高级检索

    云杉-白桦混交林结构特征分析

    Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests

    • 摘要:
      目的合理描述森林结构特征可为森林经营管理提供有效的指导。本文对长白山云杉-白桦混交林的结构特征进行研究,可为林分结构的优化调整提供参考。
      方法以云杉-白桦混交林为研究对象,研究区位于吉林省汪清县金沟岭林场。设置两块立地条件基本一致的云杉-白桦混交林样地(面积均为60 m×60 m),应用空间结构参数混交度、角尺度和大小比,建立空间结构参数的三元分布,描述整个林分和林分内云杉、白桦树种的空间结构特征。
      结果(1) 林分中的云杉和白桦树种株数分布主要集中在6、8和10 cm径阶,林分密度较大。(2)随混交度的升高林木株数先增加后减少,林分整体处于中度混交状态,即绝大多数林木相邻4株树中有2株树为同种;随角尺度的升高林木株数先增加后减少,有1/2以上的林木处于随机分布,且处于随机分布状态的林木大多数为中度混交状态;不同优势度等级上,林木株数分布大致相同,优势木株数稍高于劣势木株数。林分在结构参数组合为中度混交、随机分布、亚优势状态时,株数分布最多。(3)云杉树种,在样地1中结构参数组合为中度混交、随机分布、亚优势状态时林木分布较多;在样地2中结构参数组合为零度混交、随机分布、优势状态的林木分布较多。(4)白桦树种,在样地1中结构参数组合为中度混交、随机分布、优势和亚优势状态时株数分布最多;在样地2中结构参数组合为中度混交、随机分布、劣势状态的株数分布最多。(5)林分中云杉树种的优势度整体高于白桦。
      结论结构参数的三元分布可以同时表达林木的混交度、角尺度和大小比数,蕴含着丰富的信息,可为云杉-白桦混交林的结构优化调整提供重要的参考信息。

       

      Abstract:
      ObjectiveA reasonable description of the structure characteristics of forests can provide effective guidance for the forest management. The structural characteristics of Picea asperata-Betula platyphylla mixed forests in Changbai Mountain in northeastern China were studied to provide reference for the optimization and adjustment of the stand structure.
      MethodIn order to explore the structure characteristics of Picea asperata-Betula platyphylla mixed forests, two plots of Picea asperata-Betula platyphylla mixed forests were set in Jingouling Forest Farm in Wangqing County of Jilin Province, northeastern China. The spatial structure of the stand and individual levels was analyzed using a trivariate distribution of three commonly used diversity indices, i.e. mingling (M), uniform angle index (W), dominance (U).
      ResultThe results indicated that: (1) the trees number distribution of Picea asperata and Betula platyphylla was mainly concentrated in 6, 8 and 10 cm diameter steps. The stand density of two plots was high. (2) With the increase of mingling, the number of trees increased first and then decreased, the vast majority of individual trees were surrounded by two other species among their nearest four neighbors; with the increase of uniform angle index, the number of trees increased first and then decreased. More than half of the trees in the two sample plots were in a random pattern, in which most trees were surrounded by two other species. With the increase of dominance, the number of trees was about the same. The number of dominant trees was slightly higher than the number of disadvantaged trees in two plots. When the structural parameters were combined into moderate mixed, random distribution and sub-dominant state, the number of trees was the largest. (3) In the first sample plot, when the structural parameters were combined into moderate mixed, random distribution and sub-dominant state, the number of spruce was largest. In the second sample plot, when the structural parameters were combined into zero degree mixed, random distribution, and dominant state, the number of spruce was largest. (4) When the structural parameters were combined into moderate mixed, random distribution, dominant and sub-dominant states, the number of birch was the largest in the first sample plot. When the structural parameters were combined into moderate mixed, random distribution, and inferior state, the number of birch was the largest in the second sample plot. (5) The advantage degree of spruce tree species in the stand was higher than birch.
      ConclusionThe trivariate distribution of structural parameters can simultaneously express the mingling, uniform angle index, dominance, and contains rich information, which can provide important reference information for structural optimization and adjustment of Picea asperata-Betula platyphylla mixed forests.

       

    /

    返回文章
    返回