高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晋西黄土区典型林分水源涵养能力评价

张佳楠 张建军 张海博 孙若修 张守红 杨云斌

张佳楠, 张建军, 张海博, 孙若修, 张守红, 杨云斌. 晋西黄土区典型林分水源涵养能力评价[J]. 北京林业大学学报, 2019, 41(8): 105-114. doi: 10.13332/j.1000-1522.20180173
引用本文: 张佳楠, 张建军, 张海博, 孙若修, 张守红, 杨云斌. 晋西黄土区典型林分水源涵养能力评价[J]. 北京林业大学学报, 2019, 41(8): 105-114. doi: 10.13332/j.1000-1522.20180173
Zhang Jianan, Zhang Jianjun, Zhang Haibo, Sun Ruoxiu, Zhang Shouhong, Yang Yunbin. Water conservation capacity of typical forestlands in the Loess Plateau of Western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 105-114. doi: 10.13332/j.1000-1522.20180173
Citation: Zhang Jianan, Zhang Jianjun, Zhang Haibo, Sun Ruoxiu, Zhang Shouhong, Yang Yunbin. Water conservation capacity of typical forestlands in the Loess Plateau of Western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 105-114. doi: 10.13332/j.1000-1522.20180173

晋西黄土区典型林分水源涵养能力评价

doi: 10.13332/j.1000-1522.20180173
基金项目: 国家重点研发计划项目(2016YFC0501704)
详细信息
    作者简介:

    张佳楠。主要研究方向:森林水文与景观格局。Email:zhangjianan1994@foxmail.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    张建军,教授,博士生导师。主要研究方向:水土保持与植被恢复、水文学。Email:zhangjianjun@bjfu.edu.cn 地址:同上

  • 中图分类号: S715.7

Water conservation capacity of typical forestlands in the Loess Plateau of Western Shanxi Province of northern China

  • 摘要: 目的评价晋西黄土区典型林分的水源涵养能力,为筛选水源涵养林、水土保持林构建与管护提供依据。方法以山西吉县蔡家川小流域的山杨辽东栎次生混交林、油松人工林、侧柏人工林、刺槐人工林4种典型林分类型为研究对象,对植被层、枯落物层和土壤层的持水能力进行测定,采用熵权法(EWM)对各林分类型的水源涵养能力进行综合分析。结果(1)4种林分类型植被层的持水能力依次为:油松人工林(17.79 t/hm2) > 侧柏人工林(13.55 t/hm2) > 刺槐人工林(12.81 t/hm2) > 山杨辽东栎次生混交林(6.71 t/hm2)。油松人工林、侧柏人工林的主要持水层为乔木层;刺槐人工林中乔灌草的持水量相近;山杨辽东栎次生混交林中主要持水层为草本层。(2)4种林分类型中枯落物有效拦蓄量分别为:山杨辽东栎次生混交林(23.02 t/hm2) > 侧柏人工林(13.00 t/hm2) > 刺槐人工林(10.36 t/hm2) > 油松人工林(2.81 t/hm2)。(3)4种林地土壤最大蓄水能力分别为:山杨辽东栎次生混交林地(3 182.43 t/hm2) > 油松人工林地(3 176.67 t/hm2) > 侧柏人工林地(2 995.3 t/hm2) > 刺槐人工林地(2 803.5 t/hm2)。其中除山杨辽东栎次生混交林地与油松人工林地持水能力差异不显著外,其余各林地持水能力之间均存在显著差异。(4)4种典型林分类型水源涵养能力的综合排序为:山杨辽东栎次生混交林 > 侧柏人工林 > 油松人工林 > 刺槐人工林,影响水源涵养能力的主要因素为林下草本层与枯落物。结论从涵养水源的角度出发,晋西黄土区应采用仿拟自然植被技术、封山育林等加强次生植被的建设与管护,营造林下草本层和枯枝落叶层丰富的植物群落,以达到保持水土、涵养水源、改善生态环境的多重作用。

     

  • 图  1  不同林分类型植被层的最大持水量

    A.乔木层的最大持水量;B.灌木层的最大持水量;C.草本层的最大持水量。A, maximum water-holding capacity of arbor layer;B, maximum water-holding capacity of shrub layer;C, maximum water-holding capacity of herb layer.

    Figure  1.  Maximum water-holding capacity characteristics of vegetation layers with different forestlands

    表  1  不同林分标准地基本特征

    Table  1.   Basic features of different research stands

    林分类型
    Forest type
    海拔
    Altitude/m
    坡度
    Slope/(°)
    坡向
    Slope aspect/(°)
    林龄/a
    Forest age/year
    平均高度
    Mean height/m
    平均胸径
    Mean
    DBH/cm
    密度/(株·hm− 2)
    Density/
    (plant·ha− 1)
    郁闭度
    Canopy density
    林下植被盖度
    Understory
    coverage
    山杨辽东栎次生混交林
    Populus davidiana × Quercus liaotungensis secondary mixed forest (PQ)
    1 074 30 NE13 26 9.48 10.19 1 475 0.85 0.75
    油松人工林
    Pinus tabuliformis forest (PT)
    1 054 30 NE270 25 7.31 12.83 675 0.7 0.15
    侧柏人工林
    Platycladus orientalis forest (PO)
    1 001 21 NE330 25 4.87 7.22 1 225 0.7 0.3
    刺槐人工林
    Robinia pseudoacacia forest (RP)
    958 15 NE33 24 6.1 9.38 2 505 0.5 0.7
    下载: 导出CSV

    表  2  不同林分类型枯落物层的持水能力分析

    Table  2.   Water-holding capacity characteristics of litter layer in different forestlands

    林分类型
    Forest type
    最大持水量/(t·hm− 2)
    Maximum water holding capacity/(t·ha− 1)
    最大持水率
    Maximum water holding rate/%
    有效拦蓄量/(t·hm− 2)
    Effective water-holding capacity/(t·ha− 1)
    未分解层
    Undecomposed
    layer
    半分解层
    Semi-decomposed layer
    总计
    Total
    未分解层
    Undecomposed
    layer
    半分解层
    Semi-decomposed layer
    平均
    Average
    未分解层
    Undecomposed
    layer
    半分解层
    Semi-decomposed layer
    总计
    Total
    PQ 8.65 21.84 30.49 215.91 190.62 197.17 6.58 16.43 23.02
    PT 1.09 3.6 4.69 50.2 119.61 90.6 0.84 1.97 2.81
    PO 6.87 11.05 17.92 115.27 146.92 139.59 5.43 7.55 12.98
    RP 6.86 7.78 14.64 383.57 284.25 323.48 5.17 5.19 10.36
    下载: 导出CSV

    表  3  不同林地土壤孔隙状况

    Table  3.   Soil porosity characteristics with different forestlands

    指标
    Item
    土壤深度
    Soil depth/cm
    PQPTPORP
    总孔隙度
    Total soil porosity/%
    0 ~ 10 56.50 ± 3.17 53.12 ± 1.65 49.63 ± 6.14 44.61 ± 1.53
    10 ~ 20 54.58 ± 1.85 53.28 ± 1.60 53.76 ± 2.66 48.41 ± 1.34
    20 ~ 30 53.58 ± 0.15 52.18 ± 2.30 48.43 ± 7.41 49.58 ± 2.07
    30 ~ 40 51.75 ± 0.52 50.78 ± 4.08 49.91 ± 2.18 46.38 ± 3.43
    40 ~ 50 50.00 ± 1.34 55.11 ± 3.42 49.35 ± 0.79 46.27 ± 1.25
    50 ~ 60 51.82 ± 0.78 53.19 ± 0.97 48.46 ± 1.33 45.09 ± 0.56
    平均值 Mean 53.04 ± 0.62a 52.94 ± 0.74a 49.92 ± 0.72b 46.73 ± 1.19c
    毛管孔隙度
    Capillary porosity/%
    0 ~ 10 52.97 ± 2.49 49.82 ± 1.60 47.15 ± 5.67 43.12 ± 1.59
    10 ~ 20 50.93 ± 1.08 50.22 ± 2.14 51.29 ± 2.78 46.89 ± 0.99
    20 ~ 30 50.72 ± 0.78 49.64 ± 1.84 45.83 ± 7.49 47.95 ± 1.73
    30 ~ 40 48.75 ± 0.30 48.05 ± 4.18 47.41 ± 2.27 44.99 ± 3.15
    40 ~ 50 47.37 ± 1.31 52.23 ± 3.41 47.65 ± 0.80 44.46 ± 1.56
    50 ~ 60 48.83 ± 0.15 50.55 ± 0.28 46.59 ± 1.30 43.50 ± 0.90
    平均值 Mean 49.93 ± 0.36a 50.09 ± 0.67a 47.65 ± 0.77b 45.15 ± 1.16c
    非毛管孔隙度
    Non-capillary porosity/%
    0 ~ 10 3.54 ± 0.70 3.30 ± 0.21 2.48 ± 0.53 1.49 ± 0.13
    10 ~ 20 3.65 ± 0.83 3.05 ± 0.67 2.47 ± 0.45 1.53 ± 0.35
    20 ~ 30 2.86 ± 0.65 2.54 ± 0.87 2.61 ± 0.95 1.62 ± 0.40
    30 ~ 40 3.00 ± 0.64 2.73 ± 1.31 2.50 ± 0.21 1.40 ± 0.29
    40 ~ 50 2.63 ± 0.22 2.88 ± 0.03 1.70 ± 0.18 1.81 ± 0.31
    50 ~ 60 2.99 ± 0.68 2.64 ± 1.10 1.87 ± 0.13 1.59 ± 0.47
    平均值 Mean 3.11 ± 0.27a 2.86 ± 0.31a 2.27 ± 0.16b 1.57 ± 0.15c
    注:同一指标中,不同字母表示不同林分类型差异显著(P < 0.05)。下同。Notes: different capital letters mean significant differences in the same item (P < 0.05). Same as below.
    下载: 导出CSV

    表  4  不同林地土壤持水能力

    Table  4.   Water-holding capacity characteristics of soil layers in different forestlands

    指标
    Item
    土壤深度
    Soil depth/cm
    PQPTPORP
    最大蓄水能力/(t·hm− 2)
    Maximum water-holding capacity/(t·ha− 1)
    0 ~ 10 565.03 ± 31.75 531.23 ± 16.51 496.27 ± 61.43 446.13 ± 15.25
    10 ~ 20 545.83 ± 18.50 532.77 ± 15.95 537.57 ± 26.59 484.13 ± 13.36
    20 ~ 30 535.77 ± 1.46 521.83 ± 23.04 484.33 ± 74.05 495.77 ± 20.69
    30 ~ 40 517.53 ± 5.22 507.83 ± 40.84 499.07 ± 21.81 463.83 ± 34.25
    40 ~ 50 500.03 ± 13.44 551.10 ± 34.20 493.50 ± 7.91 462.70 ± 12.46
    50 ~ 60 518.23 ± 7.75 531.90 ± 9.72 484.57 ± 13.32 450.93 ± 5.59
    总蓄水量
    Total volume
    3 182.43 ± 37.3a 3 176.67 ± 44.56a 2 995.30 ± 43.37b 2 803.50 ± 71.27c
    毛管蓄水能力/(t·hm− 2)
    Capillary water-holding capacity/(t·ha− 1)
    0 ~ 10 529.67 ± 24.88 498.23 ± 15.96 471.50 ± 56.68 431.2 ± 15.93
    10 ~ 20 509.33 ± 10.83 502.23 ± 21.36 512.90 ± 27.79 468.87 ± 9.90
    20 ~ 30 507.20 ± 7.76 496.43 ± 18.40 458.27 ± 74.90 479.53 ± 17.28
    30 ~ 40 487.50 ± 2.95 480.53 ± 41.84 474.07 ± 22.66 449.87 ± 31.54
    40 ~ 50 473.70 ± 13.08 522.27 ± 34.10 476.47 ± 7.98 444.57 ± 15.56
    50 ~ 60 488.33 ± 1.50 505.47 ± 2.82 465.90 ± 13.05 435.00 ± 8.98
    总蓄水量
    Total volume
    2 995.73 ± 21.44a 3 005.17 ± 40.44a 2 859.10 ± 46.02b 2 709.03 ± 69.63c
    非毛管蓄水能力/(t·hm− 2)
    Non-capillary water-holding capacity/(t·ha− 1)
    0 ~ 10 35.37 ± 6.99 33.00 ± 2.14 24.77 ± 5.29 14.93 ± 1.25
    10 ~ 20 36.50 ± 8.32 30.53 ± 6.65 24.67 ± 4.45 15.27 ± 3.46
    20 ~ 30 28.57 ± 6.48 25.40 ± 8.68 26.07 ± 9.51 16.23 ± 3.97
    30 ~ 40 30.03 ± 6.41 27.30 ± 13.08 25.00 ± 2.13 13.97 ± 2.92
    40 ~ 50 26.33 ± 2.20 28.83 ± 0.31 17.03 ± 1.82 18.13 ± 3.10
    50 ~ 60 29.90 ± 6.81 26.43 ± 10.96 18.67 ± 1.27 15.93 ± 4.70
    总蓄水量
    Total volume
    186.70 ± 16.44a 171.50 ± 18.80a 136.20 ± 9.34b 94.47 ± 8.71c
    下载: 导出CSV

    表  5  基于熵权法计算水源涵养能力各指标权重

    Table  5.   Weighted value of water-holding capacity indexes in different forestlands

    一级指标
    Grade I index
    权重
    Weight
    序号
    Serial No.
    二级指标
    Grade II index
    权重
    Weight
    植被层
    Vegetation layer
    0.524 8 F1 郁闭度 Canopy density/% 0.058 1
    F2 密度/(株·hm−2) Density/(plant·ha− 1) 0.074 5
    F3 平均树高 Mean tree height/m 0.074 4
    F4 平均胸径 Mean DBH/cm 0.065 9
    F5 乔木层的最大持水量/(t·hm− 2) Maximum water-holding capacity of arborous layer/(t·ha− 1) 0.059 6
    F6 灌木层的最大持水量/(t·hm− 2) Maximum water-holding capacity of shrub layer/(t·ha− 1) 0.070 3
    F7 草本层的最大持水量/(t·hm− 2) Maximum water-holding capacity of herb layer/(t·ha− 1) 0.121 9
    枯落物层
    Litter layer
    0.245 2 L1 枯落物蓄积量/(t·hm− 2) Litter accumulation/(t·ha− 1) 0.103 4
    L2 枯落物最大持水量/(t·hm− 2) Maximum water holding capacity of litter/(t·ha− 1) 0.066 3
    L3 枯落物有效拦蓄量/(t·hm− 2) Effective water-holding capacity of litter/(t·ha− 1) 0.075 6
    土壤层
    Soil layer
    0.229 9 S1 土壤密度 Soil bulk density/(g·cm− 3) 0.054 8
    S2 自然含水量 Natural moisture content/% 0.056 4
    S3 毛管孔隙度 Capillary porosity/% 0.058 8
    S4 非毛管孔隙度 Non-capillary porosity/% 0.060 0
    下载: 导出CSV

    表  6  典型林分类型水源涵养能力综合评价值

    Table  6.   Comprehensive valuation value of water-holding capacity in different forestlands

    项目 ItemPQPTPORP
    水源涵养能力综合评价值
    Comprehensive evaluation value of water conservation capacity
    0.84 0.39 0.42 0.37
    排名
    Rank
    1 3 2 4
    下载: 导出CSV
  • [1] Robert C, Ralph d, Rudolf d G, et al. The value of the world’ s ecosystem services and natural capital[J]. Nature, 1997, 387: 253−260. doi: 10.1038/387253a0
    [2] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7):314−321.

    Gong S H, Xiao Y, Zheng H, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica, 2017, 37(7): 314−321.
    [3] 周佳雯, 高吉喜, 高志球, 等. 森林生态系统水源涵养服务功能解析[J]. 生态学报, 2018, 38(5):1−7. doi: 10.3969/j.issn.1673-1182.2018.05.001

    Zhou J W, Gao J X, Gao Z Q, et al. Analyzing the water conservation service function of the forest ecosystem[J]. Acta Ecologica Sinica, 2018, 38(5): 1−7. doi: 10.3969/j.issn.1673-1182.2018.05.001
    [4] Zhang B, Xie G D, Yan Y P, et al. Regional differences of water conservation in Beijing’s forest ecosystem[J]. Journal of Forestry Resaerch, 2011, 22(2): 295−300.
    [5] 张文辉, 刘国彬. 黄土高原植被恢复与建设策略[J]. 中国水土保持, 2009(1):24−27, 60. doi: 10.3969/j.issn.1000-0941.2009.01.008

    Zhang W H, Liu G B. Strategies for vegetation restoration and construction in the Loess Plateau[J]. Soil and Water Conservation in China, 2009(1): 24−27, 60. doi: 10.3969/j.issn.1000-0941.2009.01.008
    [6] 朱显谟. 重建土壤水库是黄土高原治本之道[J]. 科技与社会, 2006, 21(4):320−324.

    Zhu X M. Rebuilding soil reservoirs is the root of the Loess Plateau[J]. Science & Technology and Society, 2006, 21(4): 320−324.
    [7] 王先棒, 贺康宁, 董喆, 等. 北川河流域典型林型水源涵养能力评价[J]. 中国水土保持科学, 2017, 15(5):94−102.

    Wang X B, He K N, Dong Z, et al. Evaluation on water conservation capacity of typical forest types in Beichuan river basin[J]. Science of Soil and Water Conservation, 2017, 15(5): 94−102.
    [8] 杨帆, 肖梦景, 杜丹琼, 等. 云南高原盆地城市水源地土壤水源涵养能力研究[J]. 林业调查规划, 2015, 40(2):44−48. doi: 10.3969/j.issn.1671-3168.2015.02.011

    Yang F, Xiao M J, Du D Q, et al. Water conservation capacity of soil in Yunnan Plateau water source basin area[J]. Forest Inventory and Planning, 2015, 40(2): 44−48. doi: 10.3969/j.issn.1671-3168.2015.02.011
    [9] 郭梦娇, 朱江, 程小琴, 等. 辽河源不同林龄油松林水源涵养能力研究[J]. 水土保持学报, 2016, 30(3):279−284.

    Guo M J, Zhu J, Cheng X Q, et al. Water conservation capacity of Pinus tabuliformis forest with different ages at Liaohe River[J]. Journal of Soil and Water Conservation, 2016, 30(3): 279−284.
    [10] 陈丽, 郝晋珉, 陈爱琪, 等. 基于二元水循环的黄淮海平原耕地水源涵养功能研究[J]. 生态学报, 2017, 37(17):1−11.

    Chen L, Hao J M, Chen A Q, et al. Study water on the water conservation function of cultivated land based on dualistic water cycle in Huang-Huai-Hai Plain[J]. Acta Ecologica Sinica, 2017, 37(17): 1−11.
    [11] 张三焕, 赵国柱, 田允哲, 等. 长白山珲春林区森林资源资产生态环境价值的评估研究[J]. 延边大学学报(自然科学版), 2001, 27(2):126−134.

    Zhang S H,Zhao G Z,Tian Y Z, et al. Study on value the ecological environment valuation of forestry resources, for case by Hunchun Forestry in Changbai Mountain[J]. Journal of Yanbian University (Natural Science Edition), 2001, 27(2): 126−134.
    [12] 张庆费, 周晓峰. 黑龙江省汤旺河和呼兰河流域森林对河川年径流量的影响[J]. 植物资源与环境, 1999, 8(1):23−28.

    Zhang Q F, Zhou X F. Influence of forest on runoff discharges in Tangwang River and Hulan River basins of Heilongjiang Province[J]. Journal of Plant Resources and Environment, 1999, 8(1): 23−28.
    [13] 侯晓臣, 孙伟, 李建贵, 等. 森林生态系统水源涵养能力计量方法研究进展与展望[J]. 干旱区资源与环境, 2018, 32(1):121−127.

    Hou X C, Sun W, Li J G, et al. The progress of research and forecast on the quantification of the forest water conservation capacity[J]. Journal of Arid Land Resources and Environment, 2018, 32(1): 121−127.
    [14] 吴丹, 邵全琴, 王浩然, 等. 四川省石棉县森林生态系统水源涵养能力研究[J]. 中南林业科技大学学报, 2017, 37(5):86−92.

    Wu D, Shao Q Q, Wang H R, et al. Research on water conservation capacity of forest ecosystems in Shimian County, Sichuan Province[J]. Journal of Central South University of Forestry & Technology, 2017, 37(5): 86−92.
    [15] 刘璐璐, 邵全琴, 刘纪远, 等. 琼江河流域森林生态系统水源涵养能力估算[J]. 生态环境学报, 2013, 22(3):451−457. doi: 10.3969/j.issn.1674-5906.2013.03.017

    Liu L L, Shao Q Q, Liu J Y, et al. Estimation of forest water conservation capacity in Qiongjiang River Watershed[J]. Ecology and Environmental Sciences, 2013, 22(3): 451−457. doi: 10.3969/j.issn.1674-5906.2013.03.017
    [16] 马维玲, 石培礼, 宗宁, 等. 太行山区主要森林生态系统水源涵养能力[J]. 中国生态农业学报, 2017, 25(4):478−489.

    Ma W L, Shi P L, Zong N, et al. Water conservation capacity of forest ecosystems in Taihang Mountain[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 478−489.
    [17] 王晓学, 沈会涛, 李叙勇, 等. 森林水源涵养功能的多尺度内涵、过程及计量方法[J]. 生态学报, 2013, 33(4):6−17. doi: 10.3969/j.issn.1673-1182.2013.04.002

    Wang X X, Shen H T, Li X Y, et al. Concepts, processes and quantification methods of the forest water conservation at the multiple scales[J]. Acta Ecologica Sinica, 2013, 33(4): 6−17. doi: 10.3969/j.issn.1673-1182.2013.04.002
    [18] 李叶鑫, 吕刚, 刁立夫, 等. 露天煤矿排土场不同植被类型持水能力评价[J]. 水土保持学报, 2017, 31(5):312−317, 323.

    Li Y X, Lü G, Diao L F, et al. Evaluation of water retention capacity of different vegetation types in dump of opencast coal mine[J]. Journal of Soil and Water Conservation, 2017, 31(5): 312−317, 323.
    [19] 史冬梅, 蒋光毅, 彭旭东, 等. 城镇化人为扰动下垫面类型影响水源涵养功能的评价[J]. 农业工程学报, 2017, 33(22):92−102. doi: 10.11975/j.issn.1002-6819.2017.22.012

    Shi D M, Jiang G Y, Peng X D, et al. Evaluation on impact of artificial disturbed underlying surfaces on water retention function during urbanization process[J]. Transaction of the Chinese Society of Agricultural Engineering, 2017, 33(22): 92−102. doi: 10.11975/j.issn.1002-6819.2017.22.012
    [20] 冯运卿, 李雪梅, 李学伟. 基于熵权法与灰色关联分析的铁路安全综合评价[J]. 安全与环境学报, 2014, 14(2):73−79.

    Feng Y Q, Li X M, Li X W. Comprehensive evaluation method for the railway safety based on the entropy method and the grey relation analysis[J]. Journal of Safety and Environment, 2014, 14(2): 73−79.
    [21] 陈超. 青海大通高寒区典型林分水源涵养功能研究[D]. 北京: 北京林业大学, 2014.

    Chen C. Research on the water conservation function of typical forest in alpine region of Qinghai Datong County[D]. Beijing: Beijing Forestry University, 2014.
    [22] 张振明, 余新晓, 牛健植, 等. 不同林分枯落物层的水文生态功能[J]. 水土保持学报, 2005, 19(3):139−143. doi: 10.3321/j.issn:1009-2242.2005.03.034

    Zhang Z M, Yu X X, Niu J Z, et al. Ecohydrological functions of litter on different forest stands[J]. Journal of Soil and Water Conservation, 2005, 19(3): 139−143. doi: 10.3321/j.issn:1009-2242.2005.03.034
    [23] 李民义, 张建军, 王春香, 等. 晋西黄土区不同土地利用方式对土壤物理性质的影响[J]. 水土保持学报, 2013, 27(3):127−132, 139.

    Li M Y, Zhang J J, Wang C X, et al. Effects of land use types on soil physical properties in Loess Plateau of western Shanxi[J]. Journal of Soil and Water Conservation, 2013, 27(3): 127−132, 139.
    [24] 周娟. 大辽河流域水源涵养林水文效应及其水质研究[D]. 北京: 北京林业大学, 2014.

    Zhou J. Research on hydrological effects and water quality in water conservation forest in great Liaohe River Basin[D]. Beijing: Beijing Forestry University, 2014.
    [25] 田超, 杨新兵, 李军, 等. 冀北山地阴坡枯落物层和土壤层水文效应研究[J]. 水土保持学报, 2011, 25(2):97−103.

    Tian C, Yang X B, Li J, et al. Hydrological effects of forest litters and soil in the slope of north mountain of Hebei Province[J]. Journal of Soil and Water Conservation, 2011, 25(2): 97−103.
    [26] 胡淑萍, 余新晓, 岳永杰. 北京百花山森林枯落物层和土壤层水文效应研究[J]. 水土保持学报, 2008, 22(1):146−150. doi: 10.3321/j.issn:1009-2242.2008.01.031

    Hu S P, Yu X X, Yue Y J. Hydrological effects of forest litters and soil in Baihua Mountain[J]. Journal of Soil and Water Conservation, 2008, 22(1): 146−150. doi: 10.3321/j.issn:1009-2242.2008.01.031
    [27] 赵忠, 李鹏, 王乃江. 渭北黄土高原主要造林树种根系分布特征的研究[J]. 应用生态学报, 2000, 11(1):38−40.

    Zhao Z, Li P, Wang N J. Distribution patterns of root systems of main planting tree species in Weibei Loess Plateau[J]. Chinese Journal of Applied Ecology, 2000, 11(1): 38−40.
    [28] Zhang B, Li W H, Xie G D, et al. Water conservation of forest ecosystem in Beijing and its value[J]. Ecological Economics, 2010, 69(7): 1416−1426. doi: 10.1016/j.ecolecon.2008.09.004
    [29] 郭军庭, 张志强, 唐丽霞. 晋西黄土区小流域典型植被水文功能优化研究[J]. 水土保持通报, 2010, 30(3):36−40.

    Guo J T, Zhang Z Q, Tang L X. Improving hydrological functions of a small watershed in hilly and gully loess area by vegetation type optimization[J]. Bulletin of Soil and Water Conservation, 2010, 30(3): 36−40.
    [30] 程云. 缙云山森林涵养水源机制及其生态功能价值评价研究[D]. 北京: 北京林业大学, 2007.

    Cheng Y. Mechanism of water resources conservation and recharge of forest and its ecological function value evaluation in Jinyun Mountain [D]. Beijing: Beijing Forestry University, 2007.
    [31] 辛慧. 泰山森林涵养水源功能与价值评估[D]. 泰安: 山东农业大学, 2008.

    Xin H. Evaluation on water conservation function of forest in Mount Tai [D]. Taian: Shandong Agricultural University, 2008.
    [32] 白盛元, 汪有科, 马建鹏, 等. 黄土高原半干旱区降雨入渗试验研究[J]. 干旱地区农业研究, 2016, 34(2):218−223, 231. doi: 10.7606/j.issn.1000-7601.2016.02.35

    Bai S Y, Wang Y K, Ma J P, et al. Experimental study on rainfall infiltration in semiarid region of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2016, 34(2): 218−223, 231. doi: 10.7606/j.issn.1000-7601.2016.02.35
    [33] 马小欣, 赵鹏飞, 陆贵巧, 等. 冀北山区华北落叶松人工林水源涵养功能评价[J]. 中南林业科技大学学报, 2016, 36(4):90−95.

    Ma X X, Zhao P F, Lu G Q, et al. Evaluation on water conservation function of Larix prinicipis-rapprechii plantations in mountainous area of Northern Hebei Province[J]. Journal of Central South University of Forestry & Technology, 2016, 36(4): 90−95.
    [34] 郝姣姣, 吴祥云, 孙一荣. 辽东山区水源涵养林群落结构的分析与评价[J]. 安徽农业科学, 2010, 38(27):15037−15039. doi: 10.3969/j.issn.0517-6611.2010.27.085

    Hao J J, Wu X Y, Sun Y R. Analysis and evaluation on community structure of water conservation forest in the east Liaoning Mountain Region[J]. Journal of Anhui Agricultural Sciences, 2010, 38(27): 15037−15039. doi: 10.3969/j.issn.0517-6611.2010.27.085
    [35] 张灿强, 李文华, 张彪, 等. 基于土壤动态蓄水的森林水源涵养能力计量及其空间差异[J]. 自然资源学报, 2012, 27(4):697−704. doi: 10.11849/zrzyxb.2012.04.015

    Zhang C Q, Li W H, Zhang B, et al. Water conservation of forest ecosystem and its spatial differences based on dynamics of soil water storage in Anji County[J]. Journal of Natural Resources, 2012, 27(4): 697−704. doi: 10.11849/zrzyxb.2012.04.015
    [36] 郭凤台. 土壤水库及其调控[J]. 华北水利水电学院学报, 1996, 17(2):73−81.

    Guo F T. Soil reservoir and its regulation[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 1996, 17(2): 73−81.
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  1732
  • HTML全文浏览量:  873
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-07-05
  • 网络出版日期:  2019-07-02
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回