高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽东山区两种针叶人工林土壤真菌群落结构特征

邓娇娇 周永斌 殷有 白雪娇 高慧淋 朱文旭

邓娇娇, 周永斌, 殷有, 白雪娇, 高慧淋, 朱文旭. 辽东山区两种针叶人工林土壤真菌群落结构特征[J]. 北京林业大学学报, 2019, 41(9): 130-138. doi: 10.13332/j.1000-1522.20180147
引用本文: 邓娇娇, 周永斌, 殷有, 白雪娇, 高慧淋, 朱文旭. 辽东山区两种针叶人工林土壤真菌群落结构特征[J]. 北京林业大学学报, 2019, 41(9): 130-138. doi: 10.13332/j.1000-1522.20180147
Deng Jiaojiao, Zhou Yongbin, Yin You, Bai Xuejiao, Gao Huilin, Zhu Wenxu. Characteristics of soil fungal community structure at two coniferous plantations in mountainous region of eastern Liaoning Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 130-138. doi: 10.13332/j.1000-1522.20180147
Citation: Deng Jiaojiao, Zhou Yongbin, Yin You, Bai Xuejiao, Gao Huilin, Zhu Wenxu. Characteristics of soil fungal community structure at two coniferous plantations in mountainous region of eastern Liaoning Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 130-138. doi: 10.13332/j.1000-1522.20180147

辽东山区两种针叶人工林土壤真菌群落结构特征

doi: 10.13332/j.1000-1522.20180147
基金项目: 国家科技支撑(2015BAD07B010303),国家重点研发计划项目子课题(2017YFC050410501),辽宁省农业领域青年科技创新人才培养计划项目(2015047),辽宁省宜林地营林决策平台构建及示范项目(201304216)
详细信息
    作者简介:

    邓娇娇,博士生。主要研究方向:森林资源与生态环境研究。Email:jiaojiao513513@sina.com 地址:110161 辽宁省沈阳市沈河区东陵路120号沈阳农业大学林学院

    责任作者:

    朱文旭,博士,讲师。主要研究方向:森林生态。Email:zhuwenxu.315@163.com 地址:同上

  • 中图分类号: S714.2

Characteristics of soil fungal community structure at two coniferous plantations in mountainous region of eastern Liaoning Province, northeastern China

  • 摘要: 目的为探讨辽东山区两种典型针叶人工林土壤真菌群落多样性及结构特征,揭示真菌群落结构与树种、土壤环境因子的相关性。方法本研究以辽东山区白石砬子自然保护区内落叶松(LGe)、红松(PKe)人工林和辽宁省森林经营研究所实验林场落叶松(LGd)、红松(PKd)为研究对象,采用Illunima Miseq高通量测序技术和OTU分析法比较不同针叶人工林土壤真菌群落结构差异,分析优势菌群与土壤理化性质的相关性。结果(1)与红松人工林相比,落叶松人工林有助于提高土壤全碳、全氮和速效氮的含量。(2)该区落叶松和红松人工林土壤共检测到9个土壤真菌门,优势菌门为担子菌门、子囊菌门、接合菌门和隐真菌门。(3)LGe和PKe,LGd和PKd土壤真菌的多样性和丰富度指数存在差异,但都不显著。(4)Venn和Heatmap表明落叶松和红松人工林土壤真菌群落组成和相对丰度存在差异,LGe和PKe间的差异较LGd和PKd间的差异小。(5)RDA分析与Pearson相关性分析表明,土壤pH、土壤全碳、速效氮、土壤碳氮比是该区针叶人工林土壤真菌群落结构变化的关键影响因素。结论土壤真菌群落结构、多样性指数在不同树种间存在一定差异,LGe和PKe土壤有机质和真菌群落结构多样性差异较小,表现趋同性,LGd和PKd差异较大。

     

  • 图  1  不同人工林土壤真菌群落稀数曲线

    Figure  1.  Rarefaction curves of fungal under different plantation forests

    图  2  OTU维恩图

    Figure  2.  OTU Venn diagram

    图  3  不同人工林土壤真菌多样性指数

    Figure  3.  Soil fungal diversity indexes of different plantation forests

    图  4  不同人工林土壤真菌门水平相对丰度

    Figure  4.  Relative abundance of soil fungal at the phylum under different plantation forests

    图  5  不同人工林土壤真菌属水平相对丰度

    Figure  5.  Relative abundance of soil fungi at the genus under different plantation forests

    图  6  基于ITS序列构建的热图

    Figure  6.  Heatmap tree based on the ITS sequences

    图  7  土壤环境因子对优势真菌门(A)和属(B)类群的影响

    Figure  7.  Effects of soil environmental factors on dominant phylum (A) and genus (B) groups

    表  1  样地信息

    Table  1.   Sample plot information

    林分类型
    Stand type
    地理坐标
    Geographic coordinate
    海拔
    Altitude/m
    坡度
    Slope
    degree/(°)
    坡向
    Slope aspect
    林龄
    Foreat age
    郁闭度
    Crown density/%
    林分密度/(株·hm− 2
    Stand density/
    (plant·ha− 1)
    平均胸径
    Mean DBH/cm
    草本盖度
    Herb coverage/%
    白石砬子自然保护区
    落叶松人工林
    Larix gmelinii plantation in Baishilazi Nature Reserve (LGe)
    40°54′46″N、124°47′00″E 734.5 18 东北Northeast 51 85 2 050 18.43 100
    白石砬子自然保护区
    红松人工林
    Pinus koraiensis plantation in Baishilazi Nature Reserve (PKe)
    40°54′46″N、 124°47′00″E 734.5 18 东北Northeast 51 85 2 115 17.69 100
    辽宁省森林经营研究所
    实验林场落叶松人工林
    Larix gmelinii plantation in the experimental forest farm of Liaoning Institute of Forest Management (LGd)
    40°52′31″N、 123°56′43″E 340 29 东南Southeast 28 80 2 100 12.68 90
    辽宁省森林经营研究所
    实验林场红松人工林
    Pinus koraiensis plantation in the experimental forest farm of Liaoning Institute of Forest Management (PKd)
    40°52′31″N、123°56′43″E 340 22 东南Southeast 61 70 1 800 21.94 30
    下载: 导出CSV

    表  2  不同人工林土壤理化性质

    Table  2.   Chemical properties of soils in different plantation forests

    林分类型
    Stand type
    pH全碳
    Total carbon (TC)/(g·kg− 1)
    全氮
    Total N (TN)/(g·kg− 1)
    速效氮
    Available N (AN)/(mg·kg− 1)
    碳氮比
    C/N ratio
    LGe 5.40 ± 0.04aA 43.79 ± 2.21aA 3.85 ± 0.17aA 33.35 ± 3.21aA 11.36 ± 0.11aA
    PKe 5.48 ± 0.02aA 41.70 ± 0.58aA 3.58 ± 0.04aA 28.04 ± 1.08aA 11.65 ± 0.27aA
    LGd 5.57 ± 0.24aA 52.24 ± 3.36aA 3.89 ± 0.27aA 32.05 ± 3.61aA 13.43 ± 0.19aA
    PKd 5.54 ± 0.11aA 20.08 ± 4.01bB 1.53 ± 3.21bB 12.96 ± 2.56bB 13.24 ± 1.88aA
    注:同一列数据不同大写(P < 0.01)和小写(P < 0.05)字母表示差异显著,下同。Notes: different uppercase (P < 0.01) and lowercase (P < 0.05) letters in the same column indicate significant differences. Same as below.
    下载: 导出CSV

    表  3  土壤环境因子与优势真菌类群的相关性分析

    Table  3.   Correlation analysis between soil environment factors and fungal phylum groups

    真菌门类群 Fungal phylum grouppH全碳 TC全氮 TN速效氮 AN碳氮比 C/N ratio
    担子菌门Basidiomycota − 0.737 0.343 0.458 0.463 − 0.511
    子囊菌门Ascomycota 0.960* − 0.143 − 0.395 − 0.977* 0.996**
    接合菌门Zygomycota 0.069 − 0.120 − 0.054 0.245 − 0.252
    隐真菌门Rozellomycota − 0.902 0.509 0.714 0.816 − 0.936
    注:*表示在P < 0.05水平上显著相关;**表示在P < 0.01水平上显著相关。Notes: * means significant correlation at P < 0.05 level; ** means significant correlation at P < 0.01 level.
    下载: 导出CSV
  • [1] Zhou J, Xue K, Xie J, et al. Microbial mediation of carbon-cycle feedbacks to climate warming[J]. Nature Climate Change, 2012, 2(2): 106−110. doi: 10.1038/nclimate1331
    [2] Augé R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001, 11(1): 3−42. doi: 10.1007/s005720100097
    [3] Felske A, Wolterink A, Van Lis R, et al. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes[J]. Applied and Environmental Microbiology, 2000, 66(9): 3998−4003. doi: 10.1128/AEM.66.9.3998-4003.2000
    [4] Kuramae E E, Gamper H A, Yergeau E, et al. Microbial secondary succession in a chronosequence of chalk grasslands[J]. The ISME Journal, 2010, 4(5): 711−715. doi: 10.1038/ismej.2010.11
    [5] 魏玉莲, 戴玉成. 木材腐朽菌在森林生态系统中的功能[J]. 应用生态学报, 2004, 15(10):1935−1938. doi: 10.3321/j.issn:1001-9332.2004.10.046

    Wei Y L, Dai Y C. The ecological function of wood-inhabiting fungi in forest ecosystem[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1935−1938. doi: 10.3321/j.issn:1001-9332.2004.10.046
    [6] 戴玉成. 中国东北地区木材腐朽菌的多样性[J]. 菌物学报, 2010, 29(6):801−818.

    Dai Y C. Species diversity of wood-decaying fungi in Northeast China[J]. Mycosystema, 2010, 29(6): 801−818.
    [7] Timonen S, Finlay R D, Olsson S, et al. Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a β-scanner[J]. Fems Microbiology Ecology, 1996, 19(3): 171−180.
    [8] Gimenez C, Cabrera R, Reina M, et al. Fungal endophytes and their role in plant protection[J]. Current Organic Chemistry, 2007, 11(8): 707−720. doi: 10.2174/138527207780598765
    [9] Ownley B H, Gwinn K D, Vega F E. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution[J]. Biocontrol, 2010, 55(1): 113−128. doi: 10.1007/s10526-009-9241-x
    [10] Boddington C L, Dodd J C. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. (I): field studies in an Indonesian ultisol[J]. Plant and Soil, 2000, 218(1−2): 137−144.
    [11] Allison S D, Hanson C A, Treseder K K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems[J]. Soil Biology and Biochemistry, 2007, 39(8): 1878−1887. doi: 10.1016/j.soilbio.2007.02.001
    [12] 何玉梅, 张仁陟, 张丽华, 等. 不同耕作措施对土壤真菌群落结构与生态特征的影响[J]. 生态学报, 2007, 27(1):113−119. doi: 10.3321/j.issn:1001-9332.2007.01.019

    He Y M, Zhang R Z, Zhang L H, et al. Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils[J]. Acta Ecologica Sinica, 2007, 27(1): 113−119. doi: 10.3321/j.issn:1001-9332.2007.01.019
    [13] Harris J. Soil microbial communities and restoration ecology: facilitators or followers[J]. Science, 2009, 325: 573−574. doi: 10.1126/science.1172975
    [14] Fierer N, Jackson J A, Vilgalys R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Applied and Environmental Microbiology, 2005, 71(7): 4117−4120. doi: 10.1128/AEM.71.7.4117-4120.2005
    [15] Girvan M S, Bullimore J, Pretty J N, et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Applied and Environmental Microbiology, 2003, 69(3): 1800−1809. doi: 10.1128/AEM.69.3.1800-1809.2003
    [16] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159−171. doi: 10.1016/j.foreco.2004.03.018
    [17] Barbi F, Prudent E, Vallon L, et al. Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes[J]. Soil Biology and Biochemistry, 2016, 100: 149−159. doi: 10.1016/j.soilbio.2016.06.008
    [18] 李金前, 赵静杰, 王吉, 等. 3种园林植物土壤真菌群落结构及影响因子[J]. 南昌大学学报(理科版), 2015, 39(5):492−497. doi: 10.3969/j.issn.1006-0464.2015.05.017

    Li J Q, Zhao J J, Wang J, et al. Response of soil fungi community to different garden plants[J]. Journal of Nanchang University (Natural Science), 2015, 39(5): 492−497. doi: 10.3969/j.issn.1006-0464.2015.05.017
    [19] Yan D F, Mills J G, Gellie N J C, et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration[J]. Biological Conservation, 2018, 217: 113−120. doi: 10.1016/j.biocon.2017.10.035
    [20] 陈晓, 刘勇, 李国雷, 等. 土壤真菌研究方法及人为干扰对森林土壤真菌群落影响研究进展[J]. 世界林业研究, 2011, 24(5):7−12.

    Chen X, Liu Y, Li G L, et al. Progress on research method of soil fungi and human disturbances to forest soil fungi[J]. World Forestry Research, 2011, 24(5): 7−12.
    [21] 范阿南, 刘峰. 辽东山区次生林土壤微生物生物量对微生物呼吸影响[J]. 东北林业大学学报, 2014, 42(3):99−102. doi: 10.3969/j.issn.1000-5382.2014.03.023

    Fan A N, Liu F. Seasonal variations of soil microbial biomass and its influence on soil microbial respiration in secondary forest communities in montane region of eastern Liaoning Province[J]. Journal of Northeast Forestry University, 2014, 42(3): 99−102. doi: 10.3969/j.issn.1000-5382.2014.03.023
    [22] 肖建强, 张维维, 于立忠, 等. 辽东山区次生林林窗大小对土壤微生物量碳、氮、磷的影响[J]. 生态学杂志, 2017, 36(11):3043−3048.

    Xiao J Q, Zhang W W, Yu L Z, et al. Effects of gap size on soil microbial biomass carbon, nitrogen and phosphorus in a secondary forest in a montane region of eastern Liaoning Province, China[J]. Chinese Journal of Ecology, 2017, 36(11): 3043−3048.
    [23] 邓娇娇, 周永斌, 殷有, 等. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 2019, 39(3):997−1008.

    Deng J J, Zhou Y B, Yin Y, et al. Soil bacterial community structure characteristics in coniferous forests of montane regions of eastern Liaoning Province, China[J]. Acta Ecologica Sinica, 2019, 39(3): 997−1008.
    [24] Gardes M, Bruns T D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts[J]. Molecular Ecology, 1993, 2(2): 113−118. doi: 10.1111/j.1365-294X.1993.tb00005.x
    [25] White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR Protocols: a Guide to Methods and Applications, 1990, 18(1): 315−322.
    [26] Fadrosh D W, Bing M, Gajer P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1): 1−7. doi: 10.1186/2049-2618-2-1
    [27] 张于光, 张小全, 刘学端, 等. 不同林型土壤微生物有机碳降解基因的多样性[J]. 生态学报, 2007, 27(4):1412−1419. doi: 10.3321/j.issn:1000-0933.2007.04.019

    Zhang Y G, Zhang X Q, Liu X D, et al. The soil microbial gene diversity for soil organic carbon degradation in different forest types[J]. Acta Ecologica Sinica, 2007, 27(4): 1412−1419. doi: 10.3321/j.issn:1000-0933.2007.04.019
    [28] 李金博, 朱道光, 崔福星, 等. 寒温带落叶松林不同林型土壤有机碳含量及相关性分析[J]. 国土与自然资源研究, 2015(5):72−75. doi: 10.3969/j.issn.1003-7853.2015.05.022

    Li J B, Zhu D G, Cui F X, et al. Analysis on the relationship between soil organic carbon content and soil organic carbon in different leaves of larch in Alpine Region[J]. Territory and Natural Resources Study, 2015(5): 72−75. doi: 10.3969/j.issn.1003-7853.2015.05.022
    [29] 向泽宇, 张莉, 张全发, 等. 青海不同林分类型土壤养分与微生物功能多样性[J]. 林业科学, 2014, 50(4):22−31.

    Xiang Z Y, Zhang L, Zhang Q F, et al. Soil nutrients and microbial functional diversity of different stand types in Qinghai Province[J]. Scientia Silvae Sinicae, 2014, 50(4): 22−31.
    [30] 黄志宏, 田大伦, 梁瑞友, 等. 南岭不同林型土壤微生物数量特征分析[J]. 中南林业科技大学学报, 2007, 27(3):1−4. doi: 10.3969/j.issn.1673-9272.2007.03.001

    Huang Z H, Tian D L, Liang R Y, et al. Quantitative characteristics of soil micro-organisms of different stands in Nanling Mountains, South China[J]. Journal of Central South University of Forestry and Technology, 2007, 27(3): 1−4. doi: 10.3969/j.issn.1673-9272.2007.03.001
    [31] 杨君珑, 付晓莉, 马泽清, 等. 中亚热带5种类型森林土壤微生物群落特征[J]. 环境科学研究, 2015, 28(5):720−727.

    Yang J L, Fu X L, Ma Z Q, et al. Characteristics of soil microbial community in five forest types in mid-subtropical China[J]. Research of Environmental Sciences, 2015, 28(5): 720−727.
    [32] 熊汉锋, 王运华. 梁子湖湿地土壤养分的空间异质性[J]. 植物营养与肥料学报, 2005, 11(5):584−589. doi: 10.3321/j.issn:1008-505X.2005.05.003

    Xiong H F, Wang Y H. Spatial variability of soil nutrients in wetland of Liangzi Lake[J]. Plant Nutrition and Fertilizer Science, 2005, 11(5): 584−589. doi: 10.3321/j.issn:1008-505X.2005.05.003
    [33] 杨秀清, 韩有志. 关帝山森林土壤有机碳和氮素的空间变异特征[J]. 林业科学研究, 2011, 24(2):223−229.

    Yang X Q, Han Y Z. Spatial variations of soil organic carbon and nitrogen of forest land in Guandi Mountain[J]. Forest Research, 2011, 24(2): 223−229.
    [34] 朱喜, 何志斌, 杜军, 等. 林下植被组成和功能研究进展[J]. 世界林业研究, 2014, 27(5):24−30.

    Zhu X, He Z B, Du J, et al. Function and composition of understory vegetation: recent advances and trends[J]. World Forestry Research, 2014, 27(5): 24−30.
    [35] Lin G G, Mao R, Zhao L, et al. Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability[J]. Plant and Soil, 2013, 373(1−2): 649−657. doi: 10.1007/s11104-013-1832-8
    [36] Qiao Y, Miao S, Silva L C R, et al. Understory species regulate litter decomposition and accumulation of C and N in forest soils: a long-term dual-isotope experiment[J]. Forest Ecology and Management, 2014, 329: 318−327. doi: 10.1016/j.foreco.2014.04.025
    [37] Raich J W, Clark D A, Schwendenmann L, et al. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment[J/OL]. PloS One, 2014, 9(6): e100275 [2018−01−06]. http://www.doc88.com/p-7874450525512.html.
    [38] Green J L, Holmes A J, Westoby M, et al. Spatial scaling of microbial eukaryote diversity[J]. Nature, 2004, 432: 747−750. doi: 10.1038/nature03034
    [39] 隋心, 张荣涛, 许楠, 等. 三江平原不同退化阶段小叶章湿地土壤真菌群落结构组成变化[J]. 环境科学, 2016, 37(9):3598−3605.

    Sui X, Zhang R T, Xu N, et al. Fungal community structure of different degeneration deyeuxia angustifolia wetlands in Sanjiang Plain[J]. Environment Science, 2016, 37(9): 3598−3605.
    [40] Yelle D J, Ralph J, Lu F, et al. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2008, 10(7): 1844−1849. doi: 10.1111/j.1462-2920.2008.01605.x
    [41] Bardgett R D, Mcalister E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands[J]. Biology and Fertility of Soils, 1999, 29(3): 282−290. doi: 10.1007/s003740050554
    [42] Bossuyt H, Denef K, Six J, et al. Influence of microbial populations and residue quality on aggregate stability[J]. Applied Soil Ecology, 2001, 16(3): 195−208. doi: 10.1016/S0929-1393(00)00116-5
    [43] Ma A, Zhuang X, Wu J, et al. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J/OL]. Plos One, 2013, 8(6): e66146 [2018−01−11]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066146.
    [44] Christina B, Kathrin F, Stephan N, et al. Estimating the phanerozoic history of the ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78(1): 386−398.
    [45] 陈雅昕, 邓娇娇, 周永斌, 等. 蒙古栎天然次生林土壤微生物群落特征及其与土壤理化特性的关系[J]. 沈阳农业大学学报, 2018, 49(4):409−416.

    Chen Y X, Deng J J, Zhou Y B, et al. Characteristics of soil microbial community and its relationship with soil physical and chemical properties in natural secondary forests of Quercus mongolica[J]. Journal of Shenyang Agricultural University, 2018, 49(4): 409−416.
    [46] Paungfoolonhienne C, Yun K Y, Kasinadhuni N R P, et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere[J/OL]. Scientific Reports, 2015, 5: 8678 [2018−01−13]. http://www.nature.com/doifinder/10.1038/srep08678.
    [47] Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9): 2407−2415. doi: 10.1016/j.soilbio.2008.05.021
    [48] Kivlin S N, Hawkes C V. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests[J]. Environmental Microbiology, 2016, 18(12): 4662−4673. doi: 10.1111/1462-2920.13342
    [49] 吴照祥, 郝志鹏, 陈永亮, 等. 三七根腐病株根际土壤真菌群落组成与碳源利用特征研究[J]. 菌物学报, 2015, 34(1):65−74.

    Wu Z X, Hao Z P, Chen Y L, et al. Characterization of fungal community composition and carbon source utilization in the hizosphere soil of Panax notoginseng suffering from root-rotdisease[J]. Mycosystema, 2015, 34(1): 65−74.
    [50] 韩世忠, 高人, 李爱萍, 等. 中亚热带地区两种森林植被类型土壤微生物群落结构[J]. 应用生态学报, 2015, 26(7):2151−2158.

    Han S Z, Gao R, Li A P, et al. Soil microbial community structure of two types of forests in the mid-subtropics of China[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2151−2158.
    [51] Carney K M, Matson P A. Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning[J]. Ecosystems, 2005, 8(8): 928−940. doi: 10.1007/s10021-005-0047-0
    [52] Donnison L M, Griffith G S, Bardgett R D. Determinants of fungal growth and activity in botanically diverse haymeadows: effects of litter type and fertilizer additions[J]. Soil Biology and Biochemistry, 2000, 32(2): 289−294. doi: 10.1016/S0038-0717(99)00160-1
    [53] 刘洋, 黄懿梅, 曾全超. 黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学, 2016, 37(10):3931−3938.

    Liu Y, Huang Y M, Zeng Q C. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environment Science, 2016, 37(10): 3931−3938.
    [54] Sakamoto K, Oba Y. Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass[J]. Biology and Fertility of Soils, 1994, 17(1): 39−44. doi: 10.1007/BF00418670
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1487
  • HTML全文浏览量:  878
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 修回日期:  2018-12-04
  • 网络出版日期:  2019-07-11
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回