高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刺玫果醇提物制备及其主要活性成分与抗氧化相关性

符群 吴桐 廖声玲 王梦丽

符群, 吴桐, 廖声玲, 王梦丽. 刺玫果醇提物制备及其主要活性成分与抗氧化相关性[J]. 北京林业大学学报, 2019, 41(8): 131-137. doi: 10.13332/j.1000-1522.20180227
引用本文: 符群, 吴桐, 廖声玲, 王梦丽. 刺玫果醇提物制备及其主要活性成分与抗氧化相关性[J]. 北京林业大学学报, 2019, 41(8): 131-137. doi: 10.13332/j.1000-1522.20180227
Fu Qun, Wu Tong, Liao Shengling, Wang Mengli. Preparation of alcohol extract of Rosa davurica and the correlations between its main active components and antioxidant[J]. Journal of Beijing Forestry University, 2019, 41(8): 131-137. doi: 10.13332/j.1000-1522.20180227
Citation: Fu Qun, Wu Tong, Liao Shengling, Wang Mengli. Preparation of alcohol extract of Rosa davurica and the correlations between its main active components and antioxidant[J]. Journal of Beijing Forestry University, 2019, 41(8): 131-137. doi: 10.13332/j.1000-1522.20180227

刺玫果醇提物制备及其主要活性成分与抗氧化相关性

doi: 10.13332/j.1000-1522.20180227
基金项目: 东北森林区生态保护及生物资源开发利用技术及示范(2016YFC0500307-07)
详细信息
    作者简介:

    符群,博士,高级工程师。主要研究方向:天然产物活性成分研究。Email:nefufuqun@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号

Preparation of alcohol extract of Rosa davurica and the correlations between its main active components and antioxidant

  • 摘要: 目的通过对北方林区刺玫果醇提物的制备及其主要活性成分进行研究,为刺玫果的进一步合理利用提供参考。方法采用高剪切乳化技术辅助乙醇提取刺玫果活性成分,在单因素试验基础上,以醇提物得率为指标,采用响应面法对主要工艺参数进行优化。对刺玫果醇提取物中总多酚、总黄酮、槲皮素和绿原酸进行提取,与DPPH·、OH·和·ABTS+的清除能力利用Pearson法做相关性研究。结果回归模型较好的反映了刺玫果黄酮醇提物与料液比、剪切转速、剪切时间的关系;确定最佳提取工艺为:料液比为1:25 g/mL,剪切转速为18 000 r/min,剪切时间为3 min,得率为(14.94 ± 0.47)%,回归模型的失拟值不显著,说明该回归模型模拟较好。绿原酸对DPPH·清除能力最强,在0.150 μg/mL时清除率达到80.84%;总黄酮对OH·清除能力最强,在0.484 μg/mL时清除率为82.32%;槲皮素对·ABTS+清除能力最强,在4.7 μg/mL时清除率达到91.32%。总黄酮与DPPH·、·OH、·ABTS+这3种自由基清除率相关系数最大,并与这3者清除能力的相关系数分别为 0.886、0.976、0.989(P < 0.01)。结论采用高剪切乳化技术辅助乙醇提取的刺玫果醇提物得率比普通超声辅助醇提法效果更好,醇提物得率增加了(2.11 ± 0.51)%,且不破坏刺玫果主要成分活性,刺玫果中总黄酮含量与抗氧化能力相关性最强。

     

  • 图  1  料液比对醇提物得率的影响

    Figure  1.  Effects of solid-liquid ratio on the yield of alcohol extracts

    图  2  剪切转速对醇提物得率的影响

    Figure  2.  Effects of shear speed on the yield of alcohol extracts

    图  3  剪切时间对醇提物得率的影响

    Figure  3.  Effects of shear time on yield of alcohol extracts

    图  4  料液比及剪切转速对得率的响应面及等高线

    Figure  4.  Response surface and contour line of material-liquid ratio and shear speed on yield

    图  5  料液比及剪切时间对得率的响应面及等高线

    Figure  5.  Response surface and contour lines for yield ratio and shear time on yield

    图  6  剪切时间及剪切转速对得率的响应面及等高线

    Figure  6.  Response times and contour lines for shear rate and shear speed versus yield

    表  1  响应面因素水平设计表

    Table  1.   Design table of response surface factor level

    水平 Level 因素 Factor
    料液比Solid-liquid ratio/(g·mL− 1) 剪切转速
    Shear speed/(r·min− 1)
    剪切时间
    Shear time/min
    − 1 1∶20 15 000 2
    0 1∶25 18 000 3
    1 1∶30 21 000 4
    下载: 导出CSV

    表  2  响应面试验设计及结果

    Table  2.   Response surface test design and results

    试验号
    Test No.
    料液比
    Solid-liquid ratio
    剪切转速
    Shear speed
    剪切时间
    Shear time
    得率
    Yield/%
    1 0 1 1 12.37
    2 − 1 1 0 11.78
    3 0 0 0 14.68
    4 − 1 − 1 0 11.30
    5 0 1 − 1 8.40
    6 − 1 0 1 11.90
    7 1 − 1 0 11.10
    8 0 − 1 1 10.09
    9 0 0 0 14.32
    10 1 0 1 11.90
    11 1 0 − 1 11.80
    12 − 1 0 − 1 10.40
    13 1 1 0 11.20
    14 0 0 0 15.43
    15 0 − 1 − 1 10.01
    16 0 0 0 15.24
    17 0 0 0 15.87
    下载: 导出CSV

    表  3  方差分析表

    Table  3.   ANOVA of regression analysis

    方差来源
    Source of
    variance
    平方和
    Sum of
    squares
    自由度
    Degrees of
    freedom
    均方
    Mean
    square
    F
    模型 Model 71.42 9 7.94 19.48**
    A 0.048 1 0.048 0.12
    B 0.20 1 0.20 0.48
    C 3.99 1 3.99 9.80*
    AB 0.036 1 0.036 0.089
    AC 0.49 1 0.49 1.20
    BC 3.78 1 3.78 9.29*
    A2 6.48 1 6.48 15.90**
    B2 26.80 1 26.80 65.79**
    C2 23.61 1 23.61 57.95**
    残差 Residual 2.85 7 0.41
    失拟项 Lack of fit 1.35 3 0.45 1.19
    纯误差 Pure error 1.51 4 0.38
    总和 Total 74.27 16
    注:**为差异极显著(P < 0.01),*为差异显著(P < 0.05)。A. 料液比;B. 剪切转速;C. 剪切时间。下同。Notes: ** means extremely significant difference, * means significant difference. A, solid-liquid ratio; B, shear speed; C, shear time. Same as below.
    下载: 导出CSV

    表  4  刺玫果主要成分抗氧化活性的IC50

    Table  4.   IC50 values of antioxidant activity of each substance

    项目
    Item
    总多酚
    Total polyphenols
    总黄酮
    Total flavonoids
    槲皮素
    Quercetin
    绿原酸
    Chlorogenic acid
    DPPH· 6.831 1.675 0.218 0.064
    OH· 102.000 0.317 1.417 0.819
    ·ABTS+ 32.000 8.000 0.509 138.000
    下载: 导出CSV

    表  5  刺玫果主要成分与抗氧化活性的相关性

    Table  5.   Correlations between main components and antioxidant activity of Rosa davurica

    项目
    Item
    DPPH·清除能力
    DPPH· scavenging capacity
    OH·清除能力
    OH· scavenging capacity
    ·ABTS+清除能力
    ·ABTS+ scavenging capacity
    总黄酮
    Total flavonoids
    0.886** 0.976** 0.989**
    总多酚
    Total polyphenols
    0.965** 0.884** 0.797**
    槲皮素
    Quercetin
    0.365 0.920** 0.595*
    绿原酸
    Chlorogenic acid
    0.683* 0.807** 0.840**
    下载: 导出CSV
  • [1] 于新, 李小华. 药食同源物品使用手册[M]. 北京: 中国轻工业出版社, 2012.

    Yu X, Li X H. Medicinal and herbal products handbook[M]. Beijing: China Light Industry Press, 2012.
    [2] 方家选, 杨志欣, 梁新武, 等. 南阳中草药名典[M]. 西安: 三秦出版社, 2004.

    Fang J X, Yang Z X, Liang X W, et al. Nanyang Chinese herbal medicine[M]. Xi’an: Sanqin Publishing House, 2004.
    [3] 李倬林, 曾宪鹏, 郑丽, 等. 刺玫果资源的开发利用现状[J]. 科技资讯, 2016, 160(30):160−161.

    Li Z L, Zeng X P, Zheng L, et al. Development and utilization status of Rosa davurica Pall. resources[J]. Science & Technology Information, 2016, 160(30): 160−161.
    [4] 冯杉杉, 金哲雄. 刺玫果研究进展[J]. 黑龙江医药, 2014, 27(4):785−788.

    Feng S S, Jin Z X. Research progress of Fructus rosae davuricae[J]. Heilongjiang Medicine Journal, 2014, 27(4): 785−788.
    [5] 何媛媛, 陈凡, 孙爱东. 刺玫果功效及食品开发研究进展[J]. 中国食物与营养, 2015, 21(6):25−28. doi: 10.3969/j.issn.1006-9577.2015.06.006

    He Y Y, Chen F, Sun A D. Research progress on health function and food exploitation of Rosa davurica[J]. Food and Nutrition in China, 2015, 21(6): 25−28. doi: 10.3969/j.issn.1006-9577.2015.06.006
    [6] Li Y H, Jiang B, Zhang T, et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry, 2008, 106(2): 444−450. doi: 10.1016/j.foodchem.2007.04.067
    [7] 钟方丽, 陈帅, 关晓侠. 微波法提取刺玫果总黄酮工艺研究[J]. 江苏农业科学, 2010(6):449−451. doi: 10.3969/j.issn.1002-1302.2010.06.179

    Zhong F L, Chen S, Guan X X. Microwave extraction of total flavonoids from Rosa davurica Pall.[J]. Jiangsu Agricultural Sciences, 2010(6): 449−451. doi: 10.3969/j.issn.1002-1302.2010.06.179
    [8] 张澈, 陈俊亮, 张春雨, 等. 正交试验优选刺玫果总黄酮提取工艺研究[J]. 食品与药品, 2016, 18(6):397−400. doi: 10.3969/j.issn.1672-979X.2016.06.007

    Zhang C, Chen J L, Zhang C Y, et al. Optimization of extraction technology of total flavonoids in Rosa fruit by orthogonal test[J]. Food and Drug, 2016, 18(6): 397−400. doi: 10.3969/j.issn.1672-979X.2016.06.007
    [9] 王晓林, 钟方丽, 薛健飞, 等. 酶法提取刺玫果总黄酮工艺研究[J]. 北方园艺, 2015(4):136−139.

    Wang X L, Zhong F L, Xue J F, et al. Study on the extraction technology of total flavonoids in fruit of Rosa davurica Pall. with enzymes method[J]. Northern Horticulture, 2015(4): 136−139.
    [10] 魏颖, 谷瑞增, 林峰, 等. 刺玫果提取物缓解油酸诱导的HepG2细胞脂肪堆积作用[J]. 食品科技, 2013, 38(7):230−234.

    Wei Y, Gu R Z, Lin F, et al. The effect of rose hip extraction on oleic acid-induced fat accumulation in HepG2 cells model[J]. Food Science and Technology, 2013, 38(7): 230−234.
    [11] 魏鉴腾, 裴栋, 刘永峰, 等. 高速剪切辅助提取浒苔多糖的工艺研究[J]. 食品工业科技, 2014, 35(19):267−269, 377.

    Wei J T, Pei D, Liu Y F, et al. Study on extraction process of Enteromorpha polysaccharide by high-speed shear technique[J]. Food Industry Technology, 2014, 35(19): 267−269, 377.
    [12] 杨诗斌, 徐凯, 张志森. 高剪切及高压均质机理研究及其在食品工业中的应用[J]. 粮油加工与食品机械, 2002(4):33−35.

    Yang S B, Xu K, Zhang Z S. Study on high shear and high pressure homogeneous mechanism and its application in food industry[J]. Grain and Oil Processing and Food Machinery, 2002(4): 33−35.
    [13] 许继华. 基于高剪切分散乳化技术的黄芪中黄酮类化合物提取方法及动力学研究[J]. 河北医药, 2013, 35(7):1090−1092.

    Xu J H. Study on extraction methods and kinetics of flavonoids from Astragalus membranaceus based on high shear dispersion emulsification technology[J]. Hebei Medical Journal, 2013, 35(7): 1090−1092.
    [14] 王领弟, 李艳荣, 张晓峰, 等. 刺玫果的研究近况[J]. 承德医学院学报, 2011, 28(4):416−417. doi: 10.3969/j.issn.1004-6879.2011.04.040

    Wang L D, Li Y R, Zhang X F, et al. Recent research on Rosa davurica Pall.[J]. Journal of Chengde Medical College, 2011, 28(4): 416−417. doi: 10.3969/j.issn.1004-6879.2011.04.040
    [15] 庄志军, 钟方丽, 杨英杰, 等. 刺玫果中总黄酮的提取与分析[J]. 中成药, 2007, 29(9):1394−1395. doi: 10.3969/j.issn.1001-1528.2007.09.053

    Zhuang Z J, Zhong F L, Yang Y J, et al. Extraction and analysis of total flavonoids in Rosa davurica Pall.[J]. Chinese Traditional Patent Medicine, 2007, 29(9): 1394−1395. doi: 10.3969/j.issn.1001-1528.2007.09.053
    [16] 郭海欢. 刺玫果提取物化学成分分离及黄酮苷元的制备[D]. 吉林: 吉林化工学院, 2016.

    Guo H H. Study on component separation of the Rosa davurica Pall. extracts and flavonoid aglycones preparation[D]. Jilin: Jilin Institute of Chemical Technology, 2016.
    [17] 田佳鑫. 软枣猕猴桃茎皮中槲皮素的提取纯化及抗氧化作用研究[D]. 沈阳: 沈阳农业大学, 2016.

    Tian J X. Study on the extraction and purification and antioxidant activitiy of quercetin from the stem bark of Actinidia arguta[D]. Shenyang: Shenyang Agricultural University, 2016.
    [18] 李万林. 向日葵花盘中绿原酸的微波辅助提取工艺条件研究[J]. 皮革与化工, 2013, 30(3):14−18. doi: 10.3969/j.issn.1674-0939.2013.03.004

    Li W L. Study on the microwave-assisted extraction of chlorogenic acid from sunflower[J]. Leather and Chemicals, 2013, 30(3): 14−18. doi: 10.3969/j.issn.1674-0939.2013.03.004
    [19] 鲁晓翔. 黄酮类化合物抗氧化作用机制研究进展[J]. 食品研究与开发, 2012, 33(3):220−224. doi: 10.3969/j.issn.1005-6521.2012.03.064

    Lu X X. Research progress in antioxidant mechanism of flavnonids[J]. Food Research and Developent, 2012, 33(3): 220−224. doi: 10.3969/j.issn.1005-6521.2012.03.064
    [20] Marian N, Ryszard A, Ryszard Z, et al. Antioxidant activity of crude phenolic extracts from wild blueberry leaves[J]. Polish Journal of Food and Nutrition Sciences, 2003, 53(12): 166−169.
    [21] Amarowicz R, Pegg R B, Rahimi-Moghaddam P, et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies[J]. Food Chemistry, 2004, 84(4): 551−562. doi: 10.1016/S0308-8146(03)00278-4
    [22] 孟庆焕, 王化, 王洪政, 等. 牡丹种皮黄酮提取及对ABTS自由基清除作用[J]. 植物研究, 2013, 33(4):504−507.

    Meng Q H, Wang H, Wang H Z, et al. Extraction of total flavonoids from peony episperm and ABTS radical scavenging activity[J]. Bulletin of Botanical Research, 2013, 33(4): 504−507.
    [23] 黄国霞, 黄姿梅, 汪青, 等. 高剪切乳化技术在柚子皮总黄酮提取中的应用[J]. 中国食品添加剂开发应用, 2017(10):124−129.

    Huang G X, Huang Z M, Wang Q, et al. Application of high-speed shearing technique in extraction process of total flavonoids from pomelo peel[J]. Development and Application of Chinese Food Additives, 2017(10): 124−129.
    [24] Tania M S S, Celso A, Camar A B, et al. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke[J]. Journal of Food Composition and Analysis, 2006, 19(11): 507−511.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  2555
  • HTML全文浏览量:  605
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-12
  • 修回日期:  2018-10-11
  • 网络出版日期:  2019-05-23
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回