高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液流和叶片水势测定的沙柳水分利用特征分析

杨睿智 马景永 梁椿烜 田赟 贾昕 查天山

杨睿智, 马景永, 梁椿烜, 田赟, 贾昕, 查天山. 基于液流和叶片水势测定的沙柳水分利用特征分析[J]. 北京林业大学学报, 2019, 41(11): 87-94. doi: 10.13332/j.1000-1522.20180241
引用本文: 杨睿智, 马景永, 梁椿烜, 田赟, 贾昕, 查天山. 基于液流和叶片水势测定的沙柳水分利用特征分析[J]. 北京林业大学学报, 2019, 41(11): 87-94. doi: 10.13332/j.1000-1522.20180241
Yang Ruizhi, Ma Jingyong, Liang Chunxuan, Tian Yun, Jia Xin, Zha Tianshan. Analyses on water use characteristics of Salix psammophila based on sap flow and leaf water potential[J]. Journal of Beijing Forestry University, 2019, 41(11): 87-94. doi: 10.13332/j.1000-1522.20180241
Citation: Yang Ruizhi, Ma Jingyong, Liang Chunxuan, Tian Yun, Jia Xin, Zha Tianshan. Analyses on water use characteristics of Salix psammophila based on sap flow and leaf water potential[J]. Journal of Beijing Forestry University, 2019, 41(11): 87-94. doi: 10.13332/j.1000-1522.20180241

基于液流和叶片水势测定的沙柳水分利用特征分析

doi: 10.13332/j.1000-1522.20180241
基金项目: 国家自然科学基金项目(31670710,31670708);中央高校基本科研业务费专项(2015-ZCQ-SB-02)
详细信息
    作者简介:

    杨睿智。主要研究方向:生理生态。Email:767514074@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    查天山,教授。主要研究方向:生态系统过程、植被对气候变化的响应与反馈、植被间相互作用等。Email:tianshanzha@bjfu.edu.cn 地址:同上

Analyses on water use characteristics of Salix psammophila based on sap flow and leaf water potential

  • 摘要: 目的干旱半干旱区植物的水分传输过程依赖于一套有效的调控机制,研究典型沙生植物对土壤干旱的响应机制有助于预测未来气候条件下荒漠生态系统的结构和功能变化。方法采用包裹式茎流仪于2017年5—10月对毛乌素沙地沙柳液流进行长期连续观测,期间选择天气晴朗的19 d测得黎明前叶水势与正午叶水势,同步连续监测林冠上方太阳辐射、气温、空气相对湿度与土壤含水量。结果(1)短期内土壤水势与枝条液流具有较好的相关性(5—6月、7—9月),整个生长季内液流密度与土壤叶片水势差(ΨLΨS)呈正相关。(2)叶片水势(ΨL)、大气水汽压亏缺(VPD)均对叶片蒸腾速率(EL)有调控作用,小于阈值呈正相关,大于阈值呈负相关。VPD对EL调控阈值为1.9 kPa,ΨLEL调控阈值为−3.7 MPa。VPD对叶片导度(gL)有显著调控作用,调控阈值为0.9 kPa,小于阈值呈正相关,大于阈值呈负相关。(3)沙柳木质部栓塞脆弱性曲线呈“r”形,引起枝条50%导水率损失的压力值(P50)为0.73 MPa。(4)整体上看,正午木质部传导度(Ks)与正午叶片传导度(gL)是正相关的。Ks与黎明前叶水势(ΨS)呈现正相关关系,而gL受VPD影响较大导致其与ΨS相关性弱。gLKs对于土壤干旱(ΨS降低)的相对敏感性(ϭ)为 1.035 。结论以上结果表明,随着水分胁迫加重,木质部在水势较高时便通过降低导水率来减少水分丧失,木质部栓塞到一定程度也不关闭气孔,而是能保持一定的气孔开度。这些适应策略在一定程度上反映了沙柳最大化蒸腾和同化速率的一种机制,对正确认识干旱地区沙柳的水分利用特征有明显的理论意义,为深入研究沙柳的水力限制补偿机理奠定基础。

     

  • 图  1  枝条液流与土壤−叶片水势的动态变化

    Figure  1.  Dynamic changes of plant sap flow and soil-leaf water potential

    图  2  正午叶片蒸腾与叶片水势、大气水汽压亏损的关系

           空心圆表示饱和水汽压差大于2.7 kPa的点。Hollow points are the point which VPD is greater than 2.7 kPa.

    Figure  2.  Relationship between leaf transpiration and leaf water potential, vapour pressure deficit

    图  3  沙柳的栓塞脆弱曲线

    Figure  3.  Vulnerability curves of Salix psammophila

    图  4  木质部水力导度与气孔导度随土壤水势的变化

    Figure  4.  Changes in Ks and gL with soil potential

    图  5  沙柳黎明前叶水势与正午叶水势的关系

    Figure  5.  Relationship between predawn and midday leaf water potential of Salix psammophila

    表  1  被测沙柳样株的基本特征及茎流传感器型号

    Table  1.   Basic properties of the measured samples of Salix psammophila and sap flow sensor type

    编号
    No.
    传感器型号
    Sensor type
    茎干直径 Stem diameter/mm株高 Stem length/m冠幅 Crown width/m × m
    1 SGA13 12.26 2.5 2.5 × 1.8
    2 SGA13 13.02 2.6 3.0 × 2.1
    3 SGA9 9.12 1.9 2.0 × 1.7
    4 SGA9 9.54 2.1 2.3 × 2.0
    5 SGA9 9.38 2.4 2.1 × 1.9
    下载: 导出CSV
  • [1] Sperry J S, Hacke U G, Oren R, et al. Water deficits and hydraulic limits to leaf water supply[J]. Plant, Cell & Environment, 2002, 25(2): 251−263.
    [2] Tyree M T, Sperry J S. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model[J]. Plant Physiology, 1988, 88(3): 574−580. doi: 10.1104/pp.88.3.574
    [3] Zimmermann M H. Xylem structure and the ascent of sap[J]. Science, 2002, 222: 500−501.
    [4] Sperry J S, Tyree M T. Water-stress-induced xylem embolism in three species of conifers[J]. Plant Cell & Environment, 1990, 13(5): 427−436.
    [5] 孙谷畴, 赵平, 曾小平, 等. 亚热带森林演替树种叶片气孔导度对环境水分的水力响应[J]. 生态学报, 2009, 29(2):698−705. doi: 10.3321/j.issn:1000-0933.2009.02.018

    Sun G C, Zhao P, Zeng X P, et al. Hydraulic responses of stomatal conductance in leaves of successional tree species in subtropical forest to environmental moisture[J]. Acta Ecologica Sinica, 2009, 29(2): 698−705. doi: 10.3321/j.issn:1000-0933.2009.02.018
    [6] Comstock J, Mencuccini M. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub[J]. Plant Cell & Environment, 2010, 21(10): 1029−1038.
    [7] Oren R, Sperry J S, Katul G G, et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit[J]. Plant, Cell & Environment, 2010, 22(12): 1515−1526.
    [8] Stocker O. Die abhängigkeit der transpiration von den umweltfaktoren[M]// Pflanze und wasser/ water relations of plants. Berlin: Springer, 1956.
    [9] Jones H G. Stomatal control of photosynthesis and transpiration[M]// Illustrated guide to surgical practice. Churchill: Livingstone, 1998: 387−398.
    [10] Tardieu F, Simonneau T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours[J]. Journal of Experimental Botany, 1998, 49(2): 419−432.
    [11] McDowell N G, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178: 719−739. doi: 10.1111/j.1469-8137.2008.02436.x
    [12] Domec J C, Johnson D M. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?[J]. Tree Physiology, 2012, 32(3): 245. doi: 10.1093/treephys/tps013
    [13] Martínez-Vilalta J, Poyatos R, Aguadé D, et al. A new look at water transport regulation in plants[J]. New Phytologist, 2015, 204(1): 105−115.
    [14] Campbell G S, Norman J M. An introduction to environmental biophysics[J]. Biologia Plantarum, 1979, 21(2): 104−104. doi: 10.1007/BF02909456
    [15] 李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301−305. doi: 10.3321/j.issn:1001-9332.2000.02.037

    Li J Y, Zhai H B. Hydraulic architecture and drought resistance of woody plants[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 301−305. doi: 10.3321/j.issn:1001-9332.2000.02.037
    [16] Michael G R, Barbara J Y. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4): 235−242. doi: 10.2307/1313077
    [17] Hubbard R M, Bond B J, Ryan M G. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees[J]. Tree Physiology, 1999, 19: 165−172. doi: 10.1093/treephys/19.3.165
    [18] Tyree M T , Sperry J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40(40): 19−38.
    [19] 翟洪波, 李吉跃,李保华, 等. Darcy定律在测定油松木质部导特征中的应用[J]. 北京林业大学学报, 2001, 23(4):6−9. doi: 10.3321/j.issn:1000-1522.2001.04.002

    Zhai H B, Li J Y, Li B H, et al. Application of Darcy's laws in testing water conductivity characteristics of Pinus tabulaeformis xylem[J]. Journal of Beijing Forestry University, 2001, 23(4): 6−9. doi: 10.3321/j.issn:1000-1522.2001.04.002
    [20] Saliendra N Z, Sperry J S, Comstock J P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis[J]. Planta, 1995, 196(2): 357−366.
    [21] 王珊, 查天山, 贾昕, 等. 毛乌素沙地油蒿群落冠层导度及影响因素[J]. 北京林业大学学报, 2017, 39(3):65−73.

    Wang S, Zha T S, Jia X, et al. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3): 65−73.
    [22] 安锋, 张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J]. 生态学报, 2005, 25(8):1928−1933. doi: 10.3321/j.issn:1000-0933.2005.08.014

    An F, Zhang S X. Studies of roots and shoots vulnerability to xylem embolism in seven woody plants[J]. Acta Ecologica Sinica, 2005, 25(8): 1928−1933. doi: 10.3321/j.issn:1000-0933.2005.08.014
    [23] Mencuccini M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms[J]. Plant Cell & Environment, 2003, 26(1): 163−182.
    [24] Meinzer F C. Co-ordination of vapour and liquid phase water transport properties in plants[J]. Plant Cell & Environment, 2002, 25(2): 265−274.
    [25] Brodribb T J, Holbrook N M, Edwards E J, et al. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees[J]. Plant Cell & Environment, 2003, 26(3): 443−450.
    [26] Willigen C V D, Pammenter N W. Relationship between growth and xylem hydraulic characteristics of clones of Eucalyptus spp. at contrasting sites[J]. Tree Physiology, 1998, 18(8−9): 595.
    [27] Granier A, Loustau D, Bréda N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index[J]. Annals of Forest Science, 2000, 57(8): 755−765. doi: 10.1051/forest:2000158
    [28] Lu P, Biron P, Granier A, et al. Water relations of adult Norway spruce (Picea abies (L.) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation[J]. Annales Des Sciences Forestieres, 1996, 53(1): 113−121. doi: 10.1051/forest:19960108
    [29] Irvine J, Perks M P, Magnani F, et al. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance[J]. Tree Physiology, 1998, 18(6): 393−402. doi: 10.1093/treephys/18.6.393
    [30] McDowell N G. Mechanisms linking drought, hydraulics, carbon etabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155: 1051−1059. doi: 10.2307/41434180
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  491
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-25
  • 修回日期:  2018-09-17
  • 网络出版日期:  2019-10-22
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回