高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛乌素沙地油蒿灌丛Priestley-Taylor模型系数研究

梁椿烜 马景永 杨睿智 吴雅娟 田赟 贾昕 查天山 杨林

梁椿烜, 马景永, 杨睿智, 吴雅娟, 田赟, 贾昕, 查天山, 杨林. 毛乌素沙地油蒿灌丛Priestley-Taylor模型系数研究[J]. 北京林业大学学报, 2018, 40(12): 1-8. doi: 10.13332/j.1000-1522.20180145
引用本文: 梁椿烜, 马景永, 杨睿智, 吴雅娟, 田赟, 贾昕, 查天山, 杨林. 毛乌素沙地油蒿灌丛Priestley-Taylor模型系数研究[J]. 北京林业大学学报, 2018, 40(12): 1-8. doi: 10.13332/j.1000-1522.20180145
Liang Chunxuan, Ma Jingyong, Yang Ruizhi, Wu Yajuan, Tian Yun, Jia Xin, Zha Tianshan, Yang Lin. Priestley-Taylor model coefficient in a typical Artemisia ordosica shrubland in Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 1-8. doi: 10.13332/j.1000-1522.20180145
Citation: Liang Chunxuan, Ma Jingyong, Yang Ruizhi, Wu Yajuan, Tian Yun, Jia Xin, Zha Tianshan, Yang Lin. Priestley-Taylor model coefficient in a typical Artemisia ordosica shrubland in Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 1-8. doi: 10.13332/j.1000-1522.20180145

毛乌素沙地油蒿灌丛Priestley-Taylor模型系数研究

doi: 10.13332/j.1000-1522.20180145
基金项目: 

国家自然科学基金项目 31670710

中央高校基本科研业务费专项 2015ZCQ-SB-02

国家自然科学基金项目 31670708

详细信息
    作者简介:

    梁椿烜。主要研究方向:生理生态。Email: 767514074@qq.com   地址:100083  北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    查天山,教授,博士生导师。主要研究方向:生态系统过程、植被对气候变化的响应与反馈等。Email: tianshanzha@bjfu.edu.cn   地址:同上

  • 中图分类号: S717.19+3

Priestley-Taylor model coefficient in a typical Artemisia ordosica shrubland in Mu Us Sandy Land of northwestern China

  • 摘要: 目的基于半经验半理论的Priestly-Taylor模型(PT)估算蒸散发(ET)时,主要依赖于精确确定该模型系数α在特定研究区内的适宜值,本研究就该模型系数α的适用性进行了本地化研究,以便更准确地估算干旱半干旱区的蒸散发。方法在中国西北干旱地区毛乌素沙地的一个生长季内,采用涡度协方差技术并结合气象数据信息,监测研究区典型油蒿灌丛地的水、热交换传输过程,以分析PT模型系数α的季节变化特征并确定其本地化估算参考值。结果在季节变化过程中,实际PT模型系数α整体变化较明显,展叶期内α系数呈单峰型变化趋势,完全展叶期和叶变色期内的α系数变化不明显;日均α系数最大值为0.66,最小值为0.03,全生长季α系数均值为0.23。油蒿生长季内α系数与冠层导度和饱和水汽压差呈对数正相关;土壤含水量(30 cm处)以及叶面积指数与α系数均为正相关关系。在季节变化过程中,PT模型常规系数α=1.26确定的蒸散量(ET1.26)估算值以及根据逐日温度和2 m高度处风速资料计算的PT模型系数α=0.50确定的蒸散量(ET0.50)估算值均显著大于实测蒸散发。改进的PT模型系数的本地化推荐适宜值为0.23,并且通过修正后的PT模型估算ET与实测值之间存在较好的一致性,线性斜率为0.72,R2为0.57。结论因此,修正的PT模型显著提高干旱半干旱区植被蒸散发估算精度,为区域植被水文过程模型提供支持。

     

  • 图  1  环境因子的季节变化

    SWC30. 30 cm处土壤含水量;SWC10. 10 cm处土壤含水量。

    Figure  1.  Seasonal variations in environmental factors

    SWC30, soil water content at 30 cm belowground; SWC10, soil water content at 10 cm belowground.

    图  2  不同物候期内油蒿灌丛PT模型α系数季节变化

    Figure  2.  Seasonal changes of α coefficient of PT model in Artemisia ordosica shrubland during different phenological phases

    图  3  白天(08:00—17:00)时段PT模型系数与相关因子在整个生长季内的相关关系

    Figure  3.  Correlations between the PT model coefficient and the related factors during the whole growing season in daytime (08:00-17:00)

    图  4  PT模型系数常规值分别为1.26(a、b)和0.50(c、d)时蒸散发模拟值和实测值的比较与拟合

    ET.实测值; ET1.26.系数为1.26的模拟值; ET0.50.系数为0.50的模拟值。图中虚线表示y=x。下同。

    Figure  4.  Comparison and relationship between measured evapotranspiration and the modelled one by the conventional PT model coefficients of 1.26 (a, b) and 0.50 (c, d)

    ET, measured evapotranspiration; ET1.26, modelled evapotranspiration by coefficient of 1.26; ET0.50, modelled evapotranspiration by coefficient of 0.50. The dash line represents y=x in (b) and (d). The same below.

    图  5  PT模型系数修正后蒸散发模拟值和实测值的比较(a)与拟合(b)

    ET0.23.系数为0.23的模拟值。

    Figure  5.  Comparison and relationship between measured evapotranspiration and modelled one by corrected PT model coefficients

    ET0.23, modelled evapotranspiration by coefficient of 0.23.

    表  1  2014年油蒿物候期

    Table  1.   Phenophases of Artemisia ordosica in 2014

    物候期
    Phenophases
    日序
    Day of year (DOY)
    展叶期
    Leaf expansion period
    102~134
    完全展叶期
    Full leaf expansion period
    135~234
    叶变色期
    Leaf coloration period
    235~291
    注:数据表示2014年中的第几天。Note: data is the ordinal date in a year.
    下载: 导出CSV
  • [1] Khanmohammadi N, Rezaie H, Montaseri M, et al. The effect of temperature adjustment on reference evapotranspiration and reconnaissance drought index (RDI) in Iran[J]. Water Resources Management, 2017, 31(15):5001-5017. doi: 10.1007/s11269-017-1793-4
    [2] Mallikarjuna P, Jyothy S A, Murthy D S, et al. Performance of recalibrated equations for the estimation of daily reference evapotranspiration[J]. Water Resources Management, 2014, 28(13):4513-4535. doi: 10.1007/s11269-014-0733-9
    [3] Setegn S G, Srinivasan R, Melesse A M, et al. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia[J]. Hydrological Processes, 2010, 24(3):357-367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/hyp.7457
    [4] Sumner D M, Jacobs J M. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration[J]. Journal of Hydrology, 2005, 308(1-4):81-104. doi: 10.1016/j.jhydrol.2004.10.023
    [5] Fisher J B, Debiase T A, Qi Y, et al. Evapotranspiration models compared on a Sierra Nevada forest ecosystem[J]. Environmental Modelling & Software, 2005, 20(6):783-796. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8e68a2c77caef4e5deadde93d2b850f
    [6] Agam N, Kustas W P, Anderson M C, et al. Application of the Priestley-Taylor approach in a two-source surface energy balance model[J]. Journal of Hydrometeorology, 2010, 11(1):185-198. doi: 10.1175/2009JHM1124.1
    [7] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2):81-92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
    [8] Martínez Pérez J, Garcíagaliano S, Martingorriz B, et al. Satellite-based method for estimating the spatial distribution of crop evapotranspiration: sensitivity to the Priestley-Taylor coefficient[J]. Remote Sensing, 2017, 9(6):611. doi: 10.3390/rs9060611
    [9] 吴东, 何奇瑾, 潘志华, 等.东北春玉米不同生育阶段日蒸散发模型的适用性研究[J].中国农业大学学报, 2017, 22(8):18-29. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201708003

    Wu D, He Q J, Pan Z H, et al. Applicability of daily evapotranspiration models at different growth stages of spring maize in Northeast China[J]. Journal of China Agricultural University, 2017, 22(8):18-29. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201708003
    [10] Cho J, Kim W, Miyazaki S, et al. Difference in the Priestley-Taylor coefficients at two different heights of a tall micrometeorological tower[J]. Agricultural & Forest Meteorology, 2013, 180(19):97-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbb5fd1dd761bc214fafc0442f75641c
    [11] Brutsaert W. Evaporation into the atmosphere[M]. Berlin: Springer Netherlands, 1982.
    [12] Gavin H, Agnew C A. Modelling actual, reference and equilibrium evaporation from a temperate wet grassland[J]. Hydrological Processes, 2004, 18(2):229-246. doi: 10.1002/(ISSN)1099-1085
    [13] Sanches L, Alves M D C, Campelo J J H, et al. Estimation of the Priestley-Taylor coefficient in the monospecific forest in northern Pantanal, Brazil[J]. Revista Brasileira de Meteorologia, 2010, 25(4):448-454. doi: 10.1590/S0102-77862010000400004
    [14] 刘晓英, 林而达, 刘培军.干旱气候条件下Priestley-Taylor方法应用探讨[J].水利学报, 2003, 34(9):31-38. doi: 10.3321/j.issn:0559-9350.2003.09.006

    Liu X Y, Lin E D, Liu P J. Study on application of Priestly-Taylor method to dry climate condition[J]. Journal of Hydraulic Engineering, 2003, 34(9):31-38. doi: 10.3321/j.issn:0559-9350.2003.09.006
    [15] Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences Discussions, 2014, 11(3):57-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003573274
    [16] Todorovic M. Crop evapotranspiration[M]//Water encyclopedia. New Jersey: John Wiley & Sons, Inc. 2005: 266-271.
    [17] Liu H Z, Feng J W. Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China[J]. Journal of Applied Meteorology & Climatology, 2011, 51(10):1875-1888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=225f45553f91816e3bc96569a5c4db32
    [18] Eugster W, Asanuma J, Kotani A. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia[J]. Agricultural & Forest Meteorology, 2006, 137(1):89-106. doi: 10.1016-j.agrformet.2006.03.010/
    [19] Foken T, Aubinet M, Leuning R. The eddy covariance method[M]//Dordrecht: eddy covariance. Amsterdam: Springer, 2012: 1-19.
    [20] Kang S, Gu B, Du T, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3):239-254. doi: 10.1016/S0378-3774(02)00150-6
    [21] 王珊, 查天山, 贾昕, 等.毛乌素沙地油蒿群落冠层导度及影响因素[J].北京林业大学学报, 2017, 39(3):65-73. doi: 10.13332/j.1000-1522.20160409

    Wang S, Zha T S, Jia X, et al. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3):65-73. doi: 10.13332/j.1000-1522.20160409
    [22] Burba G G, Verma S B. Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems[J]. Agricultural & Forest Meteorology, 2005, 135(1-4):190-201. https://www.sciencedirect.com/science/article/pii/S0168192305002510
    [23] 刘绍民, 孙睿, 孙中平, 等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报, 2004, 59(3):331-340. doi: 10.3321/j.issn:0375-5444.2004.03.002

    Liu S M, Sun R, Sun Z P, et al. Comparison of different complementary relationship models for regional evapotranspiration estimation[J]. Acta Geographica Sinica, 2004, 59(3):331-340. doi: 10.3321/j.issn:0375-5444.2004.03.002
    [24] Eichinger W E, Parlange M B, Han S. On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient[J]. Water Resources Research, 1996, 32(1):161-164. doi: 10.1029/95WR02920
    [25] 闫浩芳, 史海滨, 薛铸, 等.内蒙古河套灌区ET_0不同计算方法的对比研究[J].农业工程学报, 2008, 24(4):103-106. doi: 10.3321/j.issn:1002-6819.2008.04.020

    Yan H F, Shi H B, Xue Z, et al. Comparison of estimating ET0 with different methods in Hetao Irrigation District in Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4):103-106. doi: 10.3321/j.issn:1002-6819.2008.04.020
    [26] 王书功, 康尔泗, 金博文, 等.黑河山区草地蒸散发量估算方法研究[J].冰川冻土, 2003, 25(5):558-565. doi: 10.3969/j.issn.1000-0240.2003.05.013

    Wang S G, Kang E S, Jin B W, et al. A study of estimation of evapotranspiration on grass land in the mountains of Hei River Basin[J]. Journal of Glaciology & Geocryology, 2003, 25(5):558-565. doi: 10.3969/j.issn.1000-0240.2003.05.013
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  945
  • HTML全文浏览量:  265
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-05-17
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回