高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羽叶铁线莲的分布区与生态位模型分析

吕汝丹 何健 刘慧杰 姚敏 程瑾 谢磊

吕汝丹, 何健, 刘慧杰, 姚敏, 程瑾, 谢磊. 羽叶铁线莲的分布区与生态位模型分析[J]. 北京林业大学学报, 2019, 41(2): 70-79. doi: 10.13332/j.1000-1522.20180189
引用本文: 吕汝丹, 何健, 刘慧杰, 姚敏, 程瑾, 谢磊. 羽叶铁线莲的分布区与生态位模型分析[J]. 北京林业大学学报, 2019, 41(2): 70-79. doi: 10.13332/j.1000-1522.20180189
Lü Rudan, He Jian, Liu Huijie, Yao Min, Cheng Jin, Xie Lei. Distribution and niche modeling analysis of Clematis pinnata[J]. Journal of Beijing Forestry University, 2019, 41(2): 70-79. doi: 10.13332/j.1000-1522.20180189
Citation: Lü Rudan, He Jian, Liu Huijie, Yao Min, Cheng Jin, Xie Lei. Distribution and niche modeling analysis of Clematis pinnata[J]. Journal of Beijing Forestry University, 2019, 41(2): 70-79. doi: 10.13332/j.1000-1522.20180189

羽叶铁线莲的分布区与生态位模型分析

doi: 10.13332/j.1000-1522.20180189
基金项目: 

国家自然科学基金项目 31670207

北京市自然科学基金项目 5182016

详细信息
    作者简介:

    吕汝丹。主要研究方向:植物系统学。Email: lvrudan0524@163.com 地址:100083北京市海淀区清华东路35号北京林业大学自然保护区学院

    责任作者:

    谢磊,副教授。主要研究方向:植物系统学。Email: xielei_si@126.com 地址:同上

  • 中图分类号: S793.9

Distribution and niche modeling analysis of Clematis pinnata

  • 摘要: 目的羽叶铁线莲为直立半灌木或藤本植物,是分布于我国北京、天津、河北及辽宁一带的特有种。由于羽叶铁线莲在形态上与其他同域分布的铁线莲属植物易发生混淆,在野外调查过程中往往被人忽视,因而相关研究比较缺乏。方法本研究在前期分类学修订和大量野外调查的基础上,采用最大熵生态位模型(MaxEnt)与地理信息系统(ArcGIS)方法对该物种的潜在分布区和适宜等级进行了预测。我们通过大量标本研究和考证,确定了羽叶铁线莲22个标本分布点,并明确了黑龙江没有羽叶铁线莲标本记录。结果在准确统计分布记录基础上,生态位模型分析结果表明羽叶铁线莲最适生地区集中在北京、河北北部、天津北部和辽宁西南部地区,且最适生地区面积非常狭小(36 137.62 km2)。山西省目前虽然没有羽叶铁线莲分布记录,但是存在着较大面积的适生分布区。ROC曲线的AUC=0.995,表明本研究结果预测可信度非常高。影响羽叶铁线莲分布区的影响因子主要有降水季节性(贡献率为39.6%)、平均年温差(14.5%)、海拔(14.4%)、最暖季节降水量(11.3%)、降水最少季节降水量(9.5%)等。羽叶铁线莲的最适区的环境参数为:降水季节性变异126.78,平均年温差42.41 ℃,海拔372.04 m,最暖季节降水量436.67 mm,降水最少季节降水量11.59 mm。结论羽叶铁线莲属于狭域分布种,主要受到降水季节性、平均年温差、海拔、最暖季节降水量、降水最少季节降水量为最重要的影响因子,根据国际自然及自然资源保护联盟(IUCN)标准, 属于易危等级,应该加以栽培和迁地保护。此外我们认为用于生态位模型分析的分布点记录应经过严格的分类学鉴定以确保分析结果的准确性。

     

  • 图  1  羽叶铁线莲的标本分布图

    Figure  1.  Map of specimen records of Clematis pinnata

    图  2  羽叶铁线莲标本照片

    A. E. Licent 9221 (存于TIE);B. Y. Yabe s.n. (存于NAS)。A, E. Licent 9221 (deposited in TIE);B, Y. Yabe s.n. (deposited in NAS).

    Figure  2.  Specimens of Clematis pinnata

    图  3  羽叶铁线莲的适宜潜在分布区图

    Figure  3.  Potential distribution areas of Clematis pinnata

    图  4  羽叶铁线莲潜在分布预测ROC曲线

    Figure  4.  ROC result of the prediction of Clematis pinnata

    图  5  羽叶铁线莲各个环境因子贡献率预测结果Jackknife图

    Figure  5.  Jackknife result of prediction of environmental factor contributions in Clematis pinnata

    表  1  羽叶铁线莲的标本分布点

    Table  1.   Distribution sites of specimen records of Clematis pinnata

    标本馆藏
    Specimen collection
    采集人及采集号
    Collector and the collection No.
    采集地
    Collection place
    海拔
    Altitude/
    m
    经度
    Longitude
    纬度
    Latitude
    PE 贺士元15037
    S. Y. He 15037
    北京市门头沟区百花山
    Baihuashan, Mentougou District, Beijing
    1 022 115°34′38″E 39°50′21″N
    PE 刘冰330
    B. Liu 330
    北京市门头沟区小西山
    Xiaoxi Mountain, Mentougou District, Beijing
    152 116°11′58″E 39°59′22″N
    PE 植物所考察队56-2276
    PE-Exped. 56-2276
    北京市密云区雾灵山
    Wuling Mountain, Miyun District, Beijing
    700 117°29′07″E 40°38′48″N
    PE 采集人不详0621
    Anonymous 0621
    北京市怀柔区渤海镇铁矿峪北沟
    Beigou Iron Mine Valley, Bohai Town, Huairou District, Beijing
    520 116°24′56″E 40°26′55″N
    PE 史京华等2002037
    J.H.Shi, et al. 2002037
    北京市怀柔区神堂峪
    Shentangyu, Huairou District, Beijing
    250 116°37′20″E 40°27′01″N
    BJFC 谢磊20120859
    L.Xie 20120859
    北京怀柔区喇叭沟门孙栅子
    Sunzhazi, Horngou Gate, Huairou District, Beijing
    760 116°31′01″E 40°57′01″N
    BJFC 谢磊20120720
    L.Xie 20120720
    北京市怀柔区云蒙山
    Yunmeng Mountain, Huairou District, Beijing
    600 116°41′06″E 40°35′02″N
    BJFC 谢磊20130821
    L.Xie 20130821
    北京市海淀区大觉寺
    Dajue Temple, Haidian District, Beijing
    240 116°05′31″E 40°2′54″N
    无标本
    No specimens*
    北京市八达岭国家森林公园
    Badaling National Forest Park, Beijing
    614 116°01′31″E 40°21′04″N
    无标本
    No specimens*
    北京市房山区上方山
    Shangfangshan, Fangshan District, Beijing
    500 115°49′27″E 39°40′34″N
    BJFC 吕汝丹LRD0008
    R.D.Lyu LRD0008
    北京市海淀区鹫峰望京塔
    Wangjing Tower, Jiufeng National Forest Park, Haidian District, Beijing
    728 116°04′55″E 40°03′43″N
    PE P.Licent 9831 北京市延庆区松山
    Songshan, Yanqing District, Beijing
    725 115°51′24″E 40°31′22″N
    BNU 贺士元s.n.
    S. Y. He s.n.
    北京市平谷区南山村
    Nanshan Village, Pinggu District, Beijing
    170 117°16′12″E 40°06′50″N
    PE 平谷队224
    Ping Gu Exped. 224
    北京市平谷县刘店镇南吉山
    Nanji Mountain, Liudian Town, Pinggu District, Beijing
    200 116°59′50″E 40°15′58″N
    PE Anonymous 735 北京市石景山区西山
    Xishan, Shijingshan District, Beijing
    320 116°11′04″E 39°58′21″N
    BNU 贺士元s.n.
    S. Y. He s.n.
    北京市海淀区金山
    Jinshan, Haidian District, Beijing
    360 116°05′17″E 40°04′09″N
    PE 易县队71-140
    Yi Xian Exped. 71-140
    河北省易县桑岗村
    Sanggang Village, Yi County, Hebei Province
    420 115°00′32″E 39°11′46″N
    S Limpricht 627 河北省蔚县小五台
    Xiaowutai, Yu County, Hebei Province
    1 182 114°05′39″E 39°56′44″N
    TIE Licent 9081 河北省涿鹿县杨家坪
    Yangjiaping, Zhuolu County, Hebei Province
    881 115°23′27″E 39°58′40″N
    PE 承德队71-1775
    Cheng De Exped. 71-1775
    河北省秦皇岛市青龙满族自治区大杖子
    Dazhangzi, Qinglong Manchu Autonomous Region, Qinhuangdao City, Hebei Province
    286 118°57′22″E 40°23′57″N
    BNU 贺士元17407
    S. Y. He 17407
    天津市蓟县盘山
    Panshan, Jixian County, Tianjin City
    300 117°20′33″E 40°05′16″N
    NAS Y.Yabe s.n. 辽宁省沈阳市奉天东陵公园Fengtian Dongling Park, Shenyang City, Liaoning Province 91 123°35′07″E 41°50′12″N
    注:*表示记录根据本研究组人员确切调查记录,但并无标本。PE.中国科学院植物研究所植物标本馆;BJFC.北京林业大学标本馆;BNU.北京师范大学植物标本馆;S.瑞典自然博物馆;TIE.天津自然博物馆植物标本室;NAS.江苏省中国科学院植物研究所植物标本馆。Notes: * means record according to the exact investigation records of the research team, but no specimens. PE, Herbarium, Institute of Botany, CAS; BJFC, Museum of Beijing Forestry University; BNU, Beijing Normal University; S, Swedish Museum of Natural History; TIE, Tianjin Natural History Museum; NAS, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences.
    下载: 导出CSV

    表  2  羽叶铁线莲在各个省市的潜在分布区适生面积

    Table  2.   Potential distribution areas of Clematis pinnata in each province

    省份(市)
    Province (City)
    最适生区面积
    Most suitable area/km2
    中适生区面积
    Medium suitable area/km2
    低适生区面积
    Less suitable area/km2
    适生区总面积
    Total suitable area/km2
    适生区占该省面积比例
    Percentage of the suitable area to the province area/%
    辽宁Liaoning 1 811.69 7 386.11 17 420.07 26 617.87 16.97
    河北Hebei 20 912.42 23 526.48 35 257.82 79 696.72 44.15
    北京Beijing 11 370.77 3 050.86 1 364.49 15 789.12 97.13
    天津Tianjin 2 042.74 2 519.38 5 106.86 9 668.98 81.14
    山西Shanxi 0 7 995.86 42 319.56 50 315.42 33.65
    内蒙古Inner Mongolia 0 198.45 10 220.07 10 418.52 1.13
    吉林Jilin 0 0 1 239.68 1 239.68 0.7
    全部Total 36 137.62 44 677.14 112 928.50 193 746.30
    下载: 导出CSV

    表  3  羽叶铁线莲生态位模型构建中各个环境变量的贡献率

    Table  3.   Percentage of contributions of environmental factors in MaxEnt modeling for Clematis pinnata

    变量Variable 解释Description 贡献率Permutation importance/%
    bio15 降水季节性Precipitation seasonality 39.564 5
    bio7 平均年温差Temperature annual range 14.530 2
    alt 海拔Altitude 14.384 9
    bio18 最暖季节降水量Precipitation of the warmest quarter 11.307 5
    bio17 降水最少季节降水量Precipitation of the driest quarter 9.495 8
    sq1 土壤养分有效性Nutrient availability 4.685 0
    sq7 土壤植物生长可行性Soil plant growth workability 2.723 1
    bio11 最冷季平均气温Mean temperature of the coldest quarter 1.767 5
    bio3 等温性Isothermality 1.452 0
    bio2 平均昼夜温差Mean diurnal range 0.089 6
    下载: 导出CSV

    表  4  羽叶铁线莲适生环境变量在3个不同适生等级的统计分析

    Table  4.   Statistics of environmental variables in the three different classes of suitable distribution of Clematis pinnata

    环境变量
    Environmental variable
    低适生区Less suitable area 中适生区Medium suitable area 最适生区Most suitable area
    范围
    Range
    平均值±标准差
    Mean±SD
    范围
    Range
    平均值±标准差
    Mean±SD
    范围
    Range
    平均值±标准差
    Mean±SD
    bio15 89~149 110.49±11.62 97~148 118.52±11.46 101~145 126.78±8.24
    bio7/10 ℃ 388~488 429.17±21.99 391~454 423.28±15.62 402~450 424.17±9.93
    Alt/m 1~2 292 871.12±632.11 1~1 974 622.01±598.47 2~1 387 372.04±315.56
    bio18/mm 227~725 352.70±91.06 289~523 402.32±61.73 307~546 436.67±46.01
    bio17/mm 8~42 13.92±5.88 9~20 12.03±2.10 9~14 11.59±1.03
    sq1 0~7 1.21±0.55 1~7 1.21±0.64 1~7 1.14±0.51
    sq7 0~7 1.09±0.41 1~7 1.03±0.59 1~7 1.15±0.56
    bio11/10℃ (-148)~(-12) (-77.83)±35.03 (-126)~(-18) (-67.87)±30.17 (-116)~(-22) (-58.30)±20.62
    bio3 24~31 28.05±1.62 26~30 27.76±1.12 26~29 27.59±0.63
    bio2/10 ℃ 99~138 122.36±9.56 103~133 119.71±6.87 107~132 119.03±4.74
    下载: 导出CSV
  • [1] 刘建全. "整合物种概念"和"分化路上的物种"[J].生物多样性, 2016, 24(9):1004-1008. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201609004.htm

    Liu J Q. "The integrative species concept" and "species on the speciation way"[J]. Biodiversity Science, 2016, 24(9):1004-1008. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201609004.htm
    [2] Phillips S J, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2):161-175. doi: 10.1111/j.0906-7590.2008.5203.x
    [3] Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of Ecology and the Natural Environment, 2009, 1(4):94-98.
    [4] Diniz-Filho J A F, Terribile L C, Cruz M J R D, et al. Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence[J]. Global Ecology and Biogeography, 2010, 19(6):916-926. doi: 10.1111/geb.2010.19.issue-6
    [5] 朱耿平, 刘国卿, 卜文俊, 等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性, 2013, 21(1):90-98. http://d.old.wanfangdata.com.cn/Periodical/swdyx201301012

    Zhu G P, Liu G Q, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98. http://d.old.wanfangdata.com.cn/Periodical/swdyx201301012
    [6] 李一琳, 丁长青.基于GIS和MaxEnt技术对濒危物种褐马鸡的保护空缺分析[J].北京林业大学学报, 2016, 38(11):34-41. doi: 10.13332/j.1000-1522.20160134

    Li Y L, Ding C Q. Reserve gap analysis of endangered brown eared pheasant (Crossoptilon mantchuricum) through GIS and MaxEnt technology[J]. Journal of Beijing Forestry University, 2016, 38(11):34-41. doi: 10.13332/j.1000-1522.20160134
    [7] 张美珍.威灵仙组.中国植物志编委会.中国植物志: 第28卷[M].北京: 科学出版社, 1980: 180.

    Chang M C. Clematis Sect. Clematis. Flora reipublicae popularis sinicae: 28th volume[M]. Beijing: Science Press, 1980: 180.
    [8] Wang W T, Bartholoew B. Clematis//Wu Z Y, Raven P. Flora of China, vol. 6[M]. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press, 2001, 6: 97-165.
    [9] Xie L, Shi J H, Li L Q. Identity of Clematis tatarinowii and C. pinnata var. ternatifolia (Ranunculaceae)[J]. Annales Botanici Fennici, 2005, 42(4):305-308. https://www.researchgate.net/publication/237531426_Identity_of_Clematis_tatarinowii_and_C_pinnata_var_ternatifolia_Ranunculaceae
    [10] Wang W T, Xie L. A revision of Clematis sect. Tubulosae (Ranunculaceae)[J]. Acta Phytotaxonomica Sinica, 2007, 45(4):425-457. doi: 10.1360/aps06114
    [11] 乔慧捷, 胡军华, 黄继红.生态位模型的理论基础、发展方向与挑战[J].中国科学, 2013, 43(11):915-927. http://www.cnki.com.cn/Article/CJFDTotal-JCXK201311002.htm

    Qiao H J, Hu J H, Huang J H. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica, 2013, 43(11):915-927. http://www.cnki.com.cn/Article/CJFDTotal-JCXK201311002.htm
    [12] Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15):1965-1978. doi: 10.1002/(ISSN)1097-0088
    [13] Fischer G F, Nachtergaele S, Prieler H T, et al. Global agro-ecological zones assessment for agriculture[DS]. ⅡASA, Laxenburg, Austria and FAO, Rome, Italy, 2008.
    [14] Neftalí S. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011, 222(8):1343-1346. doi: 10.1016/j.ecolmodel.2011.01.018
    [15] Moreno R, Zamora R, Molina J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent)[J]. Ecological Informatics, 2011, 6(6):364-370. doi: 10.1016/j.ecoinf.2011.07.003
    [16] Hanley J A, Mcneil B J. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve[J]. Radiology, 1982, 143:29-36. doi: 10.1148/radiology.143.1.7063747
    [17] Licent E, Teilhard D C. Geological observations in northern Manchuria and Barga (Hailar)[J]. Bulletin of the Geological Society of China, 1930, 9(1):23-35. http://www.cnki.com.cn/Article/CJFDTotal-DZXE193001003.htm
    [18] 卫奇, 黄为龙.泥河湾盆地的科学开拓者[J].化石, 2009(4):28-33. http://d.old.wanfangdata.com.cn/Periodical/huas200904005

    Wei Q, Huang W L. Pioneer scientists of Nihewan Basin[J]. Fossil, 2009(4):28-33. http://d.old.wanfangdata.com.cn/Periodical/huas200904005
    [19] 卫奇.泥河湾盆地考证[J].文物春秋, 2016, 2016(2):3-11. doi: 10.3969/j.issn.1003-6555.2016.02.001

    Wei Q. Textual research of Nihewan Basin[J]. Historical Relics, 2016(2):3-11. doi: 10.3969/j.issn.1003-6555.2016.02.001
    [20] 王磊.桑志华与北疆博物院[J].自然科学博物馆研究, 2016(3):87-92. http://d.old.wanfangdata.com.cn/Periodical/huas201703003

    Wang L. Sang Zhihua & The Northern Border Museum[J]. Journal of Natural Science Museum Research, 2016(3):87-92. http://d.old.wanfangdata.com.cn/Periodical/huas201703003
    [21] 成胜泉.泥河湾研究大事记[J].河北北方学院学报(社会科学版), 2016, 51(增刊1):31-64. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJKS2016S1006.htm

    Cheng S Q. Memorabilia of Nihewan research[J]. Journal of Hebei North University (Social Science Edition), 2016, 51(Suppl. 1):31-64. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJKS2016S1006.htm
    [22] 陈蜜.从新生代研究室到地质学古生物学研究所:德日进在北京的科学活动[J].科学文化评论, 2017, 14(1):82-94. doi: 10.3969/j.issn.1672-6804.2017.01.008

    Chen M. From the cenozoic laboratory to the institute of geobiology, the scientific activities of Teilhard de Chardin in Beijing[J]. Science & Culture Review, 2017, 14(1):82-94. doi: 10.3969/j.issn.1672-6804.2017.01.008
    [23] 张海龙.基于GARP生态位模型的珍稀植物桃儿七适生区与生境分析[J].江西农业学报, 2013, 25(7):112-115. http://d.old.wanfangdata.com.cn/Periodical/jxnyxb201307033

    Zhang H L. Analysis of suitable growth area and habitat of rare plant Sinopodophullum hexandrum based on GARP niche model[J]. Acta Agriculturae Jiangxi, 2013, 25(7):112-115. http://d.old.wanfangdata.com.cn/Periodical/jxnyxb201307033
    [24] 王娟娟, 曹博, 白成科, 等.基于Maxent和ArcGIS预测川贝母潜在分布及适宜性评价[J].植物研究, 2014(5):642-649. http://www.cnki.com.cn/Article/CJFDTotal-MBZW201405010.htm

    Wang J J, Cao B, Bai C K, et al. Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on MaxEnt modeling and GIS[J]. Bulletin of Botanical Rasearch, 2014(5):642-649. http://www.cnki.com.cn/Article/CJFDTotal-MBZW201405010.htm
    [25] 车乐, 曹博, 白成科, 等.基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价[J].生态学杂志, 2014, 33(6):1623-1628. http://d.old.wanfangdata.com.cn/Periodical/stxzz201406029

    Che L, Cao B, Bai C K, et al. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS[J]. Chinese Journal of Ecology, 2014, 33(6):1623-1628. http://d.old.wanfangdata.com.cn/Periodical/stxzz201406029
    [26] Swets J. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240:1285-1293. doi: 10.1126/science.3287615
    [27] 张颖, 李君, 林蔚, 等.基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J].应用生态学报, 2011, 22(11):2970-2976. http://d.old.wanfangdata.com.cn/Periodical/yystxb201111026

    Zhang Y, Li J, Lin W, et al. Prediction of potential distribution area of Erigeron philadelphicus in China based on MaxEnt model[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2970-2976. http://d.old.wanfangdata.com.cn/Periodical/yystxb201111026
    [28] Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51:83-87. doi: 10.1016/j.ecoleng.2012.12.004
    [29] 崔相艳, 王文娟, 杨小强, 等.基于生态位模型预测野生油茶的潜在分布[J].生物多样性, 2016, 24(10):1117-1128. doi: 10.17520/biods.2016164

    Cui X Y, Wang W J, Yang X Q, et al. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J]. Biodiversity Science, 2016, 24(10):1117-1128. doi: 10.17520/biods.2016164
    [30] 张超, 陈磊, 田呈明, 等.基于GARP和MaxEnt的云杉矮槲寄生分布区的预测[J].北京林业大学学报, 2016, 38(5):23-32. doi: 10.13332/j.1000-1522.20150516

    Zhang C, Chen L, Tian C M, et al. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5):23-32. doi: 10.13332/j.1000-1522.20150516
    [31] 张春华, 和菊, 孙永玉, 等.基于MaxEnt模型的紫椿适生区预测[J].北京林业大学学报, 2017, 39(8):33-41. doi: 10.13332/j.1000-1522.20170002

    Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8):33-41. doi: 10.13332/j.1000-1522.20170002
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1466
  • HTML全文浏览量:  300
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 修回日期:  2018-07-09
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回