-
楚雄腮扁叶蜂(Cephalcia chuxiongica)隶属于膜翅目(Hymenoptera)、广腰亚目(Symphyta)、广背叶蜂总科(Megalodoutoidea)、扁叶蜂科(Pamphiliidae),是云南省一种新的针叶林食叶害虫,以幼虫为害云南松(Pinus yunnanensis)、华山松(P. armandii)、云南油杉(Keteleeria evelyniana)等松科植物的针叶[1]。该虫自1984年首次报道以来,先后在云南、四川、贵州多地发生,截至2012年,该虫在全国22个县市发生危害,其中云南省发生最多[2]。自楚雄腮扁叶蜂出现以来,在云南大面积爆发,仅云南省马龙县,2004—2014年间累计发生4 66.67 hm2[3],对于该害虫的防治主要依赖苦参碱、烟碱农药,然而长期施用同类型农药,会使害虫产生抗药性,进而增加农药的用量和防治次数,形成恶性循环[4]。因此,对环境友好、不易产生抗药性的防治方法和措施是治理虫害的研究重点[5-6]。
粉红粘帚霉(Clonostachys rosea)隶属于真菌界(Fungi)、子囊菌门(Ascomycota)、盘菌亚门(Pezizomycotina)、粪壳菌纲(Sordariomycetes)、肉座菌亚纲(Hypocreomycetidae)、肉座菌目(Hypocreales)、生赤壳科(Bionectriaceae),是一株应用前景极好的生防真菌,尤其作为植物病害拮抗真菌具有重要应用价值[7]。芦俊佳等对楚雄腮扁叶蜂幼虫体内的虫生真菌的致病力比较发现,以粉红粘帚霉SWFUYHL 02-01菌株、SWFUYHL 02-03菌株按1.5×108个/mL的孢子悬浮液接种楚雄腮扁叶蜂幼虫,接种后置于指形管中,该虫处于滞育期,无须饲喂,每隔4 h观察1次。接种4 d后侵染幼虫的死亡率达到100%,僵虫率达到91.7%[8]。而目前针对粉红粘帚霉作为生防菌的研究极少,未见有关粉红粘帚霉对楚雄腮扁叶蜂幼虫侵染及致病过程的报道,更不清楚粉红粘帚霉和楚雄腮扁叶蜂幼虫之间的互作关系。
扫描电镜和透射电镜观察是观察真菌孢子侵染昆虫过程的有效技术手段。通过粉红粘帚霉SWFUYHL 02-03对楚雄腮扁叶蜂幼虫侵染过程的定期取样,利用扫描电镜观察分生孢子在楚雄腮扁叶蜂幼虫虫体的附着部位、孢子萌发、侵入时间和侵入方式,揭示粉红粘帚霉SWFUYHL 02-03侵染楚雄腮扁叶蜂幼虫的途径、过程及机制。国内的学者王音运用扫描电镜、透射电镜对绿僵菌侵染小菜蛾幼虫过程进行了研究,阐明了寄主体表不同结构区对绿僵菌侵染过程中附着胞的产生和入侵前芽管长度有明显影响[9],证明了穿透过程伴随着组织溶解,寄主表皮层的片层结构发生变形[10]。
基于此,本文利用扫描电镜和透射电镜技术对粉红粘帚霉SWFUYHL 02-03孢子侵染楚雄腮扁叶蜂幼虫体表过程及其超微结构的变化进行观察研究,阐明粉红粘帚霉对楚雄腮扁叶蜂幼虫的侵染过程与致病机理,为利用粉红粘帚霉进行楚雄腮扁叶蜂的生物防治奠定研究基础。
-
供试菌株来源于本课题组前期从昆明市寻甸县河口镇北大营村云南松林下土壤中自然罹病死亡的楚雄腮扁叶蜂幼虫虫体上分离、鉴定、培养、纯化而得到的粉红粘帚霉菌株SWFUYHL 02-03。前期致病性测定表明,该菌株对楚雄腮扁叶蜂致病性很强[8],目前该菌株保存于西南林业大学森林灾害控制与预警实验室[11]。
供试楚雄腮扁叶蜂幼虫采集于昆明市寻甸县七星乡北大营村云南松林下土壤中,采集处于滞育期的幼虫并置于无菌土中,保持土壤湿度,培养5 d后的健康幼虫供实验用。
-
将纯化粉红粘帚霉SWFUYHL 02-03菌株于PDA培养基上培养15 d以上,待培养基上长满菌落时,用0.05%的吐温-80无菌水溶液洗下培养基上的孢子,以5 000 r/s的转速离心20 min,去掉菌丝体得到孢子悬浮液。参考芦俊佳等研究方法[8],制备1.0×108个/mL孢子悬浮液,用其浸泡处理幼虫30 s,以0.05%吐温-80灭菌蒸馏水作对照。取160头楚雄腮扁叶蜂幼虫,接种80头,对照80头,接种后每头幼虫放入1支小试管中并保湿,并分别于接种后6 h取对照幼虫10头、发病幼虫10头;接种后14 h取对照幼虫10头、肉眼可见菌丝的发病幼虫10头;接种后26 h取对照幼虫10头、刚死亡幼虫10头;接种后38 h取对照幼虫10头、菌丝穿透体壁的幼虫10头;接种后48 h取对照幼虫10头、虫体菌丝较多的幼虫10头;接种后7 h取对照幼虫10头、虫体布满菌丝的幼虫10头,每组样各5头分别用于扫描电镜实验和透射电镜实验。统计各处理楚雄腮扁叶蜂幼虫的死亡数,计算死亡率、校正死亡率。死亡率=死亡数/供试虫数×100%;校正死亡率=(处理组死亡率-对照组死亡率)/(1-对照组死亡率)× 100%。
-
扫描电子显微镜(SEM):取整头虫制备样品,样品经3%戊二醛固定过夜,0.05 mol/L磷酸盐缓冲液冲洗3次,用1%锇酸后固定1 h,pbs液冲洗3次,用30%、50%、70%、80%、90%、95%、100%酒精逐级脱水,每次25 min,叔丁醇浸润1.5 h,冷冻干燥(日立-2030),粘样喷钼钯合金(日立-1010),扫描电子显微镜下观察和拍照(日立s-3000n)。
-
透射电子显微镜(TEM):切取幼虫体壁气门处制备样品,制备的样品经3%戊二醛前固定过夜,0.05 mol/L磷酸盐缓冲液冲洗4次,每次15 min。用1%锇酸后固定2 h,0.05 mol/L磷酸盐缓冲液冲洗4次,每次15 min。用30%、50%、70%、80%、90%、100%酒精和丙酮进行梯度脱水,每级30 min。Epon618渗透包埋,超薄切片机切片(徕卡-CM1100),用醋酸铀和柠檬酸铅双染色,用透射电镜观察幼虫被侵染后体壁的超微结构变化并拍照(日本电子-JEM1011)。
-
以粉红粘帚霉SWFUYHL 02-03菌株的1.0×108个/mL孢子悬浮液接种楚雄腮扁叶蜂幼虫后,在接种的80头幼虫中,感病死亡率见图 1。从图 1可以看出,接种26 h后对照组才出现幼虫死亡,随着接种时间的增加,处理组死亡率和校正死亡率均逐渐增加。接种6 h和14 h后,处理组死亡率和校正死亡率一致,分别为75.00%和85.00%;接种72 h后,处理组两个死亡率指标均达到最大,虫体布满菌丝的幼虫72头,死亡79头(死亡率98.75%),对照死亡3头(死亡率3.75%),处理校正死亡率达到98.70%,无菌丝生长。采用配对样本t检验对处理和对照的死亡率进行差异显著性分析发现,处理组死亡率极显著高于对照组(t=23.92,P < 0.000 1),均值差达到88.00%。
-
扫描电镜实验共处理了40头虫,观察了30头,共235个视野;对照组40头,观察了30头,共150个视野。从表 1可以看出,接种后38 h以内,60%以上处理组幼虫可被粉红粘帚霉SWFUYHL 02-03孢子附着于体壁,尤其是接种后6 h,100%的幼虫及所拍视野均显示被粉红粘帚霉SWFUYHL 02-03附着,这也是虫生真菌寄生的第一步[9]。接种38 h以后,幼虫体表菌丝迅速增多,100%所拍摄的视野都显示体表菌丝增多,这表明楚雄腮扁叶蜂幼虫体壁非常有利于粉红粘帚霉SWFUYHL 02-03孢子附着和菌丝生长。接种72 h以后,所取处理组幼虫体表,出现大量粉红粘帚霉菌丝及产孢结构、新生孢子。
表 1 扫描电镜观察结果数量统计表
Table 1. Number statistics in SEM observation results
接种后时间Time after inoculation/h 孢子附着体壁Conidias adhering onto body wall 孢子萌发芽管Conidias germ 菌丝穿透体壁Hypha penetrating the body wall 体表菌丝增多Hypha on body wall increased 出现产孢结构Generating conidiogenous structure 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 6 5 100.00 25 100.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 14 3 60.00 10 21.74 3 60.00 36 78.26 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 26 4 80.00 8 50.00 3 60.00 9 18.00 3 60.00 33 66.00 0 0.00 0 0.00 0 0.00 0 0.00 38 4 80.00 7 14.58 2 40.00 6 12.50 5 100.00 12 25.00 4 80.00 23 47.92 0 0.00 0 0.00 48 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 4 20.00 5 100.00 16 80.00 0 0.00 0 0.00 72 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 20 100.00 5 100.00 20 100.00 扫描电镜观察结果见图 2。接种6 h后,取发病幼虫进行扫描电镜观察,可见大量的分生孢子成功附着于体壁不同区域,如气门、节间膜等部位(图 2a)。接种14 h后,可见孢子已经萌发,并长出芽管,可见芽管侵入幼虫体壁(图 2b、c)。由图 2b可以看出,芽管长度已经超过孢子直径长度的一半,可以判断孢子已经萌发[12]。接种26 h后,以菌丝形式从体腔内直接穿透楚雄腮扁叶蜂幼虫体壁、气门,进入虫体(图 2d),接种38小时后,幼虫体壁气门处菌丝增多(图 2e)。接种72 h后,发现在幼虫体表,粉红粘帚霉SWFUYHL 02-03出现产孢结构并产生新孢子(图 2f)。从图 2还可以看出,与楚雄腮扁叶蜂幼虫体壁直接接触的粉红粘帚霉SWFUYHL 02-03孢子先萌发,没有直接接触楚雄腮扁叶蜂幼虫体壁的粉红粘帚霉SWFUYHL 02-03孢子萌发较慢或不萌发。在接种粉红粘帚霉SWFUYHL 02-03孢子悬浮液14 h后,5头处理幼虫均最先在气门、节间膜位置观察到孢子萌发。在接种粉红粘帚霉SWFUYHL 02-03孢子悬浮液48 h,菌丝布满虫体后才可观察到虫体头壳区、尾部有菌丝。这表明气门部位的孢子萌发和菌丝生长速度明显快于其他部位,可以判断粉红粘帚霉SWFUYHL 02-03孢子首先是从楚雄腮扁叶蜂幼虫的气门侵入,这在真菌侵染害虫的途径中是极其少见的。
-
透射电镜实验共处理了40头虫,取气门处观察了30头,共146个视野;对照组40头,观察了30头,共102个视野。从表 2可以看出,接种38 h以后,拍摄视野内所见粉红粘帚霉SWFUYHL 02-03菌丝周围均有电子密度极低的光晕,说明在侵染过程中都伴随着酶的参与和组织溶解。接种48 h以后,楚雄腮扁叶蜂幼虫体壁的皮细胞层大量出现排列疏松和空泡现象,并且所拍视野内可见大量菌丝出现在体壁的外表皮层。说明粉红粘帚霉SWFUYHL 02-03孢子和菌丝在幼虫体内生长迅速。
表 2 透射电镜观察视野数量统计表
Table 2. Statistics in view number observed by TEM
接种后时间Time after inoculation/h 孢子附着体壁Conidias adhering onto body wall 菌丝进入外表皮层Hypha penetrating into the exocuticle 菌丝周围出现光晕Halo appearing around hypha 皮细胞层细胞排列疏松并形成空泡Epidermis cell arranging loose and becoming vacuole 菌丝段进入表皮层Hypha penetrating into cuticle 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 6 3 60.00 10 33.33 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 14 3 60.00 4 25.00 3 60.00 12 75.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 26 3 60.00 4 25.00 3 60.00 12 75.00 5 100.00 16 100.00 0 0.00 0 0.00 0 0.00 0 0.00 38 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 12 100.00 4 80.00 10 83.33 0 0.00 0 0.00 48 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 34 100.00 4 80.00 10 29.41 4 80.00 24 70.59 72 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 36 100.00 3 60.00 12 33.33 5 100.00 24 66.67 透射电镜观察结果见图 3。接种6 h后,透射电镜切片可见分生孢子附着于楚雄腮扁叶蜂幼虫节间褶位置(图 3a);接种14 h后,分生孢子萌发,菌丝进入外表皮层细胞的分泌物中(图 3b);接种26 h后,菌丝穿透体壁进入外表皮层,并以菌丝形式迅速生长,扩展蔓延(图 3c),此时透射电镜视野中还可观察到菌丝周围出现电子密度很低的光晕(图 3d),说明在菌丝穿透楚雄腮扁叶蜂幼虫过程中伴随着周围组织溶解现象[13];接种38 h后,菌丝快速生长,产生代谢产物,皮细胞层细胞排列疏松,形成大量电子密度较低的空泡(图 3e);接种48 h后,菌丝体以菌丝段的形式进入外表皮层中,并快速生长、产孢、再产生新的菌丝体(图 3f)。之后整个虫体内充满菌丝,菌丝穿透体壁向体外生长。从透射电镜的观察研究来看,菌丝在穿透幼虫体壁过程中,伴随着酶的参与和组织溶解现象,并以幼虫体壁作为营养,产生有毒代谢产物。
-
本文通过扫描电镜和透射电镜技术观察研究了粉红粘帚霉SWFUYHL 02-03对楚雄腮扁叶蜂幼虫体壁的侵染过程及其超微结构的变化。接种6 h后,60%以上的处理幼虫均可见粉红粘帚霉SWFUYHL 02-03孢子附着于幼虫体壁。接种26 h后,粉红粘帚霉SWFUYHL 02-03以孢子和菌丝形式直接穿透楚雄腮扁叶蜂幼虫体壁,并大量增殖,产生新的孢子,说明粉红粘帚霉SWFUYHL 02-03可以利用楚雄腮扁叶蜂幼虫的表皮成分,并与楚雄腮扁叶蜂幼虫建立寄生关系。文献表明,虫生真菌与昆虫之间建立寄生关系不仅说明虫生真菌的分生孢子能成功附着于昆虫表皮,这也说明虫生真菌不仅能够识别昆虫表皮上的营养物质为其提供养分,并且能抵御昆虫体表细菌等产生的抑制作用[14-16]。
接种6~14 h后,即可观察到粉红粘帚霉SWFUYHL 02-03孢子首先从气门侵入,后萌发芽管并侵入幼虫体壁,对楚雄腮扁叶蜂幼虫产生致病作用。这表明粉红粘帚霉SWFUYHL 02-03分生孢子对楚雄腮扁叶蜂幼虫体壁的附着和侵染速度较快,远高于其他病原真菌。邓彩萍等[17]对球孢白僵菌侵染光肩星天牛(Anoplophorag labripennis)幼虫体壁的扫面电镜观察发现,在接菌48 h后,球孢白僵菌分生孢子芽管可侵入幼虫表皮,并对光肩星天牛幼虫产生致病作用;据曹庆杰等报道,布氏白僵菌对杨干象幼虫的侵入时间是接种24 h后[5];王音等研究表明,在接种7 h后,分生孢子附着于寄主表皮上,接种22 h后,分生孢子萌发芽管[10]。
扫描电镜和透射电镜观察还发现,粉红粘帚霉SWFUYHL 02-03侵染楚雄腮扁叶蜂幼虫时从幼虫气门位置进入虫体,在虫体内生长、增殖,并穿透幼虫体壁向外生长。在接种26 h后,孢子和菌丝穿透体壁进入表皮层,146个透射电镜视野所见的菌丝周围均会出现电子密度很低的光晕,说明在菌丝穿透过程中伴随着昆虫体壁降解酶的参与,这可能是由于虫生真菌在穿透昆虫表皮过程中,机械压力和酶降解的联合作用[18]。另外,楚雄腮扁叶蜂幼虫在接种粉红粘帚霉SWFUYHL 02-03孢子38 h后,菌丝快速生长,产生的代谢产物引起皮细胞层细胞排列疏松,形成空泡,说明粉红粘帚霉SWFUYHL 02-03作为昆虫病原真菌,其孢子萌发及菌丝生长过程中有毒素产生。这与蒲蛰龙等、Kodaira等在虫生真菌产生的代谢产物对家蚕幼虫致病或致死研究中得到的结论一致[19-20],其致死原因可能是由于这些代谢产物会干扰寄主细胞的免疫系统,影响中枢神经系统,使其神经传导受到障碍,失去正常的反射作用[21],从而造成寄主昆虫致病或死亡。
通过扫描电镜与透射电镜观察粉红粘帚霉SWFUYHL 02-03对楚雄腮扁叶蜂体壁的侵染过程,并分析其超微结构变化特征,证实了粉红粘帚霉SWFUYHL 02-03的孢子及菌丝能寄生于楚雄腮扁叶蜂幼虫虫体,并产生有毒代谢产物,造成楚雄腮扁叶蜂死亡。芦俊佳等对楚雄腮扁叶蜂幼虫体内的虫生真菌的致病力比较发现,以粉红粘帚霉SWFUYHL 02-01菌株、SWFUYHL 02-03菌株按1.5×108个/mL的孢子悬浮液接种楚雄腮扁叶蜂幼虫,接种4 d后侵染幼虫的死亡率达到100%,僵虫率达到91.7%[8],这也说明了粉红粘帚霉SWFUYHL 02-03产生的代谢产物是造成楚雄腮扁叶蜂幼虫死亡的主要原因。此外,粉红粘帚霉生物学性状优良,无论是在室内培养基中还是在虫体上极易生长和产孢,孢子萌发速度快,萌发率高,既能抗病害又能防治虫害,施菌方式安全无害[7],利用粉红粘帚霉防治楚雄腮扁叶蜂具有较好的应用前景。
SEM and TEM observations of Clonostachys rosea SWFUYHL 02-03 infecting the body wall of Cephalcia chuxiongica larvae
-
摘要:
目的了解粉红粘帚霉对楚雄腮扁叶蜂幼虫的侵染过程,为粉红粘帚霉对楚雄腮扁叶蜂的致病机理研究提供参考。 方法利用扫描电镜和透射电镜技术对粉红粘帚霉SWFUYHL 02-03孢子侵染楚雄腮扁叶蜂幼虫体表过程及其超微结构的变化进行观察研究。 结果扫描电镜结果显示,接种6 h后,粉红粘帚霉SWFUYHL 02-03分生孢子成功附着于幼虫体壁的气门、节间膜等部位;接种14 h后,粉红粘帚霉SWFUYHL 02-03孢子萌发出芽管,并侵入体壁;接种26 h后,孢子和菌丝穿透楚雄腮扁叶蜂幼虫体壁,且菌丝迅速生长;接种72 h后,菌丝穿出虫体表面,并长出产孢结构。透射电镜观察发现粉红粘帚霉SWFUYHL 02-03菌丝在穿透幼虫体壁过程中,会伴随酶的参与和组织溶解现象;接种6 h后,粉红粘帚霉SWFUYHL 02-03分生孢子附着于幼虫体壁的两个节间褶间的部位;接种14 h后,分生孢子萌发并进入表皮细胞层分泌物中;接种26 h后,菌丝侵入表皮并扩展蔓延,且在菌丝周围出现电子密度很低的光晕;接种38 h后,皮细胞层细胞排列松弛变成空泡;接种48 h后,菌丝充满虫体,表皮层出现大量菌丝。 结论粉红粘帚霉SWFUYHL 02-03孢子及菌丝能寄生楚雄腮扁叶蜂幼虫,并可致其死亡。观察结果准确反映了粉红粘帚霉SWFUYHL 02-03对楚雄腮扁叶蜂幼虫的侵染过程,并证实了侵染过程中酶与代谢产物的存在。 -
关键词:
- 粉红粘帚霉SWFUYHL 02-03 /
- 楚雄腮扁叶蜂 /
- 侵染过程 /
- 扫描电镜 /
- 透射电镜
Abstract:ObjectiveThis paper aims to study the process of Clonostachys rosea infecting Cephalcia chuxiongica larvae, and provides a reference for the research on pathogenicity mechanism of Ce. chuxiongica. MethodWe observed the ultrastructural changes of Ce. chuxiongica body wall infected by Cl. rosea SWFUYHL 02-03 using the scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). Result Based on the SEM observation, the conidias adhered onto spiracles and internode membranes of body wall after 6 hours inoculation. The germ tubes of this fungi penetrated into the cuticle of Ce. chuxiongica larvae after 14 hours. The conidia and hypha penetrated into the cuticle of Ce. chuxiongica larvae and the hypha began to multiply rapidly after 26 hours, and then the hypha penetrated out from the cuticle of Ce. chuxiongica larvae and generated sporogenous structure when it was inoculated at 72 hours. Meanwhile, inferred from the TEM observation, the participation of enzymes and histolysis could be found with the penetration process of hypha. The spores adhered onto the body wall of the Ce. chuxiongica larvae when it was inoculated at 6 hours and then the conidia germinated and penetrated into the secretion of cuticle after inoculation for 14 hours. The hypha penetrated and spreaded into the cuticle, and halos with low electron density could be observed around the penetrated hypha after 26 hours. The epidermis cell arranged loose and became vacuole after inoculation for 38 hours and the larvae's body was full of hypha, and a great deal of hypha were on the cuticle of Ce. chuxiongica larvae after inoculation for 48 hours. ConclusionThe spores and hypha of Cl. rosea SWFUYHL 02-03 could parasitize and kill the Ce. chuxiongica larvae. The SEM and TEM observations accurately reflected the infection process of Cl. rosea SWFUYHL 02-03 on the larvae of Ce. chuxiongica, and proved the existence of enzymes and virulent metabolites. -
图 2 粉红粘帚霉SWFUYHL 02-03侵染楚雄腮扁叶蜂幼虫体壁的扫描电镜观察
a.孢子(co)附着在楚雄腮扁叶蜂幼虫体壁(箭头处) (接种后6 h) Conidias (co) adhered onto the body wall of Ce. chuxiongica larvae (arrow) (6 hours after inoculation); b.附着孢子(co)萌发芽管(gt) (箭头处) (接种14 h后) Adhered conidias germinated germ tubes (gt) (arrow) (14 hours after inoculation); c.孢子(co)侵入幼虫体壁(箭头处) (接种26 h后) Conidias (co) penetrated into the body wall of larvae (arrow) (26 hours after inoculation); d.菌丝(ph)穿透幼虫体壁(箭头处) (接种26 h后) Some hypha (ph) penetrated out from the body wall of the larvae (arrow) (26 hours after inoculation); e.气门处菌丝(ph)(接种38 h) Hypha extended on the spiracles (38 hours after inoculation); f.开始长出新产孢结构(cs)(箭头处)和孢子(箭头处)(接种72 h) Began to generate new conidiogenous structure (cs) (arrow) and conidias (co) (arrow) (72 hours after inoculation)
Figure 2. Observation of infection process of Cl. rosea SWFUYHL 02-03 on Ce. chuxiongica larvae by SEM
图 3 粉红粘帚霉SWFUYHL 02-03侵染楚雄腮扁叶蜂幼虫的透射电镜观察
分生孢子(co)(箭头处)附着于楚雄腮扁叶蜂幼虫节间褶之间的分泌物上(接种6 h) Conidia (co)(arrow) adhered onto the secretion between Ce. chuxiongica's intersegmental fold(6 hours after inoculation); b.菌丝(ph)(箭头处)侵入到楚雄腮扁叶蜂幼虫外表皮(exo)细胞层分泌物中(接种14 h) Hypha (ph)(arrow) penetrated into the secretion of Ce. chuxiongica's exocuticle (exo) (14 hours after inoculation); c.大量菌丝(ph)(箭头处)侵入到外表皮细胞层(exo)中(接种26 h) A lot of hypha (ph)(arrow) penetrated into the exocuticle(exo)(26 hours after inoculation); d.菌丝周围出现电子密度很低的光晕(箭头处) (接种26 h)Halo with low electron density was observed around penetrated hypha (arrow)(26 hours after inoculation); e.皮细胞层(epid)细胞排列松弛变成空泡(vac)(箭头处) (接种38 h) Epidermis (epid) cell arranged loose and became vacuole (vac) (arrow) (38 hours after inoculation); f.表皮层中的大量菌丝(接种48 h) Massive hypha (ph) in cuticle (48 hours after inoculation)
Figure 3. Observation of infection process of Cl. rosea SWFUYHL 02-03 on Ce. chuxiongica larvae by TEM
表 1 扫描电镜观察结果数量统计表
Table 1. Number statistics in SEM observation results
接种后时间Time after inoculation/h 孢子附着体壁Conidias adhering onto body wall 孢子萌发芽管Conidias germ 菌丝穿透体壁Hypha penetrating the body wall 体表菌丝增多Hypha on body wall increased 出现产孢结构Generating conidiogenous structure 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 6 5 100.00 25 100.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 14 3 60.00 10 21.74 3 60.00 36 78.26 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 26 4 80.00 8 50.00 3 60.00 9 18.00 3 60.00 33 66.00 0 0.00 0 0.00 0 0.00 0 0.00 38 4 80.00 7 14.58 2 40.00 6 12.50 5 100.00 12 25.00 4 80.00 23 47.92 0 0.00 0 0.00 48 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 4 20.00 5 100.00 16 80.00 0 0.00 0 0.00 72 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 20 100.00 5 100.00 20 100.00 表 2 透射电镜观察视野数量统计表
Table 2. Statistics in view number observed by TEM
接种后时间Time after inoculation/h 孢子附着体壁Conidias adhering onto body wall 菌丝进入外表皮层Hypha penetrating into the exocuticle 菌丝周围出现光晕Halo appearing around hypha 皮细胞层细胞排列疏松并形成空泡Epidermis cell arranging loose and becoming vacuole 菌丝段进入表皮层Hypha penetrating into cuticle 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 幼虫Larvae 视野Vision 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 数量Quantity 占比Proportion/% 6 3 60.00 10 33.33 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 14 3 60.00 4 25.00 3 60.00 12 75.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 26 3 60.00 4 25.00 3 60.00 12 75.00 5 100.00 16 100.00 0 0.00 0 0.00 0 0.00 0 0.00 38 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 12 100.00 4 80.00 10 83.33 0 0.00 0 0.00 48 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 34 100.00 4 80.00 10 29.41 4 80.00 24 70.59 72 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00 36 100.00 3 60.00 12 33.33 5 100.00 24 66.67 -
[1] 冯璐, 刘建宏, 李永和, 等.基于Maxent模型的楚雄腮扁叶蜂潜在分布区预测[J].西部林业科学, 2013, 42(2):49-55. doi: 10.3969/j.issn.1672-8246.2013.02.009 Feng L, Liu J H, Li Y H, et al. Prediction of potential distribution of Cephalcia chuxiongica based on Maxent ecological niche model[J]. Journal of West China Forestry Science, 2013, 42(2):49-55. doi: 10.3969/j.issn.1672-8246.2013.02.009 [2] 徐荣, 李永和, 夏举飞, 等.寻甸县楚雄腮扁叶蜂生物学特性研究[J].林业调查规划, 2016, 41(2):69-72. doi: 10.3969/j.issn.1671-3168.2016.02.014 Xu R, Li Y H, Xia J F, et al. Biological characteristics of Pamphiliidae cheek in Xundian County[J]. Forest Inventory and Planning, 2016, 41(2):69-72. doi: 10.3969/j.issn.1671-3168.2016.02.014 [3] 张芝娟, 钱进.马龙县楚雄腮扁叶蜂危害现状与防控对策[J].林业调查规划, 2015, 40(1): 42-44. doi: 10.3969/j.issn.1671-3168.2015.01.009 Zhang Z J, Qian J. Hazards status of Cephalcia abietis and its countermeasures in Marion County[J]. Forest Inventory and Planning, 2015, 40(1):42-44. doi: 10.3969/j.issn.1671-3168.2015.01.009 [4] 曾廷潇, 芦俊佳, 徐荣, 等. 2株楚雄腮扁叶蜂虫生真菌培养条件及产孢特性研究[J].西南林业大学学报, 2018, 38(2):126-133. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201802019 Zeng T X, Lu J J, Xu R, et al. The culture conditions and sporulation characteristics of 2 entomopathogenic fungi with Cephlica chuxiongica[J]. Journal of Southwest Forestry University, 2018, 38(2):126-133. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201802019 [5] 曹庆杰, 迟德富, 宇佳, 等.布氏白僵菌侵染杨干象幼虫体壁的扫描电镜及透射电镜观察[J].北京林业大学学报, 2015, 37(5): 96-101. doi: 10.13332/j.1000-1522.20140483 Cao Q J, Chi D F, Yu J, et al. SEM and TEM observations of Beauveria brongniartii (Sacc.) petch infecting body wall of Cryptorhynchus lapathi L. (Coleoptera: Curculionidae) larvae[J]. Journal of Beijing Forestry University, 2015, 37(5): 96-101. doi: 10.13332/j.1000-1522.20140483 [6] 张小平.化学农药对农业生态环境的污染及防治[J].生态经济, 2003(10):166-168. http://cdmd.cnki.com.cn/Article/CDMD-10389-2006160168.htm Zhang X P. Pollution and its control on agricultural ecological environment of chemical pesticides[J]. Ecological Economy, 2003(10):166-168. http://cdmd.cnki.com.cn/Article/CDMD-10389-2006160168.htm [7] 赵士振.粉红粘帚霉防治果蔬灰霉病的研究[D].武汉: 华中农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10504-1015380729.htm Zhao S Z. Clonostachys rosea prevention and treatment of grey mold[D]. Wuhan: Huazhong Agricultural University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10504-1015380729.htm [8] 芦俊佳, 夏举飞, 庄飞, 等.楚雄腮扁叶蜂虫生真菌粉红粘帚霉的鉴定及其生物学特性[J].植物保护学报, 2018, 45(3): 622-631. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201803029 Lu J J, Xia J F, Zhuang F, et al. Identification and biological characterization of mycoparasitic fungus Clonostachys rosea isolated from sawfly Cephalcia chuxiongica[J]. Acta Phytophylacica Sinica, 2018, 45(3): 622-631. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201803029 [9] 王音, 雷仲仁, 张青文, 等.绿僵菌侵染小菜蛾体表过程的显微观察[J].昆虫学报, 2005, 48(2):188-193. doi: 10.3321/j.issn:0454-6296.2005.02.007 Wang Y, Lei Z R, Zhang Q W, et al. Microscopic observations of infection process of Metarhizium anisopliae on the cuticle of the diamondback moth, Plutella xylostella[J]. Acta Entomologica Sinica, 2005, 48(2):188-193. doi: 10.3321/j.issn:0454-6296.2005.02.007 [10] 王音, 雷仲仁, 张青文, 等.绿僵菌侵染小菜蛾幼虫过程的透射电镜观察[J].昆虫学报, 2006, 49(6):1042-1045. doi: 10.3321/j.issn:0454-6296.2006.06.022 Wang Y, Lei Z R, Zhang Q W, et al. Observation of infection process of Metarhizium anisopliae on Plutella xylostella larvae with transmission electron microscopy[J]. Acta Entomologica Sinica, 2006, 49(6):1042-1045. doi: 10.3321/j.issn:0454-6296.2006.06.022 [11] 夏举飞, 陈玉惠, 李永和, 等.楚雄腮扁叶蜂虫生真菌的分离鉴定及其致病性[J].中国森林病虫, 2015, 34(3): 9-13. doi: 10.3969/j.issn.1671-0886.2015.03.003 Xia J F, Chen Y H, Li Y H, et al. Identification and pathogenicity of the entomogenous fungi isolated from Cephalcia chuxiongica Xiao[J]. Forest Pest and Disease, 2015, 34(3): 9-13. doi: 10.3969/j.issn.1671-0886.2015.03.003 [12] 方中达.植病研究方法[M].北京:中国农业出版社, 1998. Fang Z D. Methodology for plant pathology[M]. Beijing: China Agriculture Press, 1998. [13] Hassan A E M, Charnley A K. Ultrastructural study of the penetration by Metarhizium anisopliae through Dimilin-affected cuticle of Manduca sexta[J]. Journal of Invertebrate Pathology, 1989, 54(1):117-124. doi: 10.1016/0022-2011(89)90148-1 [14] Smith R J, Pekrul S, Grula E A. Requirement for sequential enzymatic activities for penetration of the integument of the corn earworm (Heliothis zea)[J]. Journal of Invertebrate Pathology, 1981, 38(3):335-344. doi: 10.1016/0022-2011(81)90099-9 [15] Lord J C, Howard R W. A proposed role for the cuticular fatty amides of Liposcelis bostrychophila (Psocoptera: Liposcelidae) in preventing adhesion of entomopathogenic fungi with dry-conidia[J]. Mycopathologia, 2004, 158(2): 211-217. doi: 10.1023/B:MYCO.0000041837.29478.78 [16] Maketon M, Sawangwan P, Sawatwarakul W. Laboratory study on the efficacy of Metarhizium anisopliae (Deuteromycota: Hyphomycetes) in controlling Coptotermes gestroi (Isoptera: Rhinotermitidae)[J]. Entomologia Generalis, 2007, 30(3):203-218. doi: 10.1127/entom.gen/30/2007/203 [17] 邓彩萍, 闫喜中, 刘红霞, 等.球孢白僵菌侵染光肩星天牛幼虫的扫描电镜及组织病理观察[J].林业科学, 2012, 48(3):105-109. http://d.old.wanfangdata.com.cn/Periodical/lykx201203017 Deng C P, Yan X Z, Liu H X, et al. Pathological observation of Anoplophora glabripennis larva infected by Beauveria bassiana by using SEM and light microscope[J]. Scientia Silvae Sinicae, 2012, 48(3):105-109. http://d.old.wanfangdata.com.cn/Periodical/lykx201203017 [18] Charnley A K. Physiological aspects of destructive pathogenesis in insects by fungi: a speculative review[C]//Anderson J M, Raymer A D M, Walton D W H. Invertebrate-microbial interaction. Cambridge: Cambridge University Press, 1984: 229-270. [19] 蒲蛰龙, 李增智.昆虫真菌学[M].合肥:安徽科学技术出版社, 1996. Pu Z L, Li Z Z. Insects mycology[M]. Hefei: Anhui Science and Technology Press, 1996. [20] Kodaira Y. Studies on the new toxic substances to insects, destruxin A and B, produced by Oospora destructor[J]. Journal of the Agricultural Chemical Society of Japan, 1962, 26(1):36-42. https://www.researchgate.net/publication/272278418_Studies_on_the_New_Toxic_Substances_to_Insects_Destruxin_A_and_B_Produced_by_Oospora_destructor [21] 蒲蛰龙.昆虫病理学[M].广州:广东科学技术出版社, 1992. Pu Z L. Insect pathology[M]. Guangzhou: Guangdong Science and Technology Press, 1992. -