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学, 2010, 31(10):2411-2416. http://d.old.wanfangdata.com.cn/Periodical/hjkx201010025

    Wang W Q, Zeng C S, Zhong C Q, et al. Effect of human disturbance on ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in Minjiang River Estuarine Wetland[J]. Acta Scientiae Circumastantiae, 2010, 31(10): 2411-2416. http://d.old.wanfangdata.com.cn/Periodical/hjkx201010025
    [21] 焦树仁.辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施[J].林业科学, 2001, 37(2): 131-138. http://d.old.wanfangdata.com.cn/Periodical/lykx200102021

    Jiao S R. Report on the causes of the early decline of Pinus sylvestris var. mongolica shelterbelt and its preventative and control measures in Zhang Gutai of Liaoning Province[J]. Science Silvae Sinica, 2001, 37(2): 131-138. http://d.old.wanfangdata.com.cn/Periodical/lykx200102021
    [22] 张浩, 庄雪影.华南4种乡土阔叶树种枯落叶分解能力[J].生态学报, 2008, 28(5): 2395-2403. doi: 10.3321/j.issn:1000-0933.2008.05.057

    Zhang H, Zhuang X Y. The leaf litter decomposition of four native broad-leaved tree species in China[J]. Acta Ecologica Sinica, 2008, 28(5): 2395-2403. doi: 10.3321/j.issn:1000-0933.2008.05.057
    [23] 周莉, 李保国, 周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展, 2005, 20(1): 99-105. doi: 10.3321/j.issn:1001-8166.2005.01.016

    Zhou L, Li B G, Zhou G S. Advances in controlling factors of soil organic carbon[J]. Advances in Earth Science, 2005, 20(1): 99-105. doi: 10.3321/j.issn:1001-8166.2005.01.016
    [24] 杜改俊, 李艳红, 张小萌, 等.艾比湖湿地典型植物群落土壤养分和盐分的空间异质性[J].生态环境学报, 2015, 24(8): 1302-1309. http://d.old.wanfangdata.com.cn/Periodical/tryhj201508007

    Du G J, Li Y H, Zhang X M, et al. Spatial heterogeneity of the soil nutrient and salinity of the type in Ebinur Lake Wetland[J]. Ecology and Environment, 2015, 24(8): 1302-1309. http://d.old.wanfangdata.com.cn/Periodical/tryhj201508007
    [25] 王绍强, 周成虎, 李克让, 等.中国土壤有机碳库及空间分布特征分析[J].地理学报, 2000, 55(5): 533-544. http://cdmd.cnki.com.cn/Article/CDMD-10538-1012258070.htm

    Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 55(5): 533-544. http://cdmd.cnki.com.cn/Article/CDMD-10538-1012258070.htm
    [26] 杨曾奖, 曾杰, 徐大平, 等.森林枯枝落叶分解及其影响因素[J].生态环境学报, 2007, 16(2): 649-654. doi: 10.3969/j.issn.1674-5906.2007.02.075

    Yang Z J, Zeng J, Xu D P, et al. The processes and dominant factors of forest litter decomposition: a review[J]. Ecology and Environment, 2007, 16(2): 649-654. doi: 10.3969/j.issn.1674-5906.2007.02.075
    [27] 苗娟, 周传艳, 李世杰, 等.不同林龄云南松林土壤有机碳和全氮积累特征[J].应用生态学报, 2014, 25(3): 625-631. http://d.old.wanfangdata.com.cn/Periodical/yystxb201403001

    Miao J, Zhou C Y, Li S J, et al. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 625-631. http://d.old.wanfangdata.com.cn/Periodical/yystxb201403001
    [28] 侯浩, 张宋智, 关晋宏, 等.小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征[J].生态学报, 2016, 36(24): 8025-8033. http://d.old.wanfangdata.com.cn/Periodical/stxb201624014

    Hou H, Zhang S Z, Guan J H, et al. Accumulation of soil organic carbon and total nitrogen in Quercus aliensis var. acuteserrata forests at different age stages in the Xiaolongshan Mountains, Gansu Province[J]. Acta Ecologica Sinica, 2016, 36(24): 8025-8033. http://d.old.wanfangdata.com.cn/Periodical/stxb201624014
    [29] 史军辉, 马学喜, 刘茂秀, 等.胡杨(Populus euphratica)枝叶根化学计量特征[J].中国沙漠, 2017, 37(1): 109-115. http://d.old.wanfangdata.com.cn/Periodical/zgsm201701015

    Shi J H, Ma X X, Liu M X, et al. Stoichiometric characteristics of breach, leaf, rot in Populus euphratica with different forest age[J]. Journal of Desert Research, 2017, 37(1):109-115. http://d.old.wanfangdata.com.cn/Periodical/zgsm201701015
    [30] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205-220. doi: 10.1890/11-0416.1
    [31] Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9): 2390-2401. doi: 10.1890/03-0351
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1490
  • HTML全文浏览量:  195
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-05-09
  • 刊出日期:  2018-07-01

目录

    /

    返回文章
    返回