高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光合模型对无患子叶片光合响应参数计算结果的影响

张赟齐 高世轮 卫星杓 史文辉 马仲 苏淑钗

张赟齐, 高世轮, 卫星杓, 史文辉, 马仲, 苏淑钗. 光合模型对无患子叶片光合响应参数计算结果的影响[J]. 北京林业大学学报, 2019, 41(4): 32-40. doi: 10.13332/j.1000-1522.20180163
引用本文: 张赟齐, 高世轮, 卫星杓, 史文辉, 马仲, 苏淑钗. 光合模型对无患子叶片光合响应参数计算结果的影响[J]. 北京林业大学学报, 2019, 41(4): 32-40. doi: 10.13332/j.1000-1522.20180163
Zhang Yunqi, Gao Shilun, Wei Xingbiao, Shi Wenhui, Ma Zhong, Su Shuchai. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves[J]. Journal of Beijing Forestry University, 2019, 41(4): 32-40. doi: 10.13332/j.1000-1522.20180163
Citation: Zhang Yunqi, Gao Shilun, Wei Xingbiao, Shi Wenhui, Ma Zhong, Su Shuchai. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves[J]. Journal of Beijing Forestry University, 2019, 41(4): 32-40. doi: 10.13332/j.1000-1522.20180163

光合模型对无患子叶片光合响应参数计算结果的影响

doi: 10.13332/j.1000-1522.20180163
基金项目: 中央高校基本科研业务费专项(2015ZCQ-LX-02),科技部国家国际科技合作专项(2014DFA31140)
详细信息
    作者简介:

    张赟齐,博士生。主要研究方向:经济林培育与利用。Email:zhyq1985@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    苏淑钗,教授,博士生导师。主要研究方向:经济林培育与利用。Email:sushuchai@sohu.com 地址:同上

  • 中图分类号: S792.99;Q945.79

Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves

  • 摘要: 目的旨在探究光合模型对无患子冠层不同部位叶片光合响应参数计算结果的影响,并得到合适的光合响应应用模型和合理的光合响应参数。方法本研究以福建建宁地区进入稳定结实期的无患子为研究对象,采用直角双曲线模型、非直角双曲线模型、直角修正模型和指数修正模型来拟合无患子冠层不同部位叶片的光响应曲线,采用直角修正模型、直角双曲线模型和Michaelis-Menten模型来拟合CO2响应曲线,通过均方误差和决定系数来检验光合响应模型的拟合精度,采用Duncan多重比较法检验不同模型和不同部位叶片光合响应参数的差异并进行方差分析。结果(1)4种模型对光响应曲线拟合结果的优劣为:直角修正模型 > 指数修正模型 > 非直角双曲线模型 > 直角双曲线模型,3种模型对CO2响应曲线拟合优劣的结果类似:直角修正模型 > 直角双曲线模型/Michaelis-Menten模型。(2)层级间叶片光合响应参数的差异显著性因模型而有别,各模型得到的方向间叶片光合响应参数值的差异均不显著。(3)模型对初始量子效率、光响应最大净光合速率、光饱和点、暗呼吸速率、CO2响应最大净光合速率和CO2饱和点的影响更大,层级对光补偿点、初始羧化效率、CO2补偿点和光呼吸速率的影响更大,方向对光合响应参数无显著影响,光饱和点、CO2饱和点、初始羧化效率和CO2补偿点还受到交互作用的显著影响。结论相对于其他模型,直角修正模型能更好地拟合无患子光合响应曲线,得到的光合响应参数也较准确;模型对所有光合响应参数的影响是极显著的,模型的筛选很重要。

     

  • 图  1  无患子冠层光合测定位置示意图

                        △. 测点位置。△, the position of measuring point.

    Figure  1.  Lay-out diagram of positions for measuring canopy photosynthesis of Sapindus mukorossi

    表  1  试验树的树体特征

    Table  1.   Features of the test trees

    试验树编号
    No. of test trees
    树高
    Tree height/m
    东西冠幅
    Crown width of
    east and west/m
    南北冠幅
    Crown width of
    north and south/m
    胸径
    DBH/cm
    枝下高
    Under branch height/m
    上层厚度
    Thickness of
    upper layer/m
    中层厚度
    Thickness of
    middle layer/m
    下层厚度
    Thickness of
    lower layer/m
    1号 No.1 5.132 5.113 4.952 13.1 1.401 1.676 1.215 1.132
    2号 No.2 5.158 5.217 4.913 13.4 1.362 1.723 1.264 1.068
    3号 No.3 5.251 5.320 5.186 12.8 1.312 1.757 1.311 1.253
    下载: 导出CSV

    表  2  不同Pn-PAR和Pn-Ci模型的拟合精度

    Table  2.   Fitting accuracy of different Pn-PAR and Pn-Ci models

    位置 Position  拟合精度
    Fitting accuracy
    光响应模型 Pn-PAR model CO2响应模型 CO2 response model
    RHM NRHM MRHM MEM RHM MRHM MMM
    上层 Upper layer MSE 0.823 0.536 0.127 0.161 0.581 0.470 0.581
    R2 0.977 0.985 0.997 0.996 0.993 0.995 0.993
    中层 Middle layer MSE 0.724 0.489 0.148 0.180 0.438 0.338 0.438
    R2 0.982 0.988 0.995 0.994 0.994 0.995 0.994
    下层 Lower layer MSE 0.741 0.532 0.236 0.277 0.466 0.223 0.466
    R2 0.975 0.982 0.992 0.990 0.994 0.997 0.994
    东 East MSE 0.661 0.437 0.150 0.169 0.358 0.255 0.358
    R2 0.979 0.986 0.996 0.995 0.995 0.997 0.995
    西 West MSE 0.633 0.411 0.144 0.181 0.538 0.505 0.538
    R2 0.980 0.987 0.996 0.994 0.993 0.995 0.993
    南 South MSE 0.755 0.497 0.195 0.226 0.469 0.295 0.469
    R2 0.977 0.985 0.994 0.993 0.994 0.996 0.994
    北 North MSE 0.711 0.539 0.213 0.240 0.463 0.309 0.463
    R2 0.977 0.982 0.994 0.992 0.994 0.996 0.994
    注:RHM. 直角双曲线模型;NRHM. 非直角双曲线模型;MRHM. 直角修正模型;MEM. 指数修正模型。下同。Notes: RHM, rectangular hyperbolic model; NRHM, non-rectangular hyperbolic model; MRHM, modified rectangular hyperbolic model; MEM, modified exponential model. The same below.
    下载: 导出CSV

    表  3  不同模型及无患子冠层不同部位叶片光合响应参数的方差分析

    Table  3.   Variance analysis of photosynthetic response parameters of different models in different parts of S. mukorossi canopy

    指标
    Index
    变异来源
    Source of variation
    光合响应参数 Photosynthetic response parameter
    αI Pnmax(I LSP LCP Rd αC Pnmax(C CiSP CiCP Rp
    F
    F value
    模型
    Model
    1 281.861 452.813 8 279.844 18.759 77.626 228.505 710.224 2 239.936 82.198 89.757
    层级
    Layer
    21.404 110.418 27.748 39.821 56.245 451.515 38.443 5.841 115.697 117.487
    方向
    Direction
    2.374 2.275 2.453 3.726 2.220 1.370 0.315 0.927 2.296 2.898
    模型 × 层级
    Model × layer
    2.136 1.220 7.200 0.285 0.433 2.172 0.939 20.255 1.138 0.118
    模型 × 方向
    Model × direction
    0.934 0.169 0.808 0.320 0.164 0.416 0.227 0.520 0.535 0.180
    层级 × 方向
    Layer × direction
    0.760 1.581 1.104 1.855 1.420 10.120 1.043 1.759 6.385 1.729
    模型 × 层级 × 方向
    Model × layer × direction
    0.514 0.217 0.583 0.194 0.046 0.303 0.043 2.218 0.147 0.135
    P
    P value
    模型
    Model
    < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    层级
    Layer
    < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.004 < 0.01 < 0.01
    方向
    Direction
    0.056 0.106 0.068 0.055 0.358 0.156 0.714 0.432 0.122 0.105
    模型 × 层级
    Model × layer
    0.061 0.303 < 0.01 0.943 0.855 0.067 0.447 < 0.01 0.370 0.976
    模型 × 方向
    Model × direction
    0.500 1.000 0.610 0.967 0.997 0.866 0.967 0.791 0.780 0.981
    层级 × 方向
    Layer × direction
    0.703 0.161 0.366 0.131 0.248 < 0.01 0.405 0.076 < 0.01 0.257
    模型 × 层级 × 方向
    Model × layer × direction
    0.946 1.000 0.904 1.000 1.000 0.987 1.000 0.019 1.000 1.000
    注:α(I). 初始量子效率;Pnmax(I). 光响应最大净光合速率;LSP. 光饱和点;LCP. 光补偿点;Rd. 暗呼吸速率;α(C). 初始羧化效率;Pnmax(C). CO2响应最大净光合速率;CiSP. CO2饱和点;CiCP. CO2补偿点;Rp. 光呼吸速率。下同。Notes: α(I), initial carboxylation efficiency; Pnmax(I), maximum photosynthesis rate of response for light; LSP, light saturation point; LCP, light compensation point; Rd, dark-respiration rate; α(C), initial carboxylation efficiency; Pnmax(C), maximum photosynthesis rate of response for CO2; CiSP, CO2 saturation point; CiCP, CO2 compensation point; Rp, photo-respiration rate. The same below.
    下载: 导出CSV

    表  4  无患子树冠各层级叶片不同Pn-PAR模型拟合的光响应参数值

    Table  4.   Pn-PAR response parameters of leaves in different layers of S. mukorossi canopy

    位置
    Position
    模型
    Model
    光合响应参数 Photosynthetic response parameter
    αI Pnmax(I/
    (μmol·m− 2·s− 1
    LSP/
    (μmol·m− 2·s− 1
    LCP/
    (μmol·m− 2·s− 1
    Rd/
    (μmol·m− 2·s− 1
    上层
    Upper layer
    RHM 0.075 ± 0.002aA 18.044 ± 0.469aA 391.458 ± 5.125aA 40.009 ± 3.446aA 2.568 ± 0.124aA
    NRHM 0.038 ± 0.002bA 15.067 ± 0.377bA 468.455 ± 15.438bA 47.812 ± 5.546aA 1.780 ± 0.136bA
    MRHM 0.044 ± 0.002cA 13.102 ± 0.544cA 1 110.128 ± 28.085cA 45.820 ± 4.986aA 1.886 ± 0.113bcA
    MEM 0.040 ± 0.002bA 13.153 ± 0.504cA 1 079.776 ± 12.353cA 46.608 ± 5.263aA 1.771 ± 0.111bA
    仪器测定
    Measured by instrument
    13.993 ± 0.393cA 1 200dA 40 ~ 60   2.187 ± 0.191cA
    中层
    Middle layer
    RHM 0.076 ± 0.001aAB 16.276 ± 0.797aB 373.078 ± 11.500aB 43.640 ± 4.275aAB 2.751 ± 0.232aAB
    NRHM 0.043 ± 0.003bB 14.031 ± 0.896bAB 382.385 ± 24.289aB 52.099 ± 7.272aA 2.142 ± 0.234bB
    MRHM 0.049 ± 0.004cA 11.349 ± 0.972cB 1 111.302 ± 22.801bA 50.241 ± 5.389aA 2.219 ± 0.335bAB
    MEM 0.043 ± 0.003bA 11.437 ± 0.921cB 1 063.319 ± 29.289bAB 51.312 ± 5.608aAB 2.076 ± 0.348bA
    仪器测定
    Measured by instrument
    12.510 ± 1.122bcB 1 200cA   40 ~ 60  2.483 ± 0.221abAB
    下层
    Lower layer
    RHM 0.077 ± 0.002aB 15.940 ± 0.230aB 376.081 ± 3.619aB 48.014 ± 3.801aB 2.988 ± 0.204aB
    NRHM 0.043 ± 0.002bB 13.726 ± 0.305bB 412.835 ± 6.835aB 58.259 ± 5.786bA 2.370 ± 0.157bcB
    MRHM 0.047 ± 0.002cA 11.253 ± 0.473cB 1 087.184 ± 40.961bA 56.661 ± 5.973abA 2.402 ± 0.166bcB
    MEM 0.041 ± 0.001bA 11.107 ± 0.466cB 1 030.631 ± 24.385cB 58.513 ± 6.141bB 2.247 ± 0.169bA
    仪器测定
    Measured by instrument
    12.277 ± 0.756cB 1 200dA   40 ~ 60   2.617 ± 0.200cB
    注:同列数据后不同小写字母表示模型间差异显著,同列数据后不同大写字母表示层级间差异显著。下同。Notes: different lowercase letters behind the same column represent significant difference among different models; different capital letters behind the same column represent significant difference among different canopy layers. The same below.
    下载: 导出CSV

    表  5  无患子树冠各层级叶片不同Pn-Ci模型拟合的CO2响应参数值

    Table  5.   CO2 response parameters of leaves in different parts of S. mukorossi canopy by varied Pn-Ci fitting models

    位置
    Position
    模型
    Model
    光合响应参数 Photosynthetic response parameter
    αC Pnmax(C/
    (μmol·m− 2·s− 1)
    CiSP/
    (μmol·m− 2·s− 1)
    CiCP/
    (μmol·m− 2·s− 1)
    RP/
    (μmol·m− 2·s− 1)
    上层
    Upper layer
    RHM 0.157 ± 0.017aA 41.143 ± 1.600aA 532.685 ± 3.228aA 72.363 ± 2.706aA 8.983 ± 1.092aA
    MRHM 0.111 ± 0.013bA 25.695 ± 0.727bA 1687.327 ± 69.859bA 67.928 ± 3.153aAB 6.687 ± 1.087bA
    MMM 0.157 ± 0.017aA 41.143 ± 1.600aA 532.685 ± 3.228aA 72.363 ± 2.706aA 8.983 ± 1.092aA
    仪器测定
    Measured by instrument
    25.595 ± 0.737bA 1 372.517 ± 148.994cAB 67.685 ~ 90.082
    中层
    Middle layer
    RHM 0.143 ± 0.011aA 36.972 ± 0.987aB 524.590 ± 6.366aA 71.313 ± 1.560aA 8.078 ± 0.570aAB
    MRHM 0.096 ± 0.011bA 23.355 ± 0.629bB 1 686.436 ± 126.385bA 65.764 ± 1.082bA 5.591 ± 0.575bAB
    MMM 0.143 ± 0.011aA 36.972 ± 0.987aB 524.590 ± 6.366aA 71.313 ± 1.560aA 8.078 ± 0.570aAB
    仪器测定
    Measured by instrument
    23.442 ± 0.419bB 1 251.471 ± 21.290cA 73.015 ~ 82.999
    下层
    Lower layer
    RHM 0.088 ± 0.009aB 37.678 ± 0.614aB 682.982 ± 27.242aB 80.555 ± 1.698aB 5.939 ± 0.455aB
    MRHM 0.056 ± 0.002bB 23.095 ± 0.450bB 1 539.553 ± 108.241bA 71.589 ± 3.047bB 3.738 ± 0.091bB
    MMM 0.088 ± 0.009aB 37.678 ± 0.614aB 682.982 ± 27.242aB 80.555 ± 1.698aB 5.939 ± 0.455aB
    仪器测定
    Measured by instrument
    23.200 ± 0.324bB 1 420.349 ± 32.852bB 71.451 ~ 91.422
    下载: 导出CSV
  • [1] Larbi A, Vázquez S, Eljendoubi H, et al. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation[J]. Photosynthesis Research, 2015, 123(2): 141−155. doi: 10.1007/s11120-014-0052-2
    [2] Cano F J, Sánchez-Gómez D, Rodríguez-Calcerrada J, et al. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers[J]. Plant, Cell & Environment, 2013, 36(11): 1961−1980. doi: 10.1111/pce.12103
    [3] 郝建, 潘丽琴, 潘启龙, 等. 格木人工林不同冠层光合特征[J]. 浙江农林大学学报, 2017, 34(5):871−877. doi: 10.11833/j.issn.2095-0756.2017.05.014

    Hao J, Pan L Q, Pan Q L, et al. Photosynthetic characteristics in different canopy positions of an Erythrophleum fordii plantation[J]. Journal of Zhejiang A&F University, 2017, 34(5): 871−877. doi: 10.11833/j.issn.2095-0756.2017.05.014
    [4] Lombardini L, Restrepo-Diaz H, Volder A. Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves[J]. Journal of the Americal Society for Horticultural Science, 2009, 134(30): 372−378. doi: 10.1051/fruits/2009013
    [5] 冷寒冰, 秦俊, 叶康, 等. 不同光照环境下荷花叶片光合光响应模型比较[J]. 应用生态学报, 2014, 25(10):2855−2860. doi: 10.13287/j.1001-9332.20140801.010

    Leng H B, Qin J, Ye K, et al. Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2855−2860. doi: 10.13287/j.1001-9332.20140801.010
    [6] Chen Z Y, Peng Z S, Yang J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L[J]. Photosynthetica, 2011, 49(3): 467−471. doi: 10.1007/s11099-011-0056-5
    [7] 邓云鹏, 雷静品, 潘磊, 等. 不同种源栓皮栎光响应曲线的模型拟合及参数比较[J]. 生态学杂志, 2016, 35(2):387−394. doi: 10.13292/j.1000-4890.201602.035

    Deng Y P, Lei J P, Pan L, et al. Model fitting of photosynthetic light-response curves in different Quercus variabilis provenances and its parameter comparison[J]. Chinese Journal of Ecology, 2016, 35(2): 387−394. doi: 10.13292/j.1000-4890.201602.035
    [8] 刘强, 李凤日, 谢龙飞. 人工长白落叶松冠层光合作用−光响应曲线最优模型[J]. 应用生态学报, 2016, 27(8):2420−2428. doi: 10.13287/j.1001-9332.201608.023

    Liu Q, Li F R, Xie L F. Optimal model of photosynthesis-light response curve in canopy of planted Larix olgensistree[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2420−2428. doi: 10.13287/j.1001-9332.201608.023
    [9] Gomes-Laranjo J, Coutinho J P, Galhano V, et al. Differences in photosynthetic apparatus of leaves from different sides of the chestnut canopy[J]. Photosynthetica, 2008, 46(1): 63−72. doi: 10.1007/s11099-008-0012-1
    [10] 赵娜, 李富荣. 温度升高对不同生活型植物光合生理特性的影响[J]. 生态环境学报, 2016, 25(1):60−66.

    Zhao N, Li F R. Effects of enhanced temperature on the photosynthetic characteristics in different life-form plants[J]. Ecology and Environmental Sciences, 2016, 25(1): 60−66.
    [11] 赖金莉, 陈剑成, 陈凌艳, 等. 凹叶厚朴和无患子光响应特征与叶绿素荧光参数的比较[J]. 福建农林大学学报(自然科学版), 2018, 47(2):174−180.

    Lai J L, Chen J C, Chen L Y, et al. Comparisons on photosynthetic light response characteristics and chlorophyll fluorescence parameters between Magnolia officinalis subsp. biloba and Sapindus mukorossi[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(2): 174−180.
    [12] 刁松锋, 邵文豪, 董汝湘, 等. 无患子光合生理日变化及其与生理生态因子的关系[J]. 西北植物学报, 2014, 34(4):828−834.

    Diao S F, Shao W H, Dong R X, et al. Diurnal variation of photosynthesis and relationship with the eco-physiological factors of Sapindus mukorossi[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4): 828−834.
    [13] Baly E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London, 1935, 149: 596−596.
    [14] Thornley J H M. Mathematical models in plant physiology: a quantitative approach to problems in plant and crop physiology[M]//Mathematical models in plant physiology. London: Academic Press, 1976.
    [15] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637−640. doi: 10.1007/s11099-007-0110-5
    [16] 陈卫英, 陈真勇, 罗辅燕, 等. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2013, 36(12):1277−1285.

    Chen W Y, Chen Z Y, Luo F Y, et al. Comparison between modified exponential model and common models of light-response curve[J]. Chinese Journal of Plant Ecology, 2013, 36(12): 1277−1285.
    [17] 蔡时青, 许大全. 大豆叶片CO2补偿点和光呼吸的关系[J]. 植物生理学报, 2000, 26(6):545−550. doi: 10.3321/j.issn:1671-3877.2000.06.015

    Cai S Q, Xu D Q. Relationship between the CO2 compensation point and photorespiration in soybean leaves[J]. Acta Photophysiologica Sinica, 2000, 26(6): 545−550. doi: 10.3321/j.issn:1671-3877.2000.06.015
    [18] 叶子飘, 于强. 光合作用对胞间和大气CO2响应曲线的比较[J]. 生态学杂志, 2009, 28(11):2233−2238.

    Ye Z P, Yu Q. A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations[J]. Chinese Journal of Ecology, 2009, 28(11): 2233−2238.
    [19] Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant Cell & Environment, 2006, 15(3): 271−282.
    [20] 叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012

    Ye Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012
    [21] Walker D A, Jarvis P G, Farquhar G D, et al. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1989, 323: 313−326. doi: 10.1098/rstb.1989.0013
    [22] 廖小锋, 刘济明, 张东凯, 等. 野生小蓬竹的光合光响应曲线及其模型拟合[J]. 中南林业科技大学学报, 2012, 32(3):124−128. doi: 10.3969/j.issn.1673-923X.2012.03.024

    Liao X F, Liu J M, Zhang D K, et al. Model fitting on light response curve of photosynthesis of wild Drepanostachyum luodianense[J]. Journal of Central South University of Forestry & Technology, 2012, 32(3): 124−128. doi: 10.3969/j.issn.1673-923X.2012.03.024
    [23] 柴胜丰, 唐健民, 杨雪, 等. 4种模型对黄枝油杉光合光响应曲线的拟合分析[J]. 广西科学院学报, 2015, 31(4):286−291. doi: 10.3969/j.issn.1002-7378.2015.04.011

    Chai S F, Tang J M, Yang X, et al. Fitting analysis for 4 photosynthesis light response curve models of Keteleeria calcarea[J]. Journal of Guangxi Academy of Sciences, 2015, 31(4): 286−291. doi: 10.3969/j.issn.1002-7378.2015.04.011
    [24] 王秀伟, 毛子军. 7个光响应曲线模型对不同植物种的实用性[J]. 植物研究, 2009, 29(1):43−48.

    Wang X W, Mao Z J. Practicability of 7 light responsive curve models to different plant species[J]. Bulletin of Botanical Research, 2009, 29(1): 43−48.
    [25] 蒋冬月, 钱永强, 费英杰, 等. 柳属植物光合−光响应曲线模型拟合[J]. 核农学报, 2010, 34(6):727−740.

    Jiang D Y, Qiao Y Q, Fei Y J, et al. Modeling photosynthetic light-response curve in Salix L.[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740.
    [26] 钱莲文, 张新时, 杨智杰, 等. 几种光合作用光响应典型模型的比较研究[J]. 植物科学学报, 2009, 27(2):197−203. doi: 10.3969/j.issn.2095-0837.2009.02.013

    Qian L W, Zhang X S, Yang Z J, et al. Comparison of different light response models for photosynthesis[J]. Journal of Wuhan Botanical Research, 2009, 27(2): 197−203. doi: 10.3969/j.issn.2095-0837.2009.02.013
    [27] 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学报, 2005, 22(增刊1):118−127.

    Li L F, Bao W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Bulletin of Botany, 2005, 22(Suppl.1): 118−127.
    [28] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339.

    Liu X J, Ma K P. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339.
    [29] Sims D A, Seemann J R, Luo Y. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves[J]. Functional Ecology, 1998, 12(2): 185−194. doi: 10.1046/j.1365-2435.1998.00194.x
    [30] Sage R F, Saemann J R. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants[J]. Plant Physiology, 1993, 102: 21−28. doi: 10.1146/annurev.pp.43.060192.002215
    [31] Sui X L, Sun J L, Wang S H, et al. Photosynthetic induction in leaves of two cucumber genotypes differing in sensitivity to low-light stress[J]. African Journal of Biotechnology, 2011, 10(12): 2238−2247.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  971
  • HTML全文浏览量:  481
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-17
  • 修回日期:  2018-11-28
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回