高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内置电热层实木复合地板表面温度变化规律及模拟

梁善庆 李思程 柴媛 傅峰

梁善庆, 李思程, 柴媛, 傅峰. 内置电热层实木复合地板表面温度变化规律及模拟[J]. 北京林业大学学报, 2018, 40(11): 112-122. doi: 10.13332/j.1000-1522.20180253
引用本文: 梁善庆, 李思程, 柴媛, 傅峰. 内置电热层实木复合地板表面温度变化规律及模拟[J]. 北京林业大学学报, 2018, 40(11): 112-122. doi: 10.13332/j.1000-1522.20180253
Liang Shanqing, Li Sicheng, Chai Yuan, Fu Feng. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112-122. doi: 10.13332/j.1000-1522.20180253
Citation: Liang Shanqing, Li Sicheng, Chai Yuan, Fu Feng. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112-122. doi: 10.13332/j.1000-1522.20180253

内置电热层实木复合地板表面温度变化规律及模拟

doi: 10.13332/j.1000-1522.20180253
基金项目: 

中央级公益性科研院所基本科研业务费专项 CAFYBB2016MB001

详细信息
    作者简介:

    梁善庆,博士,副研究员。主要研究方向:木质功能材料。Email:liangsq@caf.ac.cn 地址:100091北京市海淀区香山路中国林科院木材工业研究所

  • 中图分类号: S784

Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer

  • 摘要: 目的研究不同电热层位置和不同结构的电热实木复合地板温度变化规律,为电热实木复合地板的电热性能及结构优化提供理论参考。方法采用碳纤维纸作为发热元件,通过热压方式制备具有电热功能的实木复合地板,测试了通电荷载后时间-温度效应、温度不均匀度、电-热辐射转换效率和表面网格温度,分析不同电热层位置对表面温度、温度不均匀度和电-热辐射转换效率的影响,模拟了表面温度二维和三维分布图,探讨不同结构电热实木复合地板正面和背面温度变化规律,拟合了时间-温度变化曲线幂函数方程。结果表面温度均随通电荷载时间的增加而增加,最终趋于稳定,切断电源以后,温度快速下降直至与环境温度平衡。随电热层位置下移,发热稳定后表面温度随之降低,电-热辐射转换效率也相应降低。功率密度为200、300、400和500 W/m2,电热层位于近表层时,表面温度比底层温度分别高了17.2%、21.8%、24.8%和26.8%。随功率密度的增加,温度不均匀度增加,电-热辐射转换效率也随之增加,功率密度达到500 W/m2时,电热层位于近表层的电-热辐射转换效率达95.6%。二维和三维模拟图表明:表面温度分布总体呈中间高、四周低趋势,电热层位于表层尤为明显且存在聚热现象。不同结构电热实木复合地板正面表面温度随通电荷载时间增加而增加,背面木材厚度越厚,正面表面温度越高,反之背面温度越低,拟合方程表明时间-温度变化呈幂函数关系,决定系数最高达0.999 9。结论电热层位置和地板结构对电热实木复合地板表面温度和电-热辐射转换效率影响显著,电热层位于近表层时更有利于电热性能改善。

     

  • 图  1  不同电热层位置及不同结构电热实木复合地板示意图

    Figure  1.  Schematic diagram of electric heating engineered wood flooring with different position electrothermal layers and different structures

    图  2  电热性能测试示意图

    Figure  2.  Schematic diagram of electrothermal performance testing

    图  3  4个功率密度条件下不同电热层位置电热实木复合地板时间-温度变化曲线

    Figure  3.  Time-temperature curve of electric heating engineered wood flooring with different position electrothermal layers under four power density conditions

    图  4  不同电热层位置电热实木复合地板的电-热辐射转换效率

    Figure  4.  Electric-to-radiant power transfer efficiency of electric heating engineered wood flooring with different position electrothermal layers

    图  5  功率密度200 W/m2时不同电热层位置电热实木复合地板表面温度2D模拟(h为碳纤维纸)

    Figure  5.  Surface temperature 2D simulation of electric heating engineered wood flooring with different position electrothermal layers at power density of 200 W/m2(h is carbon fiber paper)

    图  6  功率密度500 W/m2时不同电热层位置电热实木复合地板表面温度2D模拟

    Figure  6.  Surface temperature 2D simulation of electric heating engineered wood flooring with different position electrothermal layers at power density of 500 W/m2

    图  7  功率密度200 W/m2时不同电热层位置电热实木复合地板表面温度3D模拟

    Figure  7.  Surface temperature 3D simulation of electric heating engineered wood flooring with different position electrothermal layers at power density of 200 W/m2

    图  8  功率密度500 W/m2时不同电热层位置电热实木复合地板表面温度3D模拟

    Figure  8.  Surface temperature 3D simulation of electric heating engineered wood flooring with different position electrothermal layers at power density of 500 W/m2

    图  9  不同结构电热实木复合地板正面与背面的时间-温度变化曲线

    Figure  9.  Front and back surface time-temperature curves of electric heating engineered wood flooring with different structures

    表  1  不同电热层位置的电热实木复合地板表面温度

    Table  1.   Surface temperature of electric heating engineered wood flooring with different position electrothermal layers

    功率密度
    Power density/(W·m-2)
    编号
    No.
    最高温度
    Highest temperature
    最低温度
    Lowest temperature
    平均温度
    Average temperature
    温度不均匀度
    Unevenness of temperature
    200 JG-1 35.78 32.64 34.54 3.14
    JG-2 35.24 32.55 33.61 2.69
    JG-3 34.35 30.88 32.30 3.47
    JG-4 32.34 29.62 30.77 2.72
    JG-5 32.30 28.68 30.12 3.62
    JG-6 31.87 28.50 30.07 3.37
    JG-7 31.66 27.83 29.46 3.84
    300 JG-1 45.30 40.36 42.44 4.95
    JG-2 42.74 38.38 40.95 4.36
    JG-3 42.88 37.42 39.28 5.46
    JG-4 38.70 34.23 36.86 4.47
    JG-5 38.01 33.66 35.77 4.35
    JG-6 39.60 33.64 36.22 5.96
    JG-7 36.74 32.70 34.83 4.04
    400 JG-1 52.36 46.71 49.24 5.65
    JG-2 49.03 44.53 46.89 4.50
    JG-3 50.27 42.45 44.80 7.82
    JG-4 45.87 39.18 41.71 6.69
    JG-5 44.50 37.76 40.58 6.74
    JG-6 44.48 37.67 40.34 6.81
    JG-7 43.08 37.18 39.45 5.90
    500 JG-1 58.65 49.96 54.52 8.69
    JG-2 57.24 47.88 52.35 9.36
    JG-3 55.52 47.26 49.93 8.27
    JG-4 52.76 45.96 48.40 6.81
    JG-5 50.37 42.84 45.87 7.53
    JG-6 50.49 42.25 45.51 8.24
    JG-7 46.35 40.43 42.99 5.93
    下载: 导出CSV

    表  2  不同结构电热实木复合地板时间与温度变化曲线拟和方程结果

    Table  2.   Time-temperature curve fitting equations of electric heating engineered wood flooring with different structures

    部位Location 编号No. y0 A1 t1 A2 t2 R2
    正面Front surface L2 27.863 2 2.815 5 71.653 4 11.190 7 580.026 8 0.999 1
    L3 26.339 8 10.390 8 624.381 5 4.058 1 120.505 7 0.999 7
    L4 27.027 4 2.770 0 83.982 8 11.328 4 554.898 1 0.999 9
    L5 26.302 1 1.739 1 87.870 2 11.945 0 418.503 5 0.999 6
    L6 25.891 1 1.026 3 1 736.616 9 12.432 0 254.970 4 0.999 6
    L7 25.191 8 7.850 0×106 4.496 6×1010 12.212 3 207.623 4 0.998 8
    背面Back surface L2 26.634 6 5.697 8 1 436.191 6 5.697 8 1 436.361 0 0.993 1
    L3 26.689 6 5.296 3 918.075 9 5.296 3 918.270 4 0.988 7
    L4 25.495 3 5.632 8 771.110 8 5.632 8 771.109 8 0.995 2
    L5 25.371 2 6.044 4 608.451 4 6.044 4 608.451 2 0.997 7
    L6 25.376 3 5.997 0 459.815 3 5.997 0 459.837 1 0.996 3
    L7 25.2357 6.335 7 293.940 2 6.335 7 293.940 4 0.997 2
    注:y0为拟合温度偏移量,℃;A1A2为拟合前因子;t1t2为拟合弛豫时间,s。Notes: y0 means fitted temperature deviation value, ℃; A1 and A2 mean fitted prefactors; t1 and t2 mean relaxation time, s.
    下载: 导出CSV
  • [1] Claes B Q. Conversion of electric heating in buildings: an unconventional alternative[J]. Energy & Buildings, 2008, 40(12): 2188-2195. http://www.ei.lehigh.edu/learners/energy/readings/solar.pdf
    [2] 凌继红, 张于峰, 董颖, 等.低温热水地板辐射供暖系统的理论研究[J].工程热物理学报, 2002, 23(增刊1):145-148. http://cdmd.cnki.com.cn/Article/CDMD-10703-1018861380.htm

    Ling J H, Zhang Y F, Dong Y, et al. Theoretical study on low temperature hot water floor panel heating system[J]. Journal of Engineering Thermophysics, 2002, 23(Suppl.1):145-148. http://cdmd.cnki.com.cn/Article/CDMD-10703-1018861380.htm
    [3] 李国建, 冯国会, 朱能, 等.新型相变储能电热地板采暖系统[J].沈阳建筑大学学报(自然科学版), 2006, 22(2):294-298. http://d.old.wanfangdata.com.cn/Periodical/syjzgcxyxb200602027

    Li G J, Feng G H, Zhu N, et al. Experiment of the new phase-change heat-storage electric heating floor system[J]. Journal of Shengyang Jianzhu University (Natural Science), 2006, 22(2):294-298. http://d.old.wanfangdata.com.cn/Periodical/syjzgcxyxb200602027
    [4] 蔺洁, 谢静超, 陈超, 等.低温热水地板辐射换热器传热简化模型的改进[J].北京工业大学学报, 2013, 39(7):1078-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201307020

    Lin J, Xie J C, Chen C, et al. Improvement of the simplified heat transfer model for low-temperature hot water floor heat exchanger[J]. Journal of Beijing University of Technology, 2013, 39(7):1078-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201307020
    [5] Jeon G W, Jeong Y G. Electric heating films based on m-aramid nanocomposites containing hybrid fillers of graphene and carbon nanotube[J]. Journal of Materials Science, 2013, 48(11): 4041-4049. doi: 10.1007/s10853-013-7216-x
    [6] 杨保铈, 贺绍均, 王丰, 等.杉木集成材薄板制备电热地板的热工性能[J].林业工程学报, 2016, 1(1):46-50. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201601010

    Yang B S, He S J, Wang F, et al. Thermal performance of electrically heated flooring prepared by thin Chinese fir glulam[J]. Journal of Forestry Engineering, 2016, 1(1):46-50. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201601010
    [7] 袁全平, 梁善庆, 曾宇, 等.内置电热层电采暖木竹地板技术现状[J].林产工业, 2015, 42(8):6-9, 17. doi: 10.3969/j.issn.1001-5299.2015.08.002

    Yuan Q P, Liang S Q, Zeng Y, et al. Discussion on technology status of electric heating wood and bamboo floor with built-in electrothermal layer[J]. China Forest Products Industry, 2015, 42(8):6-9, 17. doi: 10.3969/j.issn.1001-5299.2015.08.002
    [8] 肖瑞崇, 陈玉和, 包永洁, 等.竹木电热复合材料的通电老化性能研究[J].木材工业, 2017, 31(4):19-23. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704004

    Xiao R C, Chen Y H, Bao Y J, et al. Electrifying aging performance of bamboo-wood thermoelectric composites[J]. China Wood Industry, 2017, 31(4):19-23. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704004
    [9] 袁全平, 梁善庆, 傅峰.碳纤维电热功能复合纤维板的制备工艺[J].木材工业, 2017, 31(4):14-18. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704003

    Yuan Q P, Liang S Q, Fu F. Electric heating composites made from carbon fiber paper and fiberboard[J]. China Wood Industry, 2017, 31(4):14-18. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704003
    [10] 张泽前, 吴再兴, 陈玉和, 等.电热竹木复合地板的制备工艺[J].木材工业, 2016, 30(1):14-17. doi: 10.3969/j.issn.1001-8654.2016.01.003

    Zhang Z Q, Wu Z X, Chen Y H, et al. Manufacturing technology for electrically heating engineered flooring made from bamboo and wood[J]. China Wood Industry, 2016, 30(1):14-17. doi: 10.3969/j.issn.1001-8654.2016.01.003
    [11] 黄成建, 包永洁, 李能, 等.不同胶黏剂竹木复合电热地板的基本特性[J].浙江农林大学学报, 2017, 34(2):369-373. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201702023

    Huang C J, Bao Y J, Li N, et al. Adhesives used to make bamboo/wood composite electro-thermal plywood[J]. Journal of Zhejiang A & F University, 2017, 34(2):369-373. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201702023
    [12] 阙泽利, 赵晓旭, 李哲瑞, 等.小径级杉木制备内置碳纤维电热线地热地板[J].木材工业, 2015, 29(4):9-13. doi: 10.3969/j.issn.1001-8654.2015.04.002

    Que Z L, Zhao X X, Li Z R, et al. Electrically heated flooring made with hexagon glulam from small-diameter Chinese fir[J]. China Wood Industry, 2015, 29(4):9-13. doi: 10.3969/j.issn.1001-8654.2015.04.002
    [13] 华毓坤, 傅峰.导电胶合板的研究[J].林业科学, 1995, 31(3):254-259. http://d.old.wanfangdata.com.cn/Periodical/jzclxb201102012

    Hua Y K, Fu F. Studies on electrically conductive plywood[J]. Scientia Silvae Sinicae, 1995, 31(3):254-259. http://d.old.wanfangdata.com.cn/Periodical/jzclxb201102012
    [14] Yuan Q P, Fu F. Application of carbon fiber paper in integrated wooden electric heating composite[J]. Bioresources, 2014, 9(3): 5662-5675.
    [15] 周兆兵, 朱兆龙, 薛宏, 等.内置式发热实木复合地板的电热性能[J].东北林业大学学报, 2018, 46(2):53-58. doi: 10.3969/j.issn.1000-5382.2018.02.011

    Zhou Z B, Zhu Z L, Xue H, et al. Electrothermal performance of built-in heating parquet[J]. Journal of Northeast Forestry University, 2018, 46(2):53-58. doi: 10.3969/j.issn.1000-5382.2018.02.011
    [16] 中华人民共和国住房和城乡建设部.低温辐射电热膜: JG/T 286—2010[S].北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Electric radiant heating film for low temperature: JG/T 286—2010[S]. Beijing: Standards Press of China, 2010.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.红外辐射加热器试验方法: GB/T 7287—2008[S].北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method of infrared heater: GB/T 7287—2008[S]. Beijing: Standards Press of China, 2010.
    [18] 陈瑞英, 谢拥群, 杨庆贤, 等.木材横纹导热系数的类比法研究[J].林业科学, 2005, 41(1): 123-126. doi: 10.3321/j.issn:1001-7488.2005.01.021

    Chen R Y, Xie Y Q, Yang Q X, et al. Study on wood thermal conductivity in transverse direction by analogism[J]. Scientia Silvae Sinicae, 2005, 41(1): 123-126. doi: 10.3321/j.issn:1001-7488.2005.01.021
    [19] 姚武, 张超.碳纤维水泥基材料的电热效应[J].材料开发与应用, 2007, 22(1):17-20. doi: 10.3969/j.issn.1003-1545.2007.01.005

    Yao W, Zhang C. Electro-thermal effect of carbon fiber reinforced cement composites[J]. Development and Application of Materials, 2007, 22(1):17-20. doi: 10.3969/j.issn.1003-1545.2007.01.005
    [20] Zhang H, Song X. Operating characteristic analysis on the ultra-thin low temperature floor-heating system[J]. Frontiers of Structural & Civil Engineering, 2013, 7(2):127-132.
    [21] 施志钢, 张伟光, 刘龙.电热膜启动特性和局部聚热的实验研究[J].暖通空调, 2018, 48(2):113-116, 101. http://d.old.wanfangdata.com.cn/Periodical/ntkt201802023

    Shi Z G, Zhang W G, Liu L. Experimental study on startup characteristics and local heat accumulation of electric radiant heating film[J]. Heating Ventilating & Air Conditioning, 2018, 48(2):113-116, 101. http://d.old.wanfangdata.com.cn/Periodical/ntkt201802023
    [22] 袁全平, 木质电热复合材料的电热响应机理及性能研究[D].北京: 中国林业科学研究院, 2015: 115-119.

    Yuan Q P. Performance and electric heating response mechanism of wooden electric heating composites.[D]. Beijing: Chinese Academy of Forestry, 2015: 115-119.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  946
  • HTML全文浏览量:  145
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-03
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回