高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现代月季品种‘赞歌’和粉团蔷薇杂交后代鉴定与评价

吴钰滢 周璇 徐庭亮 常征 易星湾 高华北 赵红霞 王佳 程堂仁 张启翔 潘会堂

吴钰滢, 周璇, 徐庭亮, 常征, 易星湾, 高华北, 赵红霞, 王佳, 程堂仁, 张启翔, 潘会堂. 现代月季品种‘赞歌’和粉团蔷薇杂交后代鉴定与评价[J]. 北京林业大学学报, 2019, 41(3): 124-133. doi: 10.13332/j.1000-1522.20180255
引用本文: 吴钰滢, 周璇, 徐庭亮, 常征, 易星湾, 高华北, 赵红霞, 王佳, 程堂仁, 张启翔, 潘会堂. 现代月季品种‘赞歌’和粉团蔷薇杂交后代鉴定与评价[J]. 北京林业大学学报, 2019, 41(3): 124-133. doi: 10.13332/j.1000-1522.20180255
Wu Yuying, Zhou Xuan, Xu Tingliang, Chang Zheng, Yi Xingwan, Gao Huabei, Zhao Hongxia, Wang Jia, Cheng Tangren, Zhang Qixiang, Pan Huitang. Identification and evaluation of F1 hybrids between Rosa ‘Sanka’×R. multiflora var. cathayensis[J]. Journal of Beijing Forestry University, 2019, 41(3): 124-133. doi: 10.13332/j.1000-1522.20180255
Citation: Wu Yuying, Zhou Xuan, Xu Tingliang, Chang Zheng, Yi Xingwan, Gao Huabei, Zhao Hongxia, Wang Jia, Cheng Tangren, Zhang Qixiang, Pan Huitang. Identification and evaluation of F1 hybrids between Rosa ‘Sanka’×R. multiflora var. cathayensis[J]. Journal of Beijing Forestry University, 2019, 41(3): 124-133. doi: 10.13332/j.1000-1522.20180255

现代月季品种‘赞歌’和粉团蔷薇杂交后代鉴定与评价

doi: 10.13332/j.1000-1522.20180255
基金项目: 北京市科技计划课题(Z181100002418006),“十二五”国家科技支撑计划课题(2013BAD01B07),广东省软科学研究计划项目(2017B090907001)
详细信息
    作者简介:

    吴钰滢。主要研究方向:花卉种质创新与育种。Email:yuying_wu39@163.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    潘会堂,博士,教授。主要研究方向:园林植物与观赏园艺。Email:htpan@bjfu.edu.cn 地址:同上

  • 中图分类号: S685.12

Identification and evaluation of F1 hybrids between Rosa ‘Sanka’×R. multiflora var. cathayensis

  • 摘要: 目的本研究通过对现代月季品种‘赞歌’(2n = 4x = 28)和野蔷薇变种粉团蔷薇(2n = 2x = 14)的杂交后代群体进行杂种鉴定和评价,为利用野蔷薇改良现代月季品种提供重要的理论依据和材料基础。方法以现代月季品种‘赞歌’ × 粉团蔷薇的91株杂交后代为材料,综合利用形态学观察、流式细胞仪倍性检测、核型分析和SSR标记对杂交后代进行杂种鉴定和评价,并分析了不同方法对蔷薇属杂交后代鉴定的效率。结果杂交后代的表型参数多介于两亲本之间,变异系数为19.71% ~ 67.13%,变异广泛;流式细胞仪检测结果显示91个杂交后代中有70个三倍体(2n = 3x = 21),18个四倍体,1个六倍体(2n = 6x = 42),2个不能确定倍性;对21个流式细胞仪检测为非三倍体的后代和3个连续开花的三倍体后代进行染色体核型分析,发现18个后代的分析结果与细胞流式仪倍性检测结果一致,确定流式细胞仪测定倍性的准确率为93.41%;从26对SSR引物中筛选出7对多态性引物对2个四倍体和1个六倍体后代进行扩增,结果显示2个四倍体的杂交后代为假杂种,六倍体后代为真杂种。结论在鉴定不同倍性蔷薇属植物杂交后代时,核型分析和SSR标记法比形态学观察和流式细胞术更准确。本研究获得的三倍体杂交后代为利用野蔷薇改良现代月季品种提供了新的种质材料。

     

  • 图  1  杂交亲本和部分杂交后代细胞流式图

    ZG为杂交母本‘赞歌’(2n = 4x = 28);FT为杂交父本粉团蔷薇(2n = 2x = 14);ZF-8为三倍体后代;ZF-21为四倍体后代;ZF-157为六倍体后代;ZF-14为不知倍性后代。下同。ZG is hybrid female parent R. ‘Sanka’ (2n = 4x = 28); FT is hybrid male parent R. multiflora var. cathayensis (2n = 2x = 14); ZF-8 is triploid progeny; ZF-21 is tetraploid progeny; ZF-157 is hexaploid progeny; ZF-14 is an unknown ploid progeny. The same below.

    Figure  1.  Flow cytometry figures of several hybrids and their parents

    图  2  杂交亲本及杂种后代的染色体核型

    ZF代表杂交后代。下同。ZF represents hybrid progeny. The same below.

    Figure  2.  Metaphase chromosomes of F1 hybrids and their parents

    图  3  SSR引物多态性筛选电泳图

    M. pBR322 DNA marker;P1. 现代月季‘赞歌’;P2. 粉团蔷薇。M, pBR322 DNA marker; P1, Rosa ‘Sanka’; P2, R. multiflora var. cathayensis.

    Figure  3.  PCR amplification profile of SSR markers

    表  1  流式细胞术和染色体计数结果的对比

    Table  1.   Comparative results of flow cytometry and chromosome count

    编号No.倍性(流式细胞
    术结果)Ploidy
    (flow cytometry)
    倍性(染色体计
    数结果)Ploidy
    (chromosome count)
    一致性Consistency编号No.倍性(流式细胞术
    结果)Ploidy (flow
    cytometry)
    倍性(染色体计数
    结果)Ploidy
    (chromosome count)
    一致性Consistency
    ZG4 ×4 ×ZF-724 ×4 ×
    FT2 ×2 ×ZF-734 ×4 ×
    ZF-83 ×3 ×ZF-754 ×4 ×
    ZF-93 ×3 ×ZF-864 ×3 ××
    ZF-1563 ×3 ×ZF-874 ×3 ××
    ZF-34 ×4 ×ZF-1004 ×4 ×
    ZF-164 ×4 ×ZF-1124 ×3 ××
    ZF-184 ×4 ×ZF-1514 ×4 ×
    ZF-214 ×3 ××ZF-1644 ×4 ×
    ZF-224 ×4 ×ZF-1934 ×4 ×
    ZF-574 ×4 ×ZF-1576 ×6 ×
    ZF-584 ×4 ×ZF-143 ××
    ZF-714 ×4 ×ZF-803 ××
    注:2 × 代表二倍体;3 × 代表三倍体;4 × 代表四倍体;6 × 代表六倍体;√ 代表检测结果一致;× 代表检测结果不一致;“—”表示流式细胞术未检测出倍性。Notes: 2 × represents diploid; 3 × represents triploid; 4 × represents tetraploid; 6 × represents hexaploid; √ represents the result is consistent; × represents the result does not match, “—” represents unknown ploidy by flow cytometry.
    下载: 导出CSV

    表  2  杂交亲本和杂种后代的核型参数

    Table  2.   Karyotype parameters of twenty-four hybrids and their parents

    编号 No.相对长度
    Relative length/%
    臂比
    Arm ratio
    最长/最短体
    The longest chromosome/
    the shortest
    chromosome
    核型不对
    称系数
    Asymmetry coefficient/%
    着丝粒指数
    Centromere index/%
    染色体相对长
    度组成 Constitution
    of relative length
    of chromosome
    核型公式
    Formula
    of karyotype
    核型分类
    Karyotype
    classification
    ZG2.01 ~ 4.631.01 ~ 2.192.3157.9931.37 ~ 53.413S + 9M1 + 15M2 + 1L2n = 4x = 28 = 15m + 7sm2B
    FT5.63 ~ 9.991.04 ~ 3.351.7861.9722.99 ~ 48.898M1 + 5M2 + 1L2n = 2x = 14 = 8m + 5sm + 1st2A
    ZF-32.18 ~ 5.071.01 ~ 2.692.3361.0527.61 ~ 49.673S + 9M1 + 14M2 + 2L2n = 4x = 28 = 4m + 24sm2B
    ZF-92.75 ~ 8.181.00 ~ 5.252.9861.4315.99 ~ 45.985S + 7M1 + 5M2 + 4L2n = 3x = 21 = 3M + 12m + 6sm2B
    ZF-82.86 ~ 8.661.00 ~ 2.983.0360.7525.09 ~ 51.144S + 8M1 + 6M2 + 3L2n = 3x = 21 = 3M + 9m + 9sm2B
    ZF-143.00 ~ 7.511.04 ~ 3.542.5062.3022.05 ~ 49.082S + 10M1 + 5M2 + 4L2n = 3x = 21 = 12m + 7sm + 2st(SAT)2B
    ZF-162.63 ~ 4.451.14 ~ 4.351.6964.4522.30 ~ 37.551S + 13M1 + 14M22n = 4x = 28 = 14m + 10sm + 4st2A
    ZF-182.48 ~ 5.380.91 ~ 4.332.1759.9118.75 ~ 52.374S + 12M1 + 8M2 + 4L2n = 4x = 28 = 4M + 15m + 7sm + 2st(SAT)2B
    ZF-213.68 ~ 6.111.39 ~ 7.511.6673.5811.75 ~ 41.8910M1 + 10M2 + 1L2n = 3x = 21 = 4m + 7sm + 8st + 2t3A
    ZF-222.57 ~ 4.901.00 ~ 5.941.9168.0614.41 ~ 49.834S + 10M1 + 11M2 + 3L2n = 4x = 28 = 10m + 10sm + 8st3A
    ZF-572.05 ~ 5.631.00 ~ 5.152.7566.4316.26 ~ 52.207S + 8M1 + 6M2 + 7L2n = 4x = 28 = 1M + 8m + 12sm + 7st3B
    ZF-582.43 ~ 5.081.00 ~ 4.062.0959.8519.77 ~ 52.655S + 10M1 + 8M2 + 5L2n = 4x = 28 = 4M + 14m + 8sm + 2st(SAT)2B
    ZF-712.18 ~ 5.151.00 ~ 6.372.3760.5613.56 ~ 51.393S + 10M1 + 11M2 + 4L2n = 4x = 28 = 1M + 19m + 6sm + 2st(SAT)2B
    ZF-722.63 ~ 5.091.09 ~ 2.421.9361.0929.25 ~ 47.853S + 11M1 + 12M2 + 2L2n = 4x = 28 = 8m + 20sm2A
    ZF-732.19 ~ 4.801.02 ~ 5.902.1959.2914.71 ~ 52.975S + 10M1 + 8M2 + 5L2n = 4x = 28 = 15m + 12sm + 1st(SAT)2B
    ZF-752.17 ~ 5.281.00 ~ 4.202.4465.5619.24 ~ 51.255S + 10M1 + 8M2 + 5L2n = 4x = 28 = 1M + 9m + 13sm + 5st(SAT)2B
    ZF-802.32 ~ 6.721.15 ~ 3.982.9061.0820.07 ~ 46.524S + 7M1 + 6M2 + 4L2n = 3x = 21 = 13m + 7sm + 1st2B
    ZF-862.69 ~ 6.511.00 ~ 2.142.4256.2731.80 ~ 51.582S + 8M1 + 10M2 + 1L2n = 3x = 21 = 2M + 15m + 4sm2B
    ZF-873.52 ~ 5.951.00 ~ 2.831.6958.5426.08 ~ 52.491S + 9M1 + 11M22n = 3x = 21 = 1M + 15m + 5sm2A
    ZF-1002.51 ~ 4.661.00 ~ 2.621.8662.7627.65 ~ 50.121S + 18M1 + 6M2 + 3L2n = 4x = 28 = 1M + 12m + 15sm2A
    ZF-1122.82 ~ 6.931.00 ~ 5.102.4566.0116.4 ~ 52.134S + 7M1 + 7M2 + 3L2n = 3x = 21 = 1M + 7m + 6sm + 7st(SAT)2B
    ZF-1511.69 ~ 5.111.06 ~ 3.683.0260.9121.38 ~ 48.603S + 12M1 + 8M2 + 5L2n = 4x = 28 = 10m + 14sm + 4st(SAT)2B
    ZF-1563.13 ~ 6.431.28 ~ 4.432.0563.1218.43 ~ 43.902S + 10M1 + 6M2 + 3L2n = 3x = 21 = 12m + 7sm + 2st2B
    ZF-1571.57 ~ 3.241.04 ~ 3.132.0760.3424.24 ~ 48.915S + 16M1 + 17M2 + 4L2n = 6x = 42 = 27m + 14sm + 1st(SAT)2B
    ZF-1641.69 ~ 6.141.13 ~ 2.923.6162.3425.51 ~ 46.996S + 9M1 + 7M2 + 6L2n = 4x = 28 = 15m + 13sm(SAT)2B
    ZF-1932.36 ~ 5.081.02 ~ 5.402.1563.5015.63 ~ 52.873S + 13M1 + 8M2 + 4L2n = 4x = 28 = 14m + 9sm + 5st(SAT)2B
    注:S代表相对长度指数小于0.75的短染色体;M1代表相对长度指数为0.76 ~ 1.00的中短染色体;M2代表相对长度指数为1.01 ~ 1.25的中长染色体;L代表相对长度指数大于1.25的长染色体;M代表着丝点位于正中部的染色体;m代表着丝点位于中部区域的染色体;sm代表着丝点位于近中部的染色体;st代表着丝点位于近端部的染色体;t代表着丝点位于端部区域的染色体;随体(SAT)长度计入短臂长度(有的在长臂上)。Notes: S represents short chromosome with relative length index of less than 0.75; M1 represents medium-short chromosome with relative length index from 0.76 to 1.00; M2 represents medium-long chromosome with a relative length index from 1.01 to 1.25; L represents long chromosome with relative length index greater than 1.25; M represents the chromosome with median point, m represents the chromosome with median region point; sm represents the chromosome with submedian region point; st represents the chromosome with subterminal region point; t represents the chromosome with terminal region point; the length of the satellite was included in short arms (some in longarms).
    下载: 导出CSV

    表  3  用于杂种鉴定的7对SSR引物信息

    Table  3.   Information of 10 SSR markers for F1 progeny identification

    名称
    Name
    重复基序
    Repeat motif
    退火温度
    Annealing
    temperature/℃
    目标片段大小
    Target fragment/bp
    上游引物(5′→3′)
    Forward primer (5′→3′)
    下游引物(5′→3′)
    Resversed primer (5′→3′)
    552(TCC)659153ATTTCCAAAAATGGCACCACGTTGAAAGTGGAGAGCTCGG
    555(GAGCA)359131AAAGCAAGAAGCAGTTTCAGTGCCTCTCAATCGGGACTTCTG
    Rh60(CT)rich50234TCTCTTTTCACGGCCACCACTTGAATCCAAGGCCGTATAGTTAGA
    Rh93(CT)rich50242GCTTTGCTGCATGGTTAGGTTGTTCTTTTTGTCGTTCTGGGATGTG
    Rh98(CT)rich50154GGCCTCTAGAGTTTGGGATAGCAGACGACGTCAATAACTCCATCAGTC
    RhAB9-2(CT)rich50100GTCAATTTGTGCATAAGCTCGTGAGAACAGATGAGAAATG
    RhABT12(CT)rich50172CAAGTTTGTCTCCTTGGACCCATAGATGATTATCCTAGAGCC
    下载: 导出CSV

    表  4  7对SSR引物对亲本及子代的检测结果

    Table  4.   Results of amplification for parents and individuals using 7 SSR markers

    SSR 位点
    SSR locus
    亲本 Parent子代 F1 individual
    ZGFTZF-3ZF-157ZF-164
    552150:153153153153150:153
    555126:131131126:131126:131126
    Rh60222:234222:228222:234222:228:234222:234
    Rh93236:268242236236:242:268236:268
    Rh98146:156154:162146:156146:154:156:162146:156
    RhAB9-2104:108:11298:100108:11298:100:112108
    RhABT12172:174162:164172:174162:164:172:174172:174
    下载: 导出CSV

    表  5  现代月季‘赞歌’与粉团蔷薇杂交后代的表型性状

    Table  5.   Morphological traits of R.‘Sanka’×R. multiflora var. cathayensis hybrids and their parents

    性状 Trait亲本 Parent子代 Progeny
    ZGFT均值
    Mean
    变异系数
    Coefficient of variation
    株高 Plant height/cm139.67 ± 12.28217.33 ± 10.65119.94 ± 48.2740.24%
    冠幅 Crown diameter/cm53.67 ± 6.59205.33 ± 9.46133.81 ± 76.2156.24%
    节间长 Internode length/mm50.26 ± 6.7046.69 ± 5.9737.26 ± 7.8721.13%
    小叶长 Leaflet length/mm53.92 ± 5.1651.55 ± 3.9346.87 ± 9.2419.71%
    小叶宽 Leaflet width/mm39.10 ± 1.3336.18 ± 2.0727.72 ± 5.7520.74%
    节间刺量 Internode prickle number5 ~ 61 ~ 35.60 ± 5.7460.02%
    花径 Flower diameter/mm135.34 ± 1.4443.74 ± 3.0954.75 ± 11.4120.56%
    着花量 Flower number1 ~ 25 ~ 75.41 ± 4.2467.13%
    株型 Plant type152.22 ± 1.0446.89%
    下载: 导出CSV
  • [1] 陈俊愉. 月季花史话[J]. 世界农业, 1986(8):51−53.

    Chen J Y. Rose history[J]. World Agriculture, 1986(8): 51−53.
    [2] American Rose Society. Modern roses 12 [M]. Louisiana: Pediment Publishing, 2007.
    [3] Thomas C. Modern roses XI: the world encyclopedia of roses [M]. San Diego: Academic Press, 2000.
    [4] 刘永刚, 刘青林. 月季遗传资源的评价与利用[J]. 植物遗传资源学报, 2004, 5(1):87−90. doi: 10.3969/j.issn.1672-1810.2004.01.019

    Liu Y G, Liu Q L. Evaluation and exploitation of genetic resources in roses[J]. Journal of Plant Genetic Resources, 2004, 5(1): 87−90. doi: 10.3969/j.issn.1672-1810.2004.01.019
    [5] 杨涛, 宋丹, 张晓莹, 等. 部分蔷薇属植物远缘杂交亲和性评价[J]. 东北农业大学学报, 2015, 46(2):72−77. doi: 10.3969/j.issn.1005-9369.2015.02.011

    Yang T, Song D, Zhang X Y, et al. Evaluation on compatibility of interspecific cross in part of the genus Rosa[J]. Journal of Northeast Agricultural University, 2015, 46(2): 72−77. doi: 10.3969/j.issn.1005-9369.2015.02.011
    [6] De Vries D P, Dubois L A M. Developments in breeding for horizontal and vertical fungus resistance in roses[J]. Acta Horticulturae, 2001(552): 103−112.
    [7] Gudin S. Improvement of rose varietal creation in world[J]. Acta Horticulturae, 1999(495): 285−291.
    [8] Gudin S. Rose breeding technologies[J]. Acta Horticulturae, 2001(547): 23−26.
    [9] 马燕, 陈俊愉. 我国西北的薔薇属种质资源[J]. 中国园林, 1990(1):50−51.

    Ma Y, Chen J Y. Germplasm resources of Rose genus in Northwest of China[J]. Chinese Landscape Architecture, 1990(1): 50−51.
    [10] 马燕. 培育刺玫月季新品种的初步研究[D]. 北京: 北京林业大学, 1989.

    Ma Y. A preliminary study on breeding cultivars for establishing a new rose group [D]. Beijing: Beijing Forestry University, 1989.
    [11] 马燕, 陈俊愉. 培育刺玫月季新品种的初步研究(Ⅰ)——月季远缘杂交不亲和性与不育性的探讨[J]. 北京林业大学学报, 1990, 12(3):18−25, 125.

    Ma Y, Chen J Y. A preliminary study on breeding cultivars for establishing a new rose group: rejuvenation rose group (Rj.)[J]. Journal of Beijing Forestry University, 1990, 12(3): 18−25, 125.
    [12] 赵红霞, 王晶, 丁晓六, 等. 蔷薇属植物与现代月季品种杂交亲和性研究[J]. 西北植物学报, 2015, 35(4):743−753.

    Zhao H X, Wang J, Ding X L, et al. Compatibility of interspecific crossing between several Rosa species and modern rose cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(4): 743−753.
    [13] 丁晓六, 刘佳, 赵红霞, 等. 现代月季和玫瑰杂交后代的鉴定与评价[J]. 北京林业大学学报, 2014, 36(5):123−130.

    Ding X L, Liu J, Zhao H X, et al. Hybrid identification and morphological evaluation of modern roses (Rosa hybrida) × Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123−130.
    [14] 黄善武, 葛红. 弯剌蔷薇在月季抗寒育种上的研究利用初报[J]. 园艺学报, 1989, 16(3):237−240. doi: 10.3321/j.issn:0513-353X.1989.03.004

    Huang S W, Ge H. Studies on the use of Rosa beggeriana Schrenk as a source of cold resistance in rose breeding[J]. Acta Horticulturae Sinica, 1989, 16(3): 237−240. doi: 10.3321/j.issn:0513-353X.1989.03.004
    [15] 孙宪芝, 赵惠恩. 月季育种研究现状分析[J]. 西南林学院学报, 2003, 23(4):65−69.

    Sun X Z, Zhao H E. Review of research measures and development trend of rose breeding[J]. Journal of Southwest Forestry University, 2003, 23(4): 65−69.
    [16] 邓衍明, 叶晓青, 佘建明, 等. 植物远缘杂交育种研究进展[J]. 华北农学报, 2011, 26(S2):52−55. doi: 10.7668/hbnxb.2011.S2.013

    Deng Y M, Ye X Q, She J M, et al. The research progress on distant hybridization of plant breeding[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 52−55. doi: 10.7668/hbnxb.2011.S2.013
    [17] 王荣邦, 张秀海, 吴忠义, 等. 菊花染色体倍性鉴定研究[J]. 安徽农业科学, 2010, 38(23):12778−12780, 12789. doi: 10.3969/j.issn.0517-6611.2010.23.173

    Wang R B, Zhang X H, Wu Z Y, et al. Common methods of cell chromosome ploidy identification for Chrysanthemum and its application in breeding[J]. Journal of Anhui Agricultural Sciences, 2010, 38(23): 12778−12780, 12789. doi: 10.3969/j.issn.0517-6611.2010.23.173
    [18] 刘建鑫, 杨柳慧, 魏冬霞, 等. 芍药属组内组间杂交及部分后代核型分析与SSR鉴定[J]. 北京林业大学学报, 2017, 39(4):72−78.

    Liu J X, Yang L H, Wei D X, et al. Intrasectional and intersectional crossbreeding of Paeonia and karyotype analysis and SSR identification of some hybrids[J]. Journal of Beijing Forestry University, 2017, 39(4): 72−78.
    [19] 王辉, Pawan K, 李双铃, 等. SSR分子标记在花生杂种鉴定中的应用[J]. 福建农林大学学报 (自然科学版), 2015, 44(4):350−354.

    Wang H, Pawan K, Li S L, et al. Application of SSR markers in peanut F1 hybrid identification[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(4): 350−354.
    [20] 王明启, 张银慧, 陈宝晶. 蔷薇属植物抗寒性指标的研究[J]. 吉林林学院学报, 1993, 9(1):51−58.

    Wang M Q, Zhang Y H, Chen B J. Study on hardiness indicators of the genus Rosa[J]. Journal of Jilin Forestry University, 1993, 9(1): 51−58.
    [21] 白锦荣. 部分蔷薇属种质资源亲缘关系分析及抗白粉病育种[D]. 北京: 北京林业大学, 2009.

    Bai J R. Analysis of genetic relationships between wild species and Chinese traditional roses and powdery mildew resistance breeding [D]. Beijing: Beijing Forestry University, 2009.
    [22] 赵红霞. 蔷薇属植物与现代月季品种杂交及主要性状与SSR标记的连锁分析[D]. 北京: 北京林业大学, 2015.

    Zhao H X. Hybridizing between several Rosa species and modern rose cultivars and linkage analysis of main traits using SSR markers [D]. Beijing: Beijing Forestry University, 2015.
    [23] 李亚齐, 韩倩, 王泽翻, 等. 野生蔷薇和月季的杂交亲和性评价[J]. 江苏农业科学, 2013, 41(6):155−160. doi: 10.3969/j.issn.1002-1302.2013.06.059

    Li Y Q, Han Q, Wang Z F, et al. Hybridization affinity evaluation between wild Rosa multiflora and Rosa chinensis[J]. Jiangsu Agricultural Sciences, 2013, 41(6): 155−160. doi: 10.3969/j.issn.1002-1302.2013.06.059
    [24] 罗乐, 张启翔, 白锦荣, 等. 16个中国传统月季品种的核型分析[J]. 北京林业大学学报, 2009, 31(5):90−95. doi: 10.3321/j.issn:1000-1522.2009.05.016

    Luo L, Zhang Q X, Bai J R, et al. Karyotype analysis of sixteen Chinese traditional rose cultivars[J]. Journal of Beijing Forestry University, 2009, 31(5): 90−95. doi: 10.3321/j.issn:1000-1522.2009.05.016
    [25] 李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4):297−302.

    Li M X, Chen R Y. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4): 297−302.
    [26] Stebbins G L. Chromosomal evolution in higher plants [M]. London: Edward Aronld, 1971: 87−93.
    [27] Arano H. Cytological studies in subfamily Carduoideae (Compo-sitae) of Japan IX[J]. Botanic Magazine., 1963, 76: 32−39. doi: 10.15281/jplantres1887.76.32
    [28] Kuo S R, Wang T T, Huang T C. Karyotype analysis of some formosan gymnosperms[J]. Taiwania, 1972, 17(1): 66−80.
    [29] 于超. 四倍体月季遗传连锁图谱的构建及部分观赏性状的QTLs分析[D]. 北京: 北京林业大学, 2015.

    Yu C. Constructionof a genetic linkage map and QTLs analysis for phenotypic traits in tetraploid roses [D]. Beijing: Beijing Forestry University, 2015.
    [30] 白锦荣, 潘会堂, 张启翔. 月季SSR-PCR反应体系的建立和优化[J]. 华北农学报, 2009, 24(3):184−188.

    Bai J R, Pan H T, Zhang Q X. Optimization and establishment of SSR analysis system in roses (Rosa spp.)[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(3): 184−188.
    [31] 赵丹, 王飞, 酒立君, 等. 不同倍性柿品种的杂交亲和性及结实性研究[J]. 西北农林科技大学学报 (自然科学版), 2012, 40(7):141−148.

    Zhao D, Wang F, Jiu L J, et al. Study on cross compatibility and fecundity of different ploidy persimmon cultivars[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(7): 141−148.
    [32] 徐顺超, 管洁, 曹荷艳, 等. 百合杂交育种亲和性与染色体倍性相关性研究[J]. 分子植物育种, 2014, 12(2):316−322.

    Xu S C, Guan J, Cao H Y, et al. Study on the relationship between lily crossbreeding affinity and ploidy levels[J]. Molecular Plant Breeding, 2014, 12(2): 316−322.
    [33] 张正海, 康向阳. 植物2n配子发生及其遗传标记研究进展[J]. 遗传(北京), 2006, 28(1):105−109. doi: 10.3321/j.issn:0253-9772.2006.01.019

    Zhang Z H, Kang X Y. Advances in researches on genetic markers of 2n gametes[J]. Hereditas (Beijing), 2006, 28(1): 105−109. doi: 10.3321/j.issn:0253-9772.2006.01.019
    [34] Van Huylenbroeck J, Leus L, Van Bockstaele E. Interploidy-crosses in roses: use of triploids[J]. Acta Horticulturae, 2005, 690: 109−112.
    [35] 廖道龙, 谢利, 曾瑞珍, 等. 石斛属植物倍性与形态学性状的相关性研究[J]. 西北植物学报, 2012, 32(10):2023−2029. doi: 10.3969/j.issn.1000-4025.2012.10.014

    Liao D L, Xie L, Zeng R Z, et al. Relationship between chromosome ploidy and morphology characters in Dendrobium[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(10): 2023−2029. doi: 10.3969/j.issn.1000-4025.2012.10.014
    [36] 金亮, 薛庆中, 肖建富, 等. 不同倍性水稻植株茎解剖结构比较研究[J]. 浙江大学学报 (农业与生命科学版), 2009, 35(5):489−496.

    Jin L, Xue Q Z, Xiao J F, et al. Comparative studies on stem anatomical structure of rice plants with various ploidy level[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2009, 35(5): 489−496.
    [37] Li S B, Zhou N N, Zhou Q, et al. Inheritance of perpetual blooming in Rosa chinensis ‘Old Blush’[J]. Horticultural Plant Journal, 2015, 1(2): 108−112.
    [38] 马燕, 陈俊愉. 蔷薇属若干花卉的染色体观察[J]. 福建林学院学报, 1991, 11(2):215−218.

    Ma Y, Chen J Y. Chromosome studies of 7 roses[J]. Journal of Fujian College of Forestry, 1991, 11(2): 215−218.
    [39] 蹇洪英, 张颢, 王其刚, 等. 中国古老月季品种的核型研究[J]. 园艺学报, 2010, 37(1):83−88.

    Jian H Y, Zhang H, Wang Q G, et al. Karylogical study of Chinese old garden roses[J]. Acta Horticulturae Sinica, 2010, 37(1): 83−88.
    [40] 陈瑞阳. 中国主要经济植物基因组染色体图谱Ⅲ[M]. 北京: 科学出版社, 2003: 692−717.

    Chen R Y. Chromosome atlas of Chinese principal economic plantsⅢ [M]. Beijing: Science Press, 2003: 692−717.
    [41] 罗玉兰, 张冬梅. SSR标记及形态性状鉴定红刺玫和月季杂交F1后代[J]. 分子植物育种, 2007, 5(6):839−842. doi: 10.3969/j.issn.1672-416X.2007.06.014

    Luo Y L, Zhang D M. Identification of F1 hybrids derived from the combinations of Rosa and modern rose by SSR markers and morphological traits[J]. Molecular Plant Breeding, 2007, 5(6): 839−842. doi: 10.3969/j.issn.1672-416X.2007.06.014
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  2654
  • HTML全文浏览量:  618
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-03
  • 修回日期:  2019-01-17
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回