高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林业并联式铰接底盘优化设计与越障性能仿真分析

赵可 刘晋浩 黄青青 孙浩 王典

赵可, 刘晋浩, 黄青青, 孙浩, 王典. 林业并联式铰接底盘优化设计与越障性能仿真分析[J]. 北京林业大学学报, 2018, 40(10): 131-140. doi: 10.13332/j.1000-1522.20180179
引用本文: 赵可, 刘晋浩, 黄青青, 孙浩, 王典. 林业并联式铰接底盘优化设计与越障性能仿真分析[J]. 北京林业大学学报, 2018, 40(10): 131-140. doi: 10.13332/j.1000-1522.20180179
Zhao Ke, Liu Jinhao, Huang Qingqing, Sun Hao, Wang Dian. Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis[J]. Journal of Beijing Forestry University, 2018, 40(10): 131-140. doi: 10.13332/j.1000-1522.20180179
Citation: Zhao Ke, Liu Jinhao, Huang Qingqing, Sun Hao, Wang Dian. Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis[J]. Journal of Beijing Forestry University, 2018, 40(10): 131-140. doi: 10.13332/j.1000-1522.20180179

林业并联式铰接底盘优化设计与越障性能仿真分析

doi: 10.13332/j.1000-1522.20180179
基金项目: 

国家重点研发计划“战略性国际科技创新合作”重点专项 2016YFE0203400

详细信息
    作者简介:

    赵可。主要研究方向:森林工程和自动化。Email:1285930678@qq.com  地址:100083北京清华东路35号北京林业大学工学院

    责任作者:

    刘晋浩,教授,博士生导师。主要研究方向:林业装备自动化和智能化研究。Email:liujinhao@vip.163.com  地址:同上

    黄青青,博士,讲师。主要研究方向:林业装备自动化和智能化研究。Email: huangqingqing@bjfu.edu.cn  地址:同上

  • 中图分类号: S776

Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis

  • 摘要: 目的林业动力底盘一般在地形复杂多变的环境进行露天作业,故其需要具有良好的地面适应性以及较大且稳定的车轮与地面接触力。我国林区特种车辆底盘研究相对薄弱,而国外林业特种车辆底盘在我国实际运用中具有一定的局限性,因此,研发针对我国山地环境的特种车辆底盘对我国林业发展有重要意义。方法根据多自由度并联平台的运动原理和优点,设计一种具有俯仰、转向、侧翻3种相对运动的新型林用铰接机构,并结合Creo Parametric和Adams/View进行参数化建模和运动学优化设计。为了评估该铰接机构的越障性能,对普通底盘和并联式铰接底盘进行爬越斜坡和陡凸越障联合仿真,通过底盘质心高度变化曲线以及车轮与地面的接触力曲线分析并联式铰接底盘的越障性能,并与普通底盘进行对比。结果优化设计后的并联式铰接机构转向角和俯仰角最大值增加,并且并联式铰接底盘越障时的车轮与地面的接触力、最大爬坡角度和陡凸越障高度均比普通底盘大。结论并联式铰接底盘总体越障性能优于普通刚性连接底盘,该并联式铰接机构适用于林业动力底盘。

     

  • 图  1  并联式多自由度铰接机构运动简图

    Ai(i=1, 2, …, 6)为后车联接圆筒与液压缸的铰点;Bi(i=1, 2, …, 6)为前车联接圆筒与液压缸的铰点;OXYZ为后车联接圆筒上的原点和XYZ轴;O′、X′、Y′、Z′为前车联接圆筒上的原点和X′、Y′、Z′轴;li(i=1, 2, …, 6)分别为6个液压缸长度。

    Figure  1.  Kinematic diagram of a parallel multiple of articulation mechanism

    Ai(i=1, 2, …, 6) are the reaming points of the rear coupling cylinder and the hydraulic cylinder; Bi(i=1, 2, …, 6) are the reaming points of the front coupling cylinder and the hydraulic cylinder; O, X, Y and Z are the origin on the rear car connection cylinder and the X, Y and Z axes; O′, X′, Y′ and Z′ are the origin of the front car connection cylinder and the X′, Y′ and Z′ axis. li(i=1, 2, …, 6) are the lengths of six hydraulic cylinders.

    图  2  相关角度优化结果

    Figure  2.  Optimization results of related angles

    图  3  并联铰接机构坐标系示意图

    ϕ1ϕ2分别为转动副在前后圆筒上相隔的角度。

    Figure  3.  Schematics of parallel articulated system

    ϕ1 and ϕ2 are the angles between revolve pairs separated on the front and rear cylinders.

    图  4  并联式铰接底盘示意图

    1.前车底盘; 2.前车三角摆臂; 3.前车车轮; 4.后车车轮; 5.后车三角摆臂; 6.后车底盘; 7.前车联接圆筒; 8.前液压缸安装座; 9.转动移动液压缸; 10.后液压缸安装座; 11.后车联接圆筒。

    Figure  4.  Parallel articulated chassis diagram

    1, front chassis; 2, front triangular swing arm; 3, front wheel; 4, rear wheel; 5, rear triangular swing arm; 6, rear frame; 7, front coupling cylinder; 8, front cylinder seat; 9, rotating moving hydraulic cylinder; 10, rear cylinder seat; 11, rear coupling cylinder.

    图  5  联合仿真运动控制的方框原理图

    Figure  5.  Box schematic diagram of joint simulation motion control

    图  6  并联式铰接底盘爬越斜坡仿真模型

    Figure  6.  Parallel articulated chassis climbing ramp simulation model

    图  7  爬越斜坡底盘质心高度曲线

    Figure  7.  Height curves of common chassis centroid climbing slope

    图  8  普通底盘爬越斜坡仿真模型

    Figure  8.  Common chassis climbing ramp simulation model

    图  9  底盘车轮与地面接触力对比曲线

    Figure  9.  Comparison curves of contact force between chassis wheel and ground

    图  10  并联式铰接底盘陡凸越障仿真模型

    Figure  10.  Steeper obstacle-crossing simulation model of parallel articulated chassis

    图  11  不同障碍物高度下并联式铰接底盘质心高度曲线

    Figure  11.  Height curves of hinged chassis centroid at different obstacle heights

    图  12  不同障碍物高度下并联式铰接底盘车轮与地面接触力曲线

    Figure  12.  Contact force curves of articulated chassis wheels and ground at different obstacle heights

    图  13  普通底盘陡凸越障仿真模型

    Figure  13.  Steeper obstacle-crossing simulation model of common chassis

    图  14  不同障碍物高度下普通底盘与并联式铰接底盘质心高度对比曲线

    Figure  14.  Height of centroid comparison curves at different obstacle heights

    图  15  不同障碍物高度下普通底盘和并联式铰接底盘车轮与地面接触力对比曲线

    Figure  15.  Comparison curves of contact forces between wheels and ground at different obstacle heights

    表  1  设计变量初始值敏感值

    Table  1.   Initial value sensitivity of design variables

    设计变量
    Design variable
    参数化点
    Parametric point
    初始值
    Initial value
    初始值处敏感值Sensitive value at the initial value
    转向角
    Steering angle
    俯仰角
    Pitching angle
    V1 B1Z -19.1 5.7×10-8 4.9×10-8
    V2 B6Z -103.4 -0.02 -0.02
    V3 B5Z -84.3 0 0
    V7 A1Z -58.7 0.03 0.02
    V8 A6Z -74.4 -4.5×10-14 -1.6×10-13
    V9 A5Z -19.9 0 0
    V13 B1X 108.3 9.3×10-8 7.9×10-8
    V14 B6X -37.6 -0.04 -0.03
    V15 B5X -70.7 0 0
    V16 A1X 44.6 -0.02 -0.02
    V17 A5X 9.9 0.1 0.1
    V18 A6X -79.4 0 0
    注: AiXAiZBiXBiZ(i=1, 5, 6)为各关键点的XZ轴坐标;Vn(n=1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18)为对应各坐标的设计变量。Notes: AiX, AiZ, BiX, BiZ(i=1, 5, 6) are the X and Z coordinates of each point; Vn(n=1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18)are the design variables for the respective coordinates.
    下载: 导出CSV

    表  2  优化前后关键点坐标

    Table  2.   Coordinates of key points before and after optimization

    关键点坐标Coordinates of key points B1X B1Z B6X B6Z A1X A1Z A6X A6Z
    优化前Before optimization 108.3 -19.1 -37.6 -103.4 44.6 -58.7 9.9 -74.4
    优化后After optimization 103.0 -24.1 -35.7 -108.4 42.4 -55.8 9.4 -78.1
    下载: 导出CSV

    表  3  底盘相关参数及仿真参数

    Table  3.   Chassis related parameters and simulation parameters

    参数Parameter 数值Value
    车架长度Frame length/m 1.2
    车架宽度Frame width/m 0.8
    摆臂纵向距离Swing arm longitude distance/mm 1 445
    摆臂横向距离Swing arm transverse distance/mm 870
    整车质量Whole vehicle mass/kg 1 600
    液压缸活塞直径Cylinder piston diameter/mm 25
    液压缸活塞杆直径Cylinder rod diameter/mm 18
    液压缸的总行程Total stroke of cylinder/mm 120
    路面横向摩擦系数Transverse friction coefficient 0.7
    路面滚动摩擦系数Rolling friction coefficient 0.06
    摆臂最大转角Swing arm maximum angle/(°) ±10
    液压缸长度范围Hydraulic cylinder length range/mm 166.3~226.3
    液压缸与安装座最大相对转角Maximum relative turning angle between hydraulic cylinder and seat/(°) ±20
    下载: 导出CSV
  • [1] 周良, 李力, 李小飞.海底采矿车多自由度铰接机构设计与优化[J].现代制造工程, 2009(9): 120-123, 111. doi: 10.3969/j.issn.1671-3133.2009.09.033

    Zhou L, Li L, Li X F. Design and optimization of a multi-degree of freedom articulated mechanism[J]. Modern Manufacturing Engineering, 2009(9): 120-123, 111. doi: 10.3969/j.issn.1671-3133.2009.09.033
    [2] 孙治博.六轮摆臂林用底盘稳定性分析与防倾翻研究[D].北京: 北京林业大学, 2016: 113-117. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016139954.htm

    Sun Z B. Stability analysis and anti-rollover research for a six wheel-legged forestry machinery chassis[D]. Beijing: Beijing Forestry University, 2016: 113-117. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016139954.htm
    [3] Potau X, Comellas M, Nogués M, et al. Comparison of different bogie configurations for a vehicle operating in rough terrain[J]. Journal of Terramechanics, 2011, 48(1): 75-84. doi: 10.1016/j.jterra.2010.06.002
    [4] 李力, 赵辉, 李炳华.铰接履带式海底采矿车越障性能仿真研究[J].计算机仿真, 2008, 25(12): 195-199. doi: 10.3969/j.issn.1006-9348.2008.12.051

    Li L, Zhao H, Li B H. Simulation of motion characteristic of miner with articulated tracked vehicle on seamount[J]. Computer Simulation, 2008, 25(12): 195-199. doi: 10.3969/j.issn.1006-9348.2008.12.051
    [5] 蒋冬政.六自由度并联机器人运动学正/反解研究[D].兰州: 兰州理工大学, 2016: 67-74. http://cdmd.cnki.com.cn/Article/CDMD-10731-1016906324.htm

    Jiang D Z. Research on the forward/inverse kinematics of parallel robot with six degrees of freedom[D]. Lanzhou: Lanzhou University of Technology, 2016: 67-74. http://cdmd.cnki.com.cn/Article/CDMD-10731-1016906324.htm
    [6] Li Y M, Xu Q S. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(3): 630-640. doi: 10.1016/j.rcim.2008.05.006
    [7] 侯绪研.六轮摇臂式月球车运动协调控制模式研究[D].哈尔滨: 哈尔滨工业大学, 2009: 134-142. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D257923

    Hou X Y. Research on coordinated motion control mode for six-wheeled rocker lunare rover[D]. Harbin: Harbin Institute of Technology, 2009: 134-142. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D257923
    [8] 姚莉君.三自由度平动并联机构的动力学与控制系统研究[D].南京: 南京航空航天大学, 2012: 81-90. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041913.htm

    Yao L J. Research on dynamics and control system of the 3-dof translational parallel mechanism[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 81-90. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041913.htm
    [9] 陈娟, 赵君伟, 付永领, 等.基于多软件协同仿真的六自由度平台虚拟试验系统[J].机床与液压, 2017, 45(17): 20-23. doi: 10.3969/j.issn.1001-3881.2017.17.005

    Chen J, Zhao J W, Fu Y L, et al. Virtual test system based on multi co-simulation software of six degrees of freedom platform[J]. Machine Tools & Hydraulics, 2017, 45(17): 20-23. doi: 10.3969/j.issn.1001-3881.2017.17.005
    [10] Wang H B, Sang L F, Hu X, et al. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5): 881-891. doi: 10.3901/CJME.2013.05.881
    [11] 曹毅, 黄真, 周辉. 6/6-Stewart机构姿态奇异及姿态工作空间分析[J].设备设计与维修, 2005, 6: 90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgys200506039

    Cao Y, Huang Z, Zhou H. Orientation-singularity and orientation-workspace analysis of the 6/6-Stewart manipulator[J]. Equipment Design and Maintenance, 2005, 6: 90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgys200506039
    [12] 马建明.飞行模拟器液压Stewart平台奇异位形分析及其解决方法研究[D].哈尔滨: 哈尔滨工业大学, 2010: 144-152. http://cdmd.cnki.com.cn/article/cdmd-10213-2011016010.htm

    Ma J M. Analysis of singular configuration and research of its solving method of the hydraulic stewart platform of flight simulator[D]. Harbin: Harbin Institute of Technology, 2010: 144-152. http://cdmd.cnki.com.cn/article/cdmd-10213-2011016010.htm
    [13] Li Y M, Xu Q S. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(3): 630-640. doi: 10.1016/j.rcim.2008.05.006
    [14] Gao Q M, Gao F, Tian L. Design and development of a variable ground clearance, variable wheel track self-leveling hillside vehicle power chassis (V2-HVPC)[J]. Journal of Terramechanics, 2014, 56:78-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=091a1ac3be9dfa5b5c7161cc31d004df
    [15] 许宏光, 谭健.基于ADAMS和Matlab/Simulink的6-UCU型Stewart并联机构联合仿真[J].机床与液压, 2016, 44(11): 32-36. doi: 10.3969/j.issn.1001-3881.2016.11.008

    Xu H G, Tan J. Co-simulation for 6-UCU Stewart parallel mechanism based on ADAMS and Matlab/Simulink[J]. Machine Tool & Hydraulics, 2016, 44(11): 32-36. doi: 10.3969/j.issn.1001-3881.2016.11.008
    [16] 马长林, 李锋, 郝琳, 等.基于Simulink的机电液系统集成化仿真平台研究[J].系统仿真学报, 2008, 20(17): 4578-4581. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200817023

    Ma C L, Li F, Hao L, et al. Study of integrated simulation platform for mechanical electro-hydraulic system based on Simulink[J]. Journal of System Simulation, 2008, 20(17): 4578-4581. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200817023
    [17] 徐坤, 郑羿, 丁希仑.六轮腿式机器人结构设计与运动模式分析[J].北京航空航天大学学报, 2016, 42(1): 59-71. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201601010

    Xu K, Zheng Y, Ding X L. Structure design and motion mode analysis of a six wheel-legged robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 59-71. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201601010
    [18] 周晓光, 黄景涛. Adams与Simulink的分布式协同仿真[J].计算机工程, 2011, 37(15): 228-231. doi: 10.3969/j.issn.1000-3428.2011.15.074

    Zhou X G, Huang J T. Distributed collaborative simulation on Adams and Simulink[J]. Computer Engineering, 2011, 37(15): 228-231. doi: 10.3969/j.issn.1000-3428.2011.15.074
    [19] Hong P C. Analysis of articulated chassis kinematics[J]. Mechanical and Manufacturing Science, 2015, 6(12): 25-28.
    [20] 魏占国.林木联合采育机底盘设计理论研究与应用[D].北京: 北京林业大学, 2011: 148-156. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011132771.htm

    Wei Z G. Research and application on design theory of the chassis of forestry felling & cultivation machine[D]. Beijing: Beijing Forestry University, 2011: 148-156. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011132771.htm
    [21] 李永泉, 刘天旭, 王立捷, 等. Stewart平台多能域系统动力学全解建模与实验[J].农业机械学报, 2018, 49(4): 404-411. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201804048

    Li Y Q, Liu T X, Wang L J, et al. Multi-energy domain dynamic full solution model and experiment of stewart platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 404-411. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201804048
    [22] 魏巍, 刘昕晖, 陈延礼, 等.在复杂环境中2自由度轮式铰接车辆的越障能力[J].吉林大学学报(工学版), 2011, 41(5): 1205-1209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgydxzrkxxb201105003

    Wei W, Liu X H, Chen Y L, et al. Obstacle surmounting capability of 2-DoF articulated vehicle in rough terrain[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1205-1209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgydxzrkxxb201105003
    [23] 朱阅, 阚江明.三自由度铰接林用底盘的设计与越障性能分析[J].北京林业大学学报, 2016, 38(5): 126-132. doi: 10.13332/j.1000-1522.20150304

    Zhu Y, Kan J M. The design of forestry chassis with articulated body of three degrees of freedom and analysis of its obstacle surpassing ability[J]. Journal of Beijing Forestry University, 2016, 38(5): 126-132. doi: 10.13332/j.1000-1522.20150304
    [24] 朱阅, 阚江明, 徐道春, 等.森林工程装备底盘研究综述[J].森林工程, 2015, 31(2): 97-102. doi: 10.3969/j.issn.1001-005X.2015.02.021

    Zhu Y, Kan J M, Xu D C, et al. A review on the chassis of the forest machine[J]. Forest Engineering, 2015, 31(2): 97-102. doi: 10.3969/j.issn.1001-005X.2015.02.021
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  283
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-07-21
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回