高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同纬度毛竹物理力学性质的比较研究

张闻博 费本华 田根林 胡陶 岳祥华 常艳婷 江泽慧

张闻博, 费本华, 田根林, 胡陶, 岳祥华, 常艳婷, 江泽慧. 不同纬度毛竹物理力学性质的比较研究[J]. 北京林业大学学报, 2019, 41(4): 136-145. doi: 10.13332/j.1000-1522.20180245
引用本文: 张闻博, 费本华, 田根林, 胡陶, 岳祥华, 常艳婷, 江泽慧. 不同纬度毛竹物理力学性质的比较研究[J]. 北京林业大学学报, 2019, 41(4): 136-145. doi: 10.13332/j.1000-1522.20180245
Zhang Wenbo, Fei Benhua, Tian Genlin, Hu Tao, Yue Xianghua, Chang Yanting, Jiang Zehui. Comparative study on physical mechanic properties of Phyllostachys edulis in different latitudes[J]. Journal of Beijing Forestry University, 2019, 41(4): 136-145. doi: 10.13332/j.1000-1522.20180245
Citation: Zhang Wenbo, Fei Benhua, Tian Genlin, Hu Tao, Yue Xianghua, Chang Yanting, Jiang Zehui. Comparative study on physical mechanic properties of Phyllostachys edulis in different latitudes[J]. Journal of Beijing Forestry University, 2019, 41(4): 136-145. doi: 10.13332/j.1000-1522.20180245

不同纬度毛竹物理力学性质的比较研究

doi: 10.13332/j.1000-1522.20180245
基金项目: 国际竹藤中心基本科研业务费专项资金(1632016012),国家自然科学基金(31470025),国家“十二五”科技支撑计划项目(2015BAD04B03)
详细信息
    作者简介:

    张闻博,博士。主要研究方向:木材科学与技术。Email:wenbozhang@icbr.ac.cn 地址:100102 北京市朝阳区望京阜通东大街8号

    责任作者:

    江泽慧,教授,博士生导师。主要研究方向:木材科学与技术。Email:zhjiang2015@163.com 地址:同上

  • 中图分类号: S781.3

Comparative study on physical mechanic properties of Phyllostachys edulis in different latitudes

  • 摘要: 目的本研究旨在探讨分布在不同亚热带种源地区毛竹物理力学性质的变异规律。方法研究采用基于R语言的单因素方差分析、主成分分析等方法,对3个地区210株毛竹的物理性质和力学性质等8个相关指标(体积全干干缩率、体积气干干缩率、含水率、全干密度、气干密度、微纤丝角、抗弯强度和弹性模量)进行遗传变异分析。结果通过比较分析发现毛竹的物理力学性质在3个不同纬度地区间存在显著差异,这种差异可能是受遗传因素、环境因素等共同控制。体积干缩率、密度、微纤丝角和抗弯相关指标均以低纬度广西灌阳地区最大;只有含水率的分布规律为浙江安吉 > 安徽霍山 > 广西灌阳。从变异系数来看,3个地区间的物理力学性质在群体间和群体内的变异程度没有呈现明显的趋势和规律。主成分分析得出抗弯相关指标、体积干缩率和含水率均不同程度地代表了所调查性状中主要的物理力学性质。结论3个地区中,广西灌阳地区的竹材具有高强度和高密度等特点,更适合作为工程用材进行加工利用。研究成果不仅可深入了解不同纬度地区毛竹物理力学性质的特征,还可以发展适地适材伐竹,为合理利用我国全分布区的毛竹资源提供理论依据。

     

  • 图  1  测定微纤丝角的双峰图

    Figure  1.  Bimodal diagram of microfibril angle determined

    图  2  毛竹物理力学性质主成分分析碎石图

    黑色实线为特征值等于1的基准线;红色虚线为特征值模拟线;蓝色交叉点代表8个不同的主成分。Black solid line indicates the reference line where the eigen values is equal to 1, red dotted line indicates the simulation line of eigen value, and blue intersections represent 8 different principal components.

    Figure  2.  Scree plot of PCA of physical mechanic properties for Moso bamboo

    图  3  毛竹物理力学性质主成分分析散点图

    O_SHRINK:体积全干干缩率;A_SHRINK:体积气干干缩率;MC:含水率;O_DENSITY:全干密度;A_DENSITY:气干密度;MFA:微纤丝角;MOR:抗弯强度;MOE:抗弯弹性模量;红色:安徽霍山;蓝色:广西灌阳;绿色:浙江安吉。O_SHRINK, oven-dried volume shrinking ratio; A_SHRINK, air-dried volume shrinking ratio; MC, moisture content; O_DENSITY, oven-dried density; A_DENSITY, air-dried density; MFA, microfibril angle; MOR, bending strength; MOE, flexural modulus of elasticity; Red, Huoshan, Anhui Province; Blue, Guanyang, Guangxi Zhuang Autonomous Region; Green, Anji, Zhejiang Province.

    Figure  3.  Scatter plots of PCA of physical mechanic properties for Moso bamboo

    表  1  3个毛竹群体地区的经度、纬度和海拔

    Table  1.   Geographical longitude, latitude and altitude of Moso bamboo in 3 areas

       地区 Area经度 Longitude纬度 Latitude海拔 Altitude/m
    安徽霍山 Huoshan, Anhui Province116°21′32″E31°18′39″N335
    广西灌阳 Guanyang, Guangxi Zhuang Autonomous Region110°49′13″E25°12′25″N519
    浙江安吉 Anji, Zhejiang Province119°36′38″E30°33′04″N135
    下载: 导出CSV

    表  2  毛竹群体间和群体内物理性质的遗传变异

    Table  2.   Genetic variations in physical properties among and within 3 populations of Moso bamboo

    指标
    Index
    地点
    Site
    样本数
    Sample number
    平均值
    Mean
    标准差
    Std Dev.
    变异系数
    CV/%
    最大值
    Max.
    最小值
    Min.
    极差
    Range
    体积全干干缩率
    Oven-dried volume shrinking ratio/%
    安徽霍山
    Huoshan Mountain, Anhui Province
    7013.62a3.7827.7624.085.2718.81
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    6915.94b4.1726.1722.548.1714.37
    浙江安吉
    Anji, Zhejiang Province
    7014.10a3.5425.1323.796.5117.28
    总群体(群体间)
    Total (Among populations)
    20914.563.9527.1424.085.2718.81
    体积气干干缩率
    Air-dried volume shrinking ratio/%
    安徽霍山
    Huoshan Mountain, Anhui Province
    709.23a2.3425.3915.604.9310.67
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    6910.49b1.6315.5716.017.898.12
    浙江安吉
    Anji, Zhejiang Province
    709.84ab3.3133.6117.052.5314.52
    总群体(群体间)
    Total (Among populations)
    2099.862.5625.9617.052.5314.52
    含水率
    Moisture content/%
    安徽霍山
    Huoshan Mountain, Anhui Province
    7058.39b12.8121.9479.6523.8055.84
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    6947.97a15.4832.2772.1721.2250.94
    浙江安吉
    Anji, Zhejiang Province
    7066.32c6.099.1879.3147.4831.83
    总群体(群体间)
    Total (Among populations)
    20957.3714.3024.9279.6521.2258.42
    全干密度
    Oven-dried density/(g·cm− 3)
    安徽霍山
    Huoshan Mountain, Anhui Province
    700.72b0.056.630.820.590.23
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    690.74c0.056.820.870.580.28
    浙江安吉
    Anji, Zhejiang Province
    700.65a0.057.520.760.500.27
    总群体(群体间)
    Total (Among populations)
    2090.700.068.820.870.500.37
    气干密度
    Air-dried density/(g·cm− 3)
    安徽霍山
    Huoshan Mountain, Anhui Province
    700.72b0.068.150.840.540.30
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    690.73b0.056.290.810.590.22
    浙江安吉
    Anji, Zhejiang Province
    700.67a0.057.750.820.540.28
    总群体(群体间)
    Total (Among populations)
    2090.710.068.110.840.540.30
    注:同一性状的字母相同者表示数据在0.05水平差异不显著。Note: values with the same letter in the same trait are not significantly different at the 0.05 probability level.
    下载: 导出CSV

    表  3  毛竹物理性质的方差分析

    Table  3.   Square variance analysis for physical properties of Moso bamboo

    指标 Index  变异来源 Variance source  自由度 df均方 MSFF valuePP value
    体积全干干缩率
    Oven-dried volume shrinking ratio/%
    群体间 Between groups 2101.136.860.001 317**
    组内 Within group20514.75
    总计 Total207
    体积气干干缩率
    Air-dried volume shrinking ratio/%
    群体间 Between groups 226.474.160.016 94*
    组内 Within group2056.36
    总计 Total207   
    含水率
    Moisture content/%
    群体间 Between groups 25 516.0837.010****
    组内 Within group205149.05
    总计 Total207
    全干密度
    Oven-dried density/(g·cm− 3)
    群体间 Between groups 20.1561.150****
    组内 Within group205 0
    总计 Total207   
    气干密度
    Air-dried density/(g·cm− 3)
    群体间 Between groups 20.0620.440****
    组内 Within group205 0
    总计 Total207  
    注:****表示0.000 1水平显著相关;***表示0.001水平显著相关;**表示0.01水平显著相关;*表示0.05水平显著相关。Notes: **** stands for significant correlation at P < 0.000 1 level, *** stands for significant correlation at P < 0.001 level, ** stands for significant correlation at P < 0.01 level, * stands for significant correlation at P < 0.05 level.
    下载: 导出CSV

    表  4  毛竹群体间和群体内力学性质的遗传变异

    Table  4.   Genetic variations in mechanical properties among and within 3 populations of Moso bamboo

    指标
    Index
    地点
    Site
    样本数
    Sample number
    平均值 Mean标准差
    Std Dev.
    变异系数 CV/%最大值 Max.最小值 Min.极差
    Range
    微纤丝角
    Microfibril angle/(°)
    安徽霍山
    Huoshan Mountain, Anhui Province
    709.31a0.818.7411.358.143.21
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    6911.15b1.8416.5216.297.838.46
    浙江安吉
    Anji, Zhejiang Province
    709.53a1.1311.8412.347.964.37
    总群体(群体间)
    Total (Among populations)
    20910.001.5615.6116.297.838.46
    抗弯强度
    Bending strength/MPa
    安徽霍山
    Huoshan Mountain, Anhui Province
    70155.49b20.0712.90207.06103.98103.08
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    69199.40c19.359.70237.68148.5389.15
    浙江安吉
    Anji, Zhejiang Province
    70131.93a16.4612.47179.56102.1977.38
    总群体(群体间)
    Total (Among populations)
    209162.1333.6420.75237.68102.19135.50
    抗弯弹性模量
    Flexural modulus of elasticity/GPa
    安徽霍山
    Huoshan Mountain, Anhui Province
    7011.91b1.2610.6215.228.276.95
    广西灌阳
    Guanyang, Guangxi Zhuang Autonomous Region
    6914.64c1.379.3517.0311.455.58
    浙江安吉
    Anji, Zhejiang Province
    7010.20a1.2211.9813.497.565.93
    总群体(群体间)
    Total (Among populations)
    20912.242.2418.2717.037.569.47
    注:同一性状的字母相同者表示数据在0.05水平差异不显著。Note: values with the same letter in the same trait are not significantly different at the 0.05 probability level.
    下载: 导出CSV

    表  5  毛竹力学性质的方差分析

    Table  5.   Square variance analysis for mechanical properties of 3 populations of Moso bamboo

    指标 Index变异来源 Variance source自由度 df均方 MSFF valuePP value
    微纤丝角
    Microfibril angle/(°)
    群体间
    Between groups
    267.7838.210 00****
    组内
    Within group
    2051.77
    总计
    Total
    207
    抗弯强度
    Bending strength/MPa
    群体间
    Between groups
    279 010.81226.450 00****
    组内
    Within group
    205348.91
    总计
    Total
    207
    抗弯弹性模量
    Flexural modulus of elasticity/GPa
    群体间
    Between groups
    2337.99204.219 50****
    组内
    Within group
    2051.66
    总计
    Total
    207
    注:****表示0.000 1水平显著相关。Note: **** stands for significant correlation at P < 0.000 1 level.
    下载: 导出CSV

    表  6  毛竹物理力学性质主成分分析

    Table  6.   PCA of physical mechanic properties of Moso bamboo

    项目 ItemPC1PC2PC3PC4PC5PC6PC7PC8
    贡献率
    Contribution rate/%
    44.4124.1314.299.254.742.780.330.07
    累计贡献率
    Cumulative contribution rate/%
    44.4168.5482.8392.0896.8299.6099.93100.00
    特征值
    Standard deviations
    1.885 01.389 31.069 10.860 10.615 90.471 80.163 30.073 0
    注: PC1、PC2、…、PC8分别代表主成分1、主成分2、… 、主成分8。下同。Notes: PC1, PC2, …, PC8 mean principal component 1, principal component 2, …, principal component 8, respectively. The same below.
    下载: 导出CSV

    表  7  毛竹物理力学性质对3个主成分的贡献率

    Table  7.   Contribution rate of physical mechanic properties of Moso bamboo

    性状TraitPC1PC2PC3
    体积全干干缩率
    Oven-dried volume shrinking ratio/%
    0.081 4− 0.655 50.138 9
    体积气干干缩率
    Air-dried volume shrinking ratio/%
    0.029 5− 0.560 3− 0.142 1
    含水率
    Moisture content/%
    − 0.226 4− 0.287 20.673 3
    全干密度
    Oven-dried density/(g·cm− 3)
    0.477 10.002 20.358 9
    气干密度
    Air-dried density/(g·cm− 3)
    0.431 00.116 50.420 6
    微纤丝角
    Micro fibril angle/(°)
    0.159 5− 0.398 5− 0.400 4
    抗弯强度
    Bending strength/MPa
    0.500 5− 0.004 4− 0.151 2
    抗弯弹性模量
    Flexural modulus of elasticity/GPa
    0.502 00.038 6− 0.134 9
    下载: 导出CSV
  • [1] 江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002:1−10.

    Jiang Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Publishing House, 2002: 1−10.
    [2] 叶松涛, 杜旭华, 宋帅杰, 等. 水杨酸对干旱胁迫下毛竹实生苗生理生化特征的影响[J]. 林业科学, 2015, 51(11):25−31.

    Ye S T, Du X H, Song S J, et al. Effect of salicylic acid on physiological and biochemical characteristics of Phyllostachys edulis seedlings under drought stress[J]. Scientia Silvae Sinicae, 2015, 51(11): 25−31.
    [3] Sattar M A, Kabir M F, Bhattacharjee D K. Effect of age and height positions of muli (Melocanna baccifera) and borak (Bambusa balcooa) bamboos on their physical and mechanical properties[J]. Bangladesh Journal of Forest Science, 1990, 19(1): 29−37.
    [4] 江泽慧, 姜笑梅. 木材结构与其品质特性的相关性[M]. 北京: 科学出版社, 2008: 195−198.

    Jiang Z H, Jiang X M. Correlation between wood structure and its quality characteristics[M]. Beijing: Science Press, 2008: 195−198.
    [5] 江泽慧. 中国林业工程[M]. 济南: 济南出版社, 2002: 325−329.

    Jiang Z H. Chinese forestry engineering[M]. Jinan: Publishing House of Jinan, 2002: 325−329.
    [6] Dirtger G, Walter L. On the anatomy of asian bamboos, with special refererce to their vascular bundles[J]. Wood Science and Technology, 1971, 5(4): 290−312. doi: 10.1007/BF00365061
    [7] Mansur A. Analysis of calcutta bamboo for structural composite materials: dissertation for the degree of doctor of philosophy[C]. Blacksburg, Virginia: Wood Science and Forest Products. 2000.
    [8] 林金国, 黄宗安, 邱晓东, 等. 石竹材材质变异规律的研究[J]. 竹子研究汇刊, 2002, 21(1):65−68. doi: 10.3969/j.issn.1000-6567.2002.01.014

    Lin J G, Huang Z A, Qiu X D, et al. Study on the variation law of the quality of Phyllostachys nuda timber[J]. Journal of Bamboo Research, 2002, 21(1): 65−68. doi: 10.3969/j.issn.1000-6567.2002.01.014
    [9] 林金国, 赖根明, 郑国丰, 等. 方竹材基本密度和干缩性变异规律的研究[J]. 西北林学院学报, 2004, 19(2):112−115. doi: 10.3969/j.issn.1001-7461.2004.02.033

    Lin J G, Lai G M, Zheng G F, et al. Variation law of basic density and shrinkage of Chimonobambusa quadrangularis[J]. Journal of Northwest Forestry College, 2004, 19(2): 112−115. doi: 10.3969/j.issn.1001-7461.2004.02.033
    [10] 李光荣, 辜忠春, 李军章. 毛竹竹材物理力学性能研究[J]. 湖北林业科技, 2014, 43(5):44−49. doi: 10.3969/j.issn.1004-3020.2014.05.014

    Li G R, Gu Z C, Li J Z, et al. Study on physical and mechanical performance of Phyllostachy pubescens[J]. Hubei Forestry Science and Technology, 2014, 43(5): 44−49. doi: 10.3969/j.issn.1004-3020.2014.05.014
    [11] 孙宁, 张立彬. 竹子的力学特性[J]. 力学与实践, 1997, 19(3):77−79.

    Sun N, Zhang L B. The mechanical properties of bamboo[J]. Mechanics and Practice, 1997, 19(3): 77−79.
    [12] 周芳纯. 竹材培育和利用[D]. 南京: 南京林业大学, 1998.

    Zhou F C. Bamboo cultivation and utilization[D]. Nanjing: Nanjing Forestry University, 1998.
    [13] 高珊珊. 四种大径丛生竹秆形结构及物理力学性质研究[D]. 南京: 南京林业大学, 2010.

    Gao S S. Study on culm-form structure and physical and mechanical properties of four kinds of big sympodial bamboo[D]. Nanjing: Nanjing Forestry University, 2010.
    [14] 阮晓赛, 林新春, 娄永峰, 等. 毛竹种源遗传多样性的AFLP和ISSR分析[J]. 浙江林业科技, 2008, 28(2):29−33. doi: 10.3969/j.issn.1001-3776.2008.02.005

    Ruan X S, Lin X C, Lou Y F, et al. Genetic diversity of Phyllostachys heterocycla var. pubescens provenances by AFLP and ISSR[J]. Journal of Zhejiang Forestry Science and Technology, 2008, 28(2): 29−33. doi: 10.3969/j.issn.1001-3776.2008.02.005
    [15] Kamruzzaman M, Saha S, Bose A K, et al. Effects of age and height on physical and mechanical properties of bamboo[J]. Journal of Tropical Forest Science, 2008, 20(3): 211−217.
    [16] Cave I D. Theory of X-ray measurement of microfibril angle in wood[J]. Wood Science and Technology, 1997, 31(4): 225−234. doi: 10.1007/BF00702610
    [17] Tran V H. Growth and quality of indigenous bamboo species in the mountainous regions of northern Vietnam[D]. Göttingen Germany: Georg-August-Universität Göttingen, 2010.
    [18] Zhang Y M, Yu Y L, Yu W J. Effect of thermal treatment on the physical and mechanical properties of Phyllostachys pubescen bamboo[J]. European Journal of Wood and Wood Products, 2013, 71(1): 61−67. doi: 10.1007/s00107-012-0643-6
    [19] 刘一星, 赵广杰. 木质资源材料学[M]. 北京: 中国林业出版社, 2004.

    Liu Y X, Zhao G J. Wood resource materials science[M]. Beijing: China Forestry Publishing House, 2004.
    [20] 张宏健, 杜凡, 张福兴. 云南4种典型材用丛生竹宏观解剖结构与主要物理力学性质的关系[J]. 林业科学, 1999, 35(4):66−70. doi: 10.3321/j.issn:1001-7488.1999.04.011

    Zhang H J, Du F, Zhang F X. Relationships between the textures and main physical and mechanical properties of four typical thick-growing structural bamboos in Yunnan[J]. Scientia Silvae Sinicae, 1999, 35(4): 66−70. doi: 10.3321/j.issn:1001-7488.1999.04.011
    [21] Lee A W C, Bai X S, Peralta P N. Selected physical and mechanical properties of giant timber bamboo grown in South Carolina[J]. Forest Products Journal, 1994, 44(9): 40−46.
    [22] Chuang K F, Yu W K. Mechanical properties of structural bamboo for bamboo scaffolding[J]. Engineering Structures, 2002, 24: 429−442. doi: 10.1016/S0141-0296(01)00110-9
    [23] 刘亚迪, 桂仁意, 俞友明, 等. 毛竹不同种源竹材物理力学性质初步研究[J]. 竹子研究汇刊, 2008, 27(1):50−56. doi: 10.3969/j.issn.1000-6567.2008.01.010

    Liu Y D, Gui R Y, Yu Y M, et al. A premilinary study on the physical and mechanical properties of different provenances of Moso bamboo[J]. Journal of Bamboo Research, 2008, 27(1): 50−56. doi: 10.3969/j.issn.1000-6567.2008.01.010
    [24] Walter L. Advances in bamboo research[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2001, 25(4): 1−6.
    [25] Senft J F, Bendtsen B A. Measuring microfibrillar angles using light microscopy[J]. Wood Fiber Science, 1985, 17(4): 564−567.
    [26] 俞友明, 方伟, 杨云芳, 等. 不同立地条件红壳竹竹材物理力学性质的比较[J]. 浙江林学院学报, 2001, 18(4):380−383. doi: 10.3969/j.issn.2095-0756.2001.04.011

    Yu Y M, Fang W, Yang Y F, et al. Comparative study on physico-mechanical properties of Phyllostachys iridenscens wood under different sites[J]. Journal of Zhejiang Forestry College, 2001, 18(4): 380−383. doi: 10.3969/j.issn.2095-0756.2001.04.011
    [27] 王福军, 赵开军. 基因组编辑技术应用于作物遗传改良的进展与挑战[J]. 中国农业科学, 2018, 51(1):1−16.

    Wang F J, Zhao K J. Progress and challenge of crop genetic improvement via genome editing[J]. Scientia Agricultura Sinica, 2018, 51(1): 1−16.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  1150
  • HTML全文浏览量:  659
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-10
  • 修回日期:  2019-01-16
  • 网络出版日期:  2019-04-02
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回