高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油蒿灌木荒漠光能利用效率季节动态研究

李成 马景永 张财 王奔 查天山 贾昕

李成, 马景永, 张财, 王奔, 查天山, 贾昕. 油蒿灌木荒漠光能利用效率季节动态研究[J]. 北京林业大学学报, 2019, 41(9): 99-107. doi: 10.13332/j.1000-1522.20180217
引用本文: 李成, 马景永, 张财, 王奔, 查天山, 贾昕. 油蒿灌木荒漠光能利用效率季节动态研究[J]. 北京林业大学学报, 2019, 41(9): 99-107. doi: 10.13332/j.1000-1522.20180217
Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. doi: 10.13332/j.1000-1522.20180217
Citation: Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. doi: 10.13332/j.1000-1522.20180217

油蒿灌木荒漠光能利用效率季节动态研究

doi: 10.13332/j.1000-1522.20180217
基金项目: 国家自然科学基金项目(31670710、31670708),中央高校基本科研业务费专项(2015ZCQ-SB-02)
详细信息
    作者简介:

    李成。主要研究方向:荒漠生态系统光能利用效率。Email:licheng2025@163.com 地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    查天山,教授。主要研究方向:生态系统碳水循环过程、植物生理生态等。Email:tianshanzha@bjfu.edu.cn 地址:同上

Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert

  • 摘要: 目的光能利用效率(LUE)是表征植被通过光合作用将所吸收的能量转化为有机干物质效率的指标,也是估算生态系统生产力的重要参数,为了提高油蒿灌木荒漠生产力的估算和预测精度,本文研究了油蒿灌木荒漠LUE的季节动态以及环境因子对其的调节机制。方法本研究于2014年5—10月通过涡度协方差法观测了宁夏盐池典型油蒿灌木荒漠生态系统的净碳交换、光合有效辐射、温度和水分等因子,分析油蒿灌木荒漠生态系统LUE的昼夜和季节变化及与其主要环境因子的关系。结果在日尺度上,LUE在14:00时达到最低值(0.000 8 ~ 0.002 4 μmol/μmol)。LUE的日变化主要受到冠层导度(gs)和光合有效辐射的影响。在季节尺度上,LUE从5月份开始迅速升高,9月份达到最大值(0.002 5 g/MJ),而后逐渐降低。LUE月平均值介于0.000 9 ~ 0.002 5 g/MJ之间。LUE的季节变化主要受土壤氮含量(Nsoil)、冠层导度(gs)和光合有效辐射(PAR)的影响。结论通过以上研究,发现在季节尺度上,通过增加土壤中的氮含量可以促进生态系统总生产力(GEP),从而增大油蒿灌木荒漠的光能利用效率。研究结果可以为提高半干旱区油蒿灌木荒漠生态系统生产力提供一定的理论指导,也为区域植被恢复重建提供重要参考。

     

  • 图  1  环境因子、GEP和LUE昼夜变化趋势

    Ta.空气温度;Ts.10 cm深土壤温度;VPD.饱和水汽压差;gs.气孔导度;PARtot.总入射光合有效辐射;PARdif.散射光合有效辐射;GEP.生态系统总生产力;LUE.光能利用效率。下同。Ta, air temperature; Ts, soil temperature of 10 cm depth; VPD, vapor pressure deficit; gs, stomatal conductance; PARtot, total incident photosynthetically active radiation; PARdif, diffuset photosynthetically active radiation; GEP, gross ecosystem productivity; LUE, light use efficiency. The same below.

    Figure  1.  Mean diurnal variation in environmental factors and gross ecosystem production(GEP)and light use efficiency

    图  2  环境和生物因子季节动态变化图

    NDVI. 归一化植被指数;LAI. 叶面积指数;leaf_N. 叶片N含量;soil_N. 土壤N含量;SWC10、SWC30、SWC70分别表示10、30、70 cm土壤含水量。下同。NDVI, normalized differential vegetation index; LAI, leaf area index. leaf_N, leaf N content; soil_N, soil N content. SWC10, SWC30, SWC70, represent 10, 30, 70 cm soil water content, respectively. The same below.

    Figure  2.  Seasonal dynamics of environmental factors and biological factors

    图  3  光合有效辐射、GEP和LUE季节动态变化图

    Figure  3.  Seasonal dynamics of photosynthetically active radiation, gross ecosystem production (GEP) and light use efficiency (LUE)

    图  4  GEP、LUE月变化

    Figure  4.  Monthly sum dynamics of gross ecosystem production (GEP) and light use efficiency (LUE)

    图  5  环境因子对GEP与LUE的影响

    Figure  5.  Relationship between light use efficiency and environmental factors at seasonal scale

  • [1] Prince S D. A model of regional primary production for use with coarse resolution satellite data[J]. International Journal of Remote Sensing, 1991, 12(6): 1313−1330. doi: 10.1080/01431169108929728
    [2] Goetz S J, Prince S D. Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency[J]. Advances in Ecological Research, 1999, 28: 57−92. doi: 10.1016/S0065-2504(08)60029-X
    [3] Ahl D E, Gower S T, Mackay D S, et al. Heterogeneity of light use efficiency in a northern Wisconsin forest: Implications for modeling net primary production with remote sensing[J]. Remote Sensing of Environment, 2004, 93(1−2): 168−178. doi: 10.1016/j.rse.2004.07.003
    [4] Campbell C S, Heilman J L, Mc Innes K J, et al. Seasonal variation in radiation use efficiency of irrigated rice[J]. Agricultural and Forest Meteorology, 2001, 110(1): 45−54. doi: 10.1016/S0168-1923(01)00277-5
    [5] Prince S D, Goward S N. Evaluation of the NOAA/NASA pathfinder AVHRR land data set for global primary production modelling[J]. International Journal of Remote Sensing, 1996, 17(1): 217−221. doi: 10.1080/01431169608948999
    [6] Yuan W, Liu S, Zhou G, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143(3): 189−207.
    [7] Ruimy A, Bondeau L K. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency[J]. Global Change Biology, 1999, 5(Suppl. 1): 56−64. doi: 10.1046/j.1365-2486.1999.00007.x
    [8] Plummer S E. Perspectives on combining ecological process models and remotely sensed data[J]. Ecological Modelling, 2000, 129(2−3): 169−186. doi: 10.1016/S0304-3800(00)00233-7
    [9] Turner D P, Urbanski S, Bremer D, et al. A cross-biome comparison of daily light use efficiency for gross primary production[J]. Global Change Biology, 2003, 9(3): 383−395. doi: 10.1046/j.1365-2486.2003.00573.x
    [10] Suyker A E, Verma S B, Burba G G, et al. Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season[J]. Agricultural and Forest Meteorology, 2005, 131(3−4): 180−190. doi: 10.1016/j.agrformet.2005.05.007
    [11] Sims D A, Rahman A F, Cordova V D, et al. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux[J]. Agricultural and Forest Meteorology, 2005, 131(1): 1−12.
    [12] Sinclair T R, Muchow R C. Radiation use efficiency[J]. Advances in Agronomy, 1999, 65: 215−265. doi: 10.1016/S0065-2113(08)60914-1
    [13] Rouphael Y, Colla G. Radiation and water use efficiencies of greenhouse zucchini squash in relation to different climate parameters[J]. European Journal of Agronomy, 2005, 23(2): 183−194. doi: 10.1016/j.eja.2004.10.003
    [14] Kiniry J R, Landivar J A, Witt M, et al. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum[J]. Field Crops Research, 1998, 56(3): 265−270. doi: 10.1016/S0378-4290(97)00092-0
    [15] Green D S, Erickson J E, Kruger E L. Foliar morphology and canopy nitrogen as predictors of light-use efficiency in terrestrial vegetation[J]. Agricultural and Forest Meteorology, 2003, 115(3): 163−171.
    [16] Sinclair T R, Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review[J]. Crop Science, 1989, 29(1): 90−98. doi: 10.2135/cropsci1989.0011183X002900010023x
    [17] Farquhar G D, Caemmerer S V, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78−81. doi: 10.1007/BF00386231
    [18] 叶子飘, 康华靖, 杨小龙. 不同CO2浓度下番茄幼苗叶片的光能利用效率[J]. 应用生态学报, 2016, 27(8):2543−2550.

    Ye Z P, Kang H J, Yang X L. Light-use efficiency of tomato seedling leaves at different CO2 concentrations.[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2543−2550.
    [19] Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience, 2004, 54(6): 547−560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
    [20] Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11(17): 4679−4693. doi: 10.5194/bg-11-4679-2014
    [21] Xie J, Zha T, Jia X, et al. Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China[J]. Journal of Arid Environments, 2015, 120: 33−41. doi: 10.1016/j.jaridenv.2015.04.009
    [22] 唐思凌, 贾昕, 郭建斌, 等. 沙蒿(Artemisia ordosica)叶面积指数的测定及模拟[J]. 生态学杂志, 2014, 33(2):547−554.

    Tang S L, Jia X, Guo J B, et al. Measuring and modeling leaf area index for Artemisia ordosica[J]. Chinese Journal of Ecology, 2014, 33(2): 547−554.
    [23] 陈志豪, 郭建斌, 查天山, 等. 三种沙生灌木叶片含氮量的季节变化及其水分响应[J]. 干旱区资源与环境, 2014, 28(6):63−67.

    Chen Z H, Guo J B, Zha T S, et al. Seasonal variation and water response of leaf nitrogen content for three psammophytic shrub species.[J]. Journal of Arid Land Resources and Environment, 2014, 28(6): 63−67.
    [24] Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology[J]. Advances in Ecological Research, 1999, 30: 113−175. doi: 10.1016/S0065-2504(08)60018-5
    [25] Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(3): 512−526. doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
    [26] Nakai M, Kashiwazaki N, Takizawa A, et al. Morphologic changes in boar sperm nuclei with reduced disulfide bonds in electrostimulated porcine oocytes[J]. Reproduction, 2006, 131(3): 603−611. doi: 10.1530/rep.1.01001
    [27] Fan S M, Wofsy S C, Bakwin P S, et al. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest[J]. Journal of Geophysical Research, 1990, 95(16): 851−864.
    [28] Moncrieff J B, Massheder J M, De Bruin H, et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. Journal of Hydrology, 1997, 188: 589−611.
    [29] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315−323. doi: 10.2307/2389824
    [30] Noormets A, Chen J Q, Crow T R. Age-dependent changes in ecosystem carbon flux in managed forests in northern Wisconsin, USA[J]. Ecosystems, 2007, 10(2): 187−203. doi: 10.1007/s10021-007-9018-y
    [31] Wilson T B, Meyers T P. Determining vegetation indices from solar and photosynthetically active radiation fluxes[J]. Agricultural and Forest Meteorology, 2007, 144(3−4): 160−179. doi: 10.1016/j.agrformet.2007.04.001
    [32] Krishnan P, Meyers T P, Scott R L, et al. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America[J]. Agricultural and Forest Meteorology, 2012, 153: 31−44. doi: 10.1016/j.agrformet.2011.09.017
    [33] Xiao X, Zhang Q, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94(1): 105−122. doi: 10.1016/j.rse.2004.08.015
    [34] 赵育民, 牛树奎, 王军邦, 等. 植被光能利用率研究进展[J]. 生态学杂志, 2007, 26(9):1471−1477.

    Zhao Y M, Niu S K, Wang J B, et al. Light use efficiency of vegetation: a review[J]. Chinese Journal of Ecology, 2007, 26(9): 1471−1477.
    [35] Alton P B, North P R, Los S O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes[J]. Global Change Biology, 2007, 13(4): 776−787. doi: 10.1111/j.1365-2486.2007.01316.x
    [36] Mercado L M, Bellouin N, Sitch S, et al. Impact of changes in diffuse radiation on the global land carbon sink[J]. Nature, 2009, 458: 1014−1017. doi: 10.1038/nature07949
    [37] Nakaji T, Ide R, Takagi K, et al. Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan[J]. Agricultural and Forest Meteorology, 2008, 148(5): 776−787. doi: 10.1016/j.agrformet.2007.11.006
    [38] 蒋冬月, 钱永强, 刘俊祥, 等. 基于光合:光响应特性的柳树优良无性系光能利用效率的评价[J]. 北京林业大学学报, 2015, 37(5):49−61.

    Jiang D Y, Qian Y Q, Liu J X, et al. Evaluation of radiation use efficiency of superior clons of Salix based on photosynthetic light-response characteristics[J]. Journal of Beijing Forestry University, 2015, 37(5): 49−61.
    [39] 朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, 51(6):700−706. doi: 10.3321/j.issn:0023-074X.2006.06.014

    Zhu W Q, Pan Y Z, He H, et al. Simulation of maximum light use efficiency of typical vegetation in China[J]. Chinese Science Bulletin, 2006, 51(6): 700−706. doi: 10.3321/j.issn:0023-074X.2006.06.014
    [40] 同小娟, 张劲松, 孟平, 等. 华北低丘山地人工林生态系统净碳交换与气象因子的关系[J]. 生态学报, 2009, 29(12):679−686.

    Tong X J, Zhang J S, Meng P, et al. Relationship between net ecosystem carbon exchange and meteorological factors in a plantation in the hilly area of the North China[J]. Acta Ecologica Sinica, 2009, 29(12): 679−686.
    [41] 包刚, 辛晓平, 包玉海, 等. 内蒙古草原植被最大光能利用率取值优化研究[J]. 光谱学与光谱分析, 2016, 36(10):3280−3286.

    Bao G, Xin X P, Bao Y H, et al. Optimization of maximum light use efficiency in inner mongolian steppe[J]. Spectroscopy & Spectral Analysis, 2016, 36(10): 3280−3286.
    [42] 卫亚星, 王莉雯. 青海省植被光能利用率模拟研究[J]. 生态学报, 2010, 30(19):5209−5216.

    Wei Y X, Wang L W. The study on simulating light use efficiency of vegetation in Qinghai Province[J]. Acta Ecologica Sinica, 2010, 30(19): 5209−5216.
    [43] Demmigadams B, Iii W W A. Photosynthesis: harvesting sunlight safely[J]. Nature, 2000, 403: 371−374. doi: 10.1038/35000315
    [44] Jia X, Zha T, Gong J, et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns[J]. Agricultural and Forest Meteorology, 2016, 228: 120−129.
    [45] Liu R, Cieraad E, Li Y, et al. Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem[J]. Ecosystems, 2016, 19(4): 601−614. doi: 10.1007/s10021-015-9954-x
    [46] 苏培玺, 赵爱芬, 张立新, 等. 荒漠植物梭梭和沙拐枣光合作用, 蒸腾作用及水分利用效率特征[J]. 西北植物学报, 2003, 23(1):11−17. doi: 10.3321/j.issn:1000-4025.2003.01.003

    Su P X, Zhao A F, Zhang L X, et al. Characteristic in photosynthesis, transpiration and water use efficiency of Haloxylon ammodendron and Calligonum mongolicum of desert species[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1): 11−17. doi: 10.3321/j.issn:1000-4025.2003.01.003
  • 加载中
图(5)
计量
  • 文章访问数:  1394
  • HTML全文浏览量:  610
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-12
  • 修回日期:  2018-09-20
  • 网络出版日期:  2019-06-03
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回