高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响

赵海燕 魏宁 孙聪聪 白宜琳 郑彩霞

赵海燕, 魏宁, 孙聪聪, 白宜琳, 郑彩霞. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11): 28-41. doi: 10.13332/j.1000-1522.20180258
引用本文: 赵海燕, 魏宁, 孙聪聪, 白宜琳, 郑彩霞. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11): 28-41. doi: 10.13332/j.1000-1522.20180258
Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. doi: 10.13332/j.1000-1522.20180258
Citation: Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. doi: 10.13332/j.1000-1522.20180258

NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响

doi: 10.13332/j.1000-1522.20180258
基金项目: 

国家自然科学基金项目 30371144

国家自然科学基金项目 31170563

国家自然科学基金项目 30671655

详细信息
    作者简介:

    赵海燕,博士生,副研究员。主要研究方向:植物生理。Email: zhaohy2002cn@163.com  地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    郑彩霞,教授,博士生导师。主要研究方向:木本植物发育、水分生理及光合作用。Email:zhengcx@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.43; S792.95

Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings

  • 摘要: 目的研究银杏的耐盐生理机制对于选育优良耐盐品种、扩大盐渍化区域种植面积及解决融雪剂等盐分影响生长等问题具有现实意义。方法本试验利用条件控制法研究0、0.2%、0.4%、0.6%、0.8%、1.0% NaCl处理对3年生银杏幼树生长、组织解剖结构和光合作用的影响,为生产提供依据和指导。结果在盐胁迫64 d,0.2%~0.8% NaCl处理组幼树存活率为100%。0.2%处理组株高、地径相对生长量与对照组无显著差异,0.6%~1.0%处理组的生长受到显著抑制(P<0.05),说明该品种幼树可在0.2%盐处理(盆土实测盐含量0.44%)下保持良好长势。从非损伤扫描电镜观测结果发现,叶片下表皮气孔密布、闭合时间和程度不均匀,保卫细胞明显下陷,副卫细胞高高隆起;叶片角质层增厚,叶表面包被一层管状蜡质晶体;茎薄壁细胞中可见大量盐簇晶体,而根和叶柄中则很少见,这些特征表明银杏幼树具有一定耐盐和储盐能力且盐分可能主要储存在茎部。银杏幼树光合作用(净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用效率(WUE))日变化呈双峰型,胞间CO2浓度(Ci)呈先降后升、气孔限制值(Ls)呈先升后降趋势,且胁迫2 d 0.2%处理组Pn的峰值和谷值分别极显著高于对照组和其他处理组(P<0.01)。随着胁迫时间延长,Pn呈降低趋势,GsCiTr呈先升后降趋势。其中0.2%处理组Pn在胁迫前35 d极显著高于对照组(P<0.01),此后极显著低于对照组(P<0.01),可能是由气孔限制所致。0.4%~1.0%处理组的Pn胁迫期内均极显著低于对照组(P<0.01),在胁迫前期(2~7 d)中等浓度(0.4%)处理组Pn降低以气孔限制为主,高浓度(0.6%~1.0%)以非气孔限制为主;而在胁迫1 d和胁迫后期(35 d以后)0.4%~1.0%处理组均以非气孔限制为主,这可能是胁迫当天银杏的应激响应以及高浓度盐使银杏叶肉细胞光合活性下降所致。结论银杏具有一定耐盐性, 可在小于0.44% NaCl土壤中种植该品种,且银杏光合参数对盐胁迫较敏感,在生产中可用于监测和评价其耐盐能力。

     

  • 图  1  NaCl胁迫下银杏幼树叶表皮及气孔发育解剖结构(以胁迫82 d 0.4% NaCl处理组为例)

    A.下表皮气孔和叶脉组织, 275×; B.上表皮, 1 000×; C.下表皮布满柱状蜡质晶体(有分叉), 15 000×;D.下表皮气孔部分开闭, 1 000×;E.下表皮气孔的保卫细胞下陷, 副卫细胞隆起, 1 000×;F.下表皮气孔, 6 000×。

    Figure  1.  Anatomic structure of leaf epidermis and stomas development under scanning electron microscope of Ginkgo biloba seedlings exposed to salt stress for 82 days(taking 0.4% treatment group as an example)

    A, stomas and leaf vein tissues in lower leaf epidermis, 275×; B, upper leaf epidermis, 1 000×; C, branching waxy crystals in lower leaf epidermis, 15 000×; D, the opened and closed stomas, 1 000×; E, stomas are wrapped by deeply sagged guard cells and tuberositased subsidiary cells in lower leaf epidermis, 1 000×; F, stomas in lower leaf epidermis, 6 000×.

    图  2  NaCl胁迫下银杏幼树叶柄横纵切面解剖结构(以胁迫82 d对照组为例)

    A.叶柄横切面呈月牙形, 260×; B.叶柄横切面的脊状突起, 200×; C.叶柄远轴面表皮细胞外的角质层, 850×; D.叶柄纵切面的木质部、韧皮部和木质化皮层细胞, 255×; E.木质部管胞上的具缘纹孔, 10 000×; F.薄壁细胞壁上可见大量晶体颗粒, 2 000×。

    Figure  2.  Anatomic structure of cross and longitudinal sections under scanning electron microscope of Ginkgo biloba petiole exposed to salt stress for 82 days(taking control group as an example)

    A, crescent cross sections, 260×; B, ridged protuberance, 200×; C, cuticles of baxial leaf epidermis, 850×; D, xylem, phloem and lignosal cells, 255×; E, marginal pores on xylem tracheids, 10 000×; F, a large number of crystal particles on the wall of thin-walled cells, 2 000×.

    图  3  NaCl胁迫下银杏幼树茎、根的横纵切面解剖结构

    A.对照组茎横切面, 270×; B. 0.4%NaCl处理组茎横切面,韧皮部胞腔内可见少量盐簇晶体, 265×; C.1.0%NaCl处理组茎纵切面,韧皮部胞腔内有大量盐簇晶体, 300×; D.1.0%NaCl处理组茎横切面髓薄壁细胞中储有大量淀粉粒, 5 000×; E.0.4%处理组茎横切面胞腔内放大的盐簇晶体, 2 500×; F.1.0%处理组根的纵切面, 350×; G.对照组根横切面, 265×; H.0.4%处理组根横切面上的管胞、木射线细胞, 1000×; I.1.0%处理组根横切面, 250×。

    Figure  3.  Anatomic structure of cross and longitudinal sections under scanning electron microscope of Ginkgo biloba stems and roots exposed to salt stress for 82 days

    A, stem cross section of control group, 270×; B, stem cross section of 0.4% treated group, 265×, salt block crystals within thin-walled cells of phloem; C, stem cross section of 1.0% treated group, salt block crystals within thin-walled cells of phloem, 300×; D, stem cross section of 1.0% treated group, starch grains within thin-walled cells, 5 000×; E, magnifying salt block crystals within thin-walled cells of phloem of 0.4% treated group, 2 500×; F, root longitudinal sections of 1.0% treated group, 350×; G, root cross section of control group, 265×; H, tracheid cells and wood ray cells in cross section of 0.4% treated group, 1 000×; I, root cross sections of 1.0% treated group, 250×.

    图  4  不同NaCl含量胁迫2 d银杏幼树光合作用参数日变化

    Figure  4.  Daily changes in photosynthesis parameters of Ginkgo biloba seedlings exposed to salt stress for 2 days

    图  5  不同NaCl含量胁迫下银杏幼树光合作用的变化

    Figure  5.  Effects of increasing NaCl concentrations and time on photosynthesis parameters in Ginkgo biloba seedlings

    表  1  NaCl胁迫64 d对银杏幼树土壤和枝条水势及相对生长量的影响

    Table  1.   Effects of NaCl concentration on soil and branch water potential and relative growth yield of Ginkgo biloba seedlings exposed to salt stress for 64 days

    盐处理含量Concentration of salt treatment/%土壤含盐率Soil salt concentration/%水势Water potential/MPa相对生长量Relative growth yield/cm
    土壤Soil枝条Branch株高Tree height地径Ground diameter
    00.22±0.01F-0.978±0.113Aa-3.333±0.882Aa1.000±0.058Aa0.083±0.017Aa
    0.20.44±0.01E-1.624±0.189ABb-5.880±0.116Bb1.033±0.233Aa0.053±0.011AaBb
    0.40.57±0.00D-2.002±0.276BbCc-6.733±0.145Bbc0.633±0.333AaBb0.046±0.010ABb
    0.60.84±0.00C-2.312±0.122BbCc-7.500±0.289BCc0.433±0.260ABbc0.030±0.006Bbc
    0.80.95±0.02B-2.424±0.303BCc-9.333±0.601Cd0.267±0.088Bbc0.012±0.003Bc
    1.01.11±0.02A-2.602±0.270Cc-12.833±0.441De0.100±0.000Bc0.012±0.002Bc
    P<0.01<0.01<0.01<0.01<0.05
    注:数据为均值±标准差。同一列不同大写字母为P<0.01差异极显著,小写字母为P<0.05差异显著(n=5)。Notes:data are mean ± SD (n=5). Values within a column followed by different letters are significantly different (uppercase letter, P<0.01; lowercase letter, P<0.05).
    下载: 导出CSV

    表  2  NaCl胁迫64 d银杏幼树叶片光合作用指标间的皮尔森相关系数

    Table  2.   Pearson correlation coefficients of photosynthesis parameters in Ginkgo biloba leaves exposed to salt stress for 64 days

    指标IndexNaCl含量NaCl concentration株高相对增长量Relative growth of plant height地径相对增长量Relative growth of ground diameter土壤水势Water potential枝条水势Branch water potentialPnGsTrCiLsWUE
    NaCl含量NaCl concentration1.000
    株高相对增长量Relative growth of plant height-0.765**1.000
    地径相对增长量Relative growth of ground diameter-0.825**0.480*1.000
    土壤水势Water potential of soil-0.780**0.554*0.556*1.000
    枝条水势Branch water potential-0.921**0.745**0.734**0.802**1.000
    Pn-0.859**0.567*0.783**0.808**0.876**1.000
    Gs-0.785**0.500*0.730**0.792**0.796**0.957**1.000
    Tr-0.770**0.492*0.716**0.786**0.781**0.948**0.999**1.000
    Ci0.799**-0.646**-0.602**-0.507*-0.716**-0.568*-0.350-0.3201.000
    Ls-0.770**0.622**0.581*0.478*0.694**0.544*0.3170.286-0.999**1.000
    WUE-0.0220.0170.022-0.1040.0900.010-0.271-0.298-0.551*0.592*1.000
    注:***分别表示在P<0.05和P<0.01水平上显著和极显著相关; n=55。Notes: * and ** mean significant and extremely significant correlation at P<0.05 and P<0.01 level, respectively; n=55.
    下载: 导出CSV

    表  3  NaCl胁迫64 d银杏幼树叶片各指标主成分分析

    Table  3.   Principal component analysis on indexes for Ginkgo biloba leaves exposed to salt stress for 64 days

    主成分Principal component初始特征值Initial eigenvalue贡献率Contribution rate/%累计贡献率Cumulative contribution rate/%
    17.25165.92065.920
    22.17819.80385.722
    下载: 导出CSV

    表  4  各因子载荷矩阵(盐胁迫64 d)

    Table  4.   Component matrix exposed to salt stress for 64 days

    指标Index成分1 Component 1成分2 Component 2
    NaCl含量Salt concentration-0.9740.005 3
    枝条水势Water potential of branches0.953-0.024
    Pn0.9400.196
    Gs0.8610.464
    Tr0.8470.492
    土壤水势Water potential of soil0.8370.209
    地径相对增长量Relative growth yield of ground diameter0.8280.038
    Ci-0.7580.630
    苗高相对增长量Relative growth yield of seedling height0.742-0.147
    Ls0.732-0.664
    WUE0.068-0.880
    下载: 导出CSV
  • [1] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. doi: 10.1016/j.ecoenv.2004.06.010
    [2] Bidalia A, Hanief M, Rao K S. Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity[J]. Photosynthetica, 2017, 55 (2): 231-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b66502f8df1ff64da4cabe399ec2b080
    [3] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
    [4] Apse M P, Blumwald E. Engineering salt tolerance in plants[J]. Current Opinion in Biotechnology, 2002, 13(2):146-150. doi: 10.1016/S0958-1669(02)00298-7
    [5] Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. PNAS, 2001, 98(24):14150-14155. doi: 10.1073/pnas.241501798
    [6] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Biology, 1980, 31(1): 149-190. doi: 10.1146/annurev.pp.31.060180.001053
    [7] Flowers T J, Colmer T D. Salinity tolerance in halophytes[J]. New Phytologist, 2008, 179(4), 945-963. doi: 10.1111/nph.2008.179.issue-4
    [8] 刘文英.植物逆境与基因[M].北京:北京理工大学出版社, 2015:1-2.

    Liu W Y. Plant stress and gene[M].Beijing: Beijing Institute Technology Press, 2015:1-2.
    [9] Hao L, Zhao Y, Jin D D, et al. Salicylic acid-altering Arabidopsis mutants response to salt stress[J]. Plant and Soil, 2012, 354(1-2):81-95. doi: 10.1007/s11104-011-1046-x
    [10] Gu W T, Zhou L B, Liu R Y, et al. Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation[J].Nuclear Science and Techniques, 2018, 29(10):1-7. doi: 10.1007/s41365-017-0341-5
    [11] 王丽燕, 赵可夫. NaCl胁迫对海蓬子(Salicornia bigelovii Torr.)离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报, 2004, 30(1): 94-98. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200401014

    Wang L Y, Zhao K F. Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr.[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1):94-98. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200401014
    [12] Dunn G M, Neales T F. Are the effects of salinity on growth and leaf gas exchange related?[J].Photosynthetica, 1994, 29(1):33-42.
    [13] 郑彩霞, 邱箭, 姜春宁, 等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学, 2006, 42(8):19-24. http://d.old.wanfangdata.com.cn/Periodical/lykx200608004

    Zheng C X, Qiu J, Jiang C N, et al. Comparison of characteristics of stomas and photosynthesis of Populus euphratica polymorphic leaves[J]. Scientia Silvae Sinicae, 2006, 42(8):19-24. http://d.old.wanfangdata.com.cn/Periodical/lykx200608004
    [14] Feng Z T, Deng Y Q, Fan H, et al. Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture[J]. Photosynthetica, 2014, 52(2): 313-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=550077ebc4982b55d31d2d2f4a2a4872
    [15] 赵可夫, 范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社, 2005:71-74.

    Zhao K F, Fan H. Halophytes and their adaptive physiology to saline habitats[M].Beijing: Science Press, 2005:71-74.
    [16] Grieve C M, Francois L E, Maas E V. Salinity affects the timing of phasic development in spring wheat[J]. Crop Science, 1994, 34(6):1544-1549. doi: 10.2135/cropsci1994.0011183X003400060024x
    [17] Bernstein N, Silk W K, Lauchli A. Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition[J]. Planta, 1995, 196(4):699-705. doi: 10.1007/BF01106763
    [18] Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery (Aptium Graveolens L.) at various leaves of root zone salinity[J].Plant Physiol, 1994, 106(1), 106:281-292. doi: 10.1104/pp.106.1.281
    [19] Mittal S, Kumari N, Sharma V. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes[J]. Plant Physiology Biochemistry, 2012, 54: 17-26. doi: 10.1016/j.plaphy.2012.02.003
    [20] Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J].Trees, 2004, 18(2):167-174. doi: 10.1007/s00468-003-0293-8
    [21] López-Climent M F, Arbona V, Pérez-Clemente R M, et al. Relationship between salt tolerance and photosynthetic machinery performance in citrus[J]. Environmental and Experimental Botany, 2008, 62(2): 176-184. doi: 10.1016/j.envexpbot.2007.08.002
    [22] 姚立生, 崔世友, 孙明法.植物耐盐性多学科的研究进展[M].北京:中国农业科学技术出版社, 2014.

    Yao L S, Cui S Y, Sun M F. Advances in multidisciplinary research on salt tolerance in plants[M].Beijing: China Agricultural Science and Technology Press, 2014.
    [23] 柏锡, 朱延明, 李丽文, 等.转OsMAPK4基因水稻耐盐性分析[J].东北农业大学学报, 2009, 40(8):53-57. doi: 10.3969/j.issn.1005-9369.2009.08.012

    Bai X, Zhu Y M, Li L W, et al. Salt resistance analysis of rice transformed with OsMAPK4[J].Journal of Northeast Agricultural University, 2009, 40(8):53-57. doi: 10.3969/j.issn.1005-9369.2009.08.012
    [24] Major R T. The ginkgo, the most ancient living tree[J]. Science, 1967, 157: 1270-1273. doi: 10.1126/science.157.3794.1270
    [25] 曹福亮.中国银杏[M].南京:江苏科学技术出版社, 2002.

    Cao F L. Chinese ginkgo[M]. Nanjing: Jiangsu Science and Technology Press, 2002.
    [26] 汪贵斌, 曹福亮, 景茂, 等.水分胁迫对银杏叶片叶肉细胞超微结构的影响[J].南京林业大学学报(自然科学版), 2008, 32(5):65-70. doi: 10.3969/j.issn.1000-2006.2008.05.015

    Wang G B, Cao F L, Jing M, et al. The effect of water stress on mesophyll cell ultrastructure of Ginkgo[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(5):65-70. doi: 10.3969/j.issn.1000-2006.2008.05.015
    [27] Wang Y W, Sun L G, Xu J G, et al. Physiological and growth characteristics of Ginkgo biloba L. exposed to open fleld and shade enclosure during the reproductive stage[J]. Acta Physiologiae Plantarum, 2014, 36(10): 2671-2681. doi: 10.1007/s11738-014-1638-1
    [28] He X Y, Fu S L, Chen W, et al. Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area[J]. Photosynthetica, 2007, 45 (4):555-561. doi: 10.1007/s11099-007-0095-0
    [29] 朱宇林, 曹福亮, 汪贵斌, 等. CdPb胁迫对银杏光合特性的影响[J].西北林学院学报, 2006, 21(1):47-50. doi: 10.3969/j.issn.1001-7461.2006.01.010

    Zhu Y L, Cao F L, Wang G B, et al. Effects of Cd single and combined stress on chlorophyll content and photosynthetic characteristics of Ginkgo[J]. Journal of Northwest Forestry University, 2006, 21(1): 47-50. doi: 10.3969/j.issn.1001-7461.2006.01.010
    [30] Yang X S, Chen G X, Wei X D, et al. Enhanced antioxidant protection at the early stages of leaf expansion in Ginkgo under natural environmental conditions[J]. Biologia Plantarum, 2012, 56 (1): 181-186. doi: 10.1007/s10535-012-0039-9
    [31] Wei X D, Shi D W, Chen G X. Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves[J].Plant Growth Regulation, 2013, 69(2):191-201. doi: 10.1007/s10725-012-9761-8
    [32] Deng Z X, Wang Y D, Jiang K J, et al. Molecular cloning and characterization of a novel dehydrin gene from 1[J]. Bioscience Reports, 2006, 26(3):203-215. doi: 10.1007/s10540-006-9016-x
    [33] Steduto P, Albrizio R, Giorio P, et al. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity[J]. Environmental and Experimental Botany, 2000, 44(3):243-255. doi: 10.1016/S0098-8472(00)00071-X
    [34] Guan R, Zhao Y P, Zhang H, et al. Draft genome of the living fossil Ginkgo biloba[J].GigaScience, 2016, 5:1-13. doi: 10.1186%2Fs13742-016-0154-1
    [35] 姚佳, 刘信宝, 崔鑫, 等.不同NaCl胁迫对苗期扁蓿豆渗透调节物质及光合生理的影响[J].草业学报, 2015, 24(5):91-99. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505011

    Yao J, Liu X B, Cui X, et al. Effects of NaCl stress on substances linked to osmotic adjustment and on photosynthetic physiology of Melilotoides ruthenica in the seedling stage[J]. Acta Prataculturae Sinica, 2015, 24(5):91-99. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505011
    [36] Tounekti T, Vadel A M, Oñate M, et al. Salt-induced oxidative stress in rosemary plants: damage or protection?[J].Environmental and Experimental Botany, 2011, 71(2):298-305. doi: 10.1016/j.envexpbot.2010.12.016
    [37] 陈颖, 罗永亚, 邱娜菲, 等. NaCl处理对银杏悬浮培养细胞生长、耐盐性和黄酮积累的影响[J].南京林业大学学报(自然科学版), 2015, 39(6):45-50. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201506010

    Chen Y, Luo Y Y, Qiu N F, et al. Effect of NaCl treatment on growth, salt, tolerance and flavonoids accumulation in Ginkgo biloba suspension cells[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 45-50. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201506010
    [38] Flowers T J. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396):307-319. doi: 10.1093/jxb/erh003
    [39] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25(2):239-250. doi: 10.1046/j.0016-8025.2001.00808.x
    [40] Kramer P J, Boyer J S. Water relations of plants and soils[M]. San Diego: Academic Press, 1995.
    [41] 陈立群, 李承森.银杏(Ginkgo biloba)叶表皮特征及其气孔的发育[J].植物研究, 2004, 24(4):417-422. doi: 10.3969/j.issn.1673-5102.2004.04.013

    Chen L Q, Li C S. The epidermal characters and stomatal development of Ginkgo biloba[J].Bulletin of Botanical Research, 2004, 24(4):417-422. doi: 10.3969/j.issn.1673-5102.2004.04.013
    [42] Chen L Q, Li C S, Chaloner W G, et al. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change[J]. American Journal of Botany, 2001, 88(7):1309-1315. doi: 10.2307/3558342
    [43] Jeffree C E, Baker E A, Holloway P J. Origins of the fine structure of plant epicuticular waxes[J/OL]. Microbiology of Aerial Plant Surface, 1976, 119-158[2017-01-20]. https://doi.org/10.1016/13978-0-12-215050-0.5008-4.
    [44] 李帅, 赵秋棱, 彭阳, 等.SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J].作物学报, 2016, 42(12): 1827-1833. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201612014

    Li S, Zhao Q L, Peng Y, et al. Effects of SA, MeJA, and ACC on leaf cuticular wax constituents, structure and permeability in Brassica napus[J]. Acta Agronomica Sinica, 2016, 42(12): 1827-1833. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201612014
    [45] Gülz P G, Müller E, Schmitz K, et al. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera[J] Zeitschrift für Naturforschung Section C, 1992, 47(7-8):516-526. doi: 10.1515/znc-1992-7-805
    [46] Eisa S, Hussin S, Geissler N, et al. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte[J]. Australian Journal of Crop Science, 2012, 6(2): 357-368.
    [47] 刘厚诚, 黄红星, 孙光闻, 等.温光处理对节瓜幼苗光合作用的影响[J].沈阳农业大学学报, 2006, 37(3):386-389. doi: 10.3969/j.issn.1000-1700.2006.03.030

    Liu H C, Huang H X, Sun G W, et al. Effect of temperature and light treatments on photosynthesis of chiehqua seedlings[J].Journal of Shenyang Agricultural University, 2006, 37(3):386-389. doi: 10.3969/j.issn.1000-1700.2006.03.030
    [48] 李征珍, 杨琼, 石莎, 等.蒙古沙冬青光合作用特征及其影响因素[J].生态学杂志, 2017, 36(9): 2481-2488. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709012

    Li Z Z, Yang Q, Shi S, et al. The photosynthetic characteristics of Ammopiptanthus mongolicus and its affecting factors[J].Chinese Journal of Ecology, 2017, 36(9): 2481-2488. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709012
    [49] 洪文君, 申长青, 黄久香, 等.广东中山四药门花自然与栽培种群光合特性的比较研究[J].西南农业学报, 2017, 30(9):1969-1974. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201709008

    Hong W J, Shen C Q, Huang J X, et al. Photosynthesis characteristics of natural and cultivated population of Loropetalum subcordatum in Zhongshan City, Guangdong[J].Southwest China Journal of Agricultural Sciences, 2017, 30(9):1969-1974. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201709008
    [50] 曾秀存, 许耀照, 孙万仓, 等.白菜型冬油菜光合日变化特性研究[J].西南农业学报, 2017, 30(11):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201711017

    Zeng X C, Xu Y Z, Sun W C, et al. Study on diurnal variation of photosynthesis for winter rapeseed (Brassica rapes L.)[J].Southwest China Journal of Agricultural Sciences, 2017, 30(11):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201711017
    [51] 林平, 李吉跃, 陈崇.银杏光合生理生态特性研究[J].北京林业大学学报, 2008, 30(6): 22-29. doi: 10.3321/j.issn:1000-1522.2008.06.004

    Lin P, Li J Y, Chen C. Photosynthetic physioecology characteristics of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2008, 30(6):22-29. doi: 10.3321/j.issn:1000-1522.2008.06.004
    [52] Megdiche W, Hessini K, Gharbi F, et al. Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes[J]. Photosynthetica, 2008, 46 (3): 410-419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69ef20e82d45f1b5b87f7e7b80eb3821
    [53] Bongi G, Loreto F. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves[J]. Plant Physiology, 1989, 90(4): 1408-1416. doi: 10.1104/pp.90.4.1408
    [54] 魏晓东, 陈国详, 施大伟, 等.干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J].生态学报, 2012, 32(23):7492-7500. http://d.old.wanfangdata.com.cn/Periodical/stxb201223025

    Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica, 2012, 32(23):7492-7500. http://d.old.wanfangdata.com.cn/Periodical/stxb201223025
    [55] 马娟, 齐曼·尤努斯, 阿巴白克·扎克. NaCl胁迫对一年生黑桑移栽苗光合作用及荧光特性的影响[J].新疆农业科学, 2014, 51(12): 2227-2234. http://d.old.wanfangdata.com.cn/Periodical/xjnykx201412012

    Ma J, Qi M Y, Ababaike Z. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at one year old stage in black mulberry transplanted seedlings[J].Xinjiang Agricultural Sciences, 2014, 51(12): 2227-2234. http://d.old.wanfangdata.com.cn/Periodical/xjnykx201412012
    [56] 容晓峰, 许锋, 黄小花, 等. NaCl胁迫对银杏光合作用的影响[J].湖北农业科学, 2013, 52(4):842-845. doi: 10.3969/j.issn.0439-8114.2013.04.028

    Rong X F, Xu F, Huang X H, et al. Effects of NaCl stress on photosynthesis characteristics of Ginkgo biloba[J].Hubei Agricultural Sciences, 2013, 52(4):842-845. doi: 10.3969/j.issn.0439-8114.2013.04.028
    [57] Flexas J, Bota J, Galmes J, et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum, 2006, 127(3):343-352. doi: 10.1111/j.1399-3054.2006.00621.x
    [58] 蒋雪梅, 胡进耀, 戚文华, 等.银杏幼苗雌雄株对盐胁迫响应的差别[J].云南植物研究, 2009, 31(5):447-453. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200905010

    Jiang X M, Hu J Y, Qi W H, et al. Different physiological responses of male and female Ginkgo biloba(Ginkgoaceae)seedlings to salt stress[J]. Acta Botanica Yunnanica, 2009, 31(5):447-453. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200905010
    [59] Satoh K, Smith C M, Fork D C. Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata[J]. Plant Physiology, 1983, 73(3): 643-647. doi: 10.1104/pp.73.3.643
    [60] Stepien P, Klbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress[J]. Biologia Plantarum, 2006, 50 (4): 610-616. doi: 10.1007/s10535-006-0096-z
    [61] Wu X X, Ding H D, Zhu Z W, et al. Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena L.) seedlings under salt stress[J]. African Journal of Biotechnology, 2012, 11(35): 8665-8671.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  2273
  • HTML全文浏览量:  256
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 修回日期:  2018-10-24
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回