高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山阔叶红松林生态系统生产力与温度的关系

石旭霞 侯继华 王冰雪 王安志 吴家兵 张雷明 苏文 牛书丽

石旭霞, 侯继华, 王冰雪, 王安志, 吴家兵, 张雷明, 苏文, 牛书丽. 长白山阔叶红松林生态系统生产力与温度的关系[J]. 北京林业大学学报, 2018, 40(11): 49-57. doi: 10.13332/j.1000-1522.20180275
引用本文: 石旭霞, 侯继华, 王冰雪, 王安志, 吴家兵, 张雷明, 苏文, 牛书丽. 长白山阔叶红松林生态系统生产力与温度的关系[J]. 北京林业大学学报, 2018, 40(11): 49-57. doi: 10.13332/j.1000-1522.20180275
Shi Xuxia, Hou Jihua, Wang Bingxue, Wang Anzhi, Wu Jiabing, Zhang Leiming, Su Wen, Niu Shuli. Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 49-57. doi: 10.13332/j.1000-1522.20180275
Citation: Shi Xuxia, Hou Jihua, Wang Bingxue, Wang Anzhi, Wu Jiabing, Zhang Leiming, Su Wen, Niu Shuli. Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 49-57. doi: 10.13332/j.1000-1522.20180275

长白山阔叶红松林生态系统生产力与温度的关系

doi: 10.13332/j.1000-1522.20180275
基金项目: 

国家重点研发计划项目 2017YFC0504004

详细信息
    作者简介:

    石旭霞。主要研究方向:生物多样性保护。Email: shixvxia@126.com  地址:100083  北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    侯继华,副教授。主要研究方向:生物多样性保护。Email: houjihua@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.55+6;S791.247

Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China

  • 摘要: 目的气候变暖背景下生态系统碳循环的温度敏感性研究是全球变化生态学的主要研究内容之一,森林生态系统生产力对温度的响应和适应机制是理解生态系统的温度敏感性的重要手段,长白山阔叶红松林作为典型的温带森林生态系统及重要的碳汇,研究其生产力对环境温度的响应,对提升中国森林植被碳循环模拟的准确性至关重要。方法本研究以长白山阔叶红松林为对象,收集长白山通量站2003—2011年共9年的观测数据,通过进行整合分析,量化了生态系统碳循环的3个关键过程:生态系统总初级生产力、净生态系统生产力和生态系统呼吸的温度响应曲线,并进一步分析环境因子对其最适温的影响。结果研究发现总初级生产力、净生态系统生产力的温度响应均表现为一条峰值曲线,并存在最适温,GPP的最适温(tGPP)与NEP的最适温(tNEP)存在显著线性正相关关系。在年际尺度上,一年中最高空气温度的改变是引起tGPPtNEP变化的主要因素,而年均温和夏季温度对tGPPtNEP的变化没有显著影响。当最高温度升高1 ℃时,tGPPtNEP分别增加0.41和0.66 ℃。降水、光和有效辐射、饱和蒸汽压差等环境因子对tGPPtNEP无显著影响,但夏季降水能够降低温度对tGPP的影响。结论通过上述研究说明,生态系统的初级生产力及净生产力存在温度适应现象,当研究碳循环与气候变化相互作用的模型时需要充分考虑生态系统生产力的温度适应,从而更加准确地预测碳循环对气候变暖的响应和反馈。

     

  • 图  1  2003—2011年长白山涡度站年平均空气温度的变化趋势

    Figure  1.  Interannual pattern of annual mean air temperature during 2003 to 2011

    图  2  2003—2011年长白山涡度站总初级生产力(GPP),生态系统呼吸(ER),净生态系统生产力(NEP)在对温度的响应曲线

    年均温范围为3.46~5.04 ℃

    Figure  2.  General pattern of peak-curve temperature response of gross primary productivity (GPP), ecosystem respiration (ER) and net ecosystem productivity (NEP) at Changbai Mountain site over different temperature years

    Mean annual temperature ranges from 3.46 ℃ to 5.04 ℃

    图  3  GPP的最适温和NEP的最适温的关系

    Figure  3.  Relationship between tNEP and tGPP

    图  4  GPP的最适温和NEP的最适温与年最高温(a),年最低温(b),年均温(c),夏季平均温度(d)和生长季平均温度(e)的关系

    Figure  4.  Relationship between tNEP and tGPP with the maximum temperature (a), the minimum temperature (b), daily mean air temperature (c), daily mean air temperature in summer (d) and daily mean air temperature in growing season(e)

    图  5  GPP的最适温和夏季降水(7—9月)的关系

    Figure  5.  Relationship between tNEP and tGPP with precipitation during the period from July to September

    表  1  2003—2011年长白山阔叶红松林观测站tNEPtGPP的值

    Table  1.   Values of tNEP and tGPP at flux site of Korean pine forest during 2003 and 2011

    因子Factor年份Year
    20032004200520062007200820092010
    tGPP21.8322.1822.5821.4222.1221.9921.7922.88
    tNEP21.8321.1621.3920.7421.9921.3120.5422.88
    注:tGPP,GPP的最适温;tNEP,NEP的最适温。Notes: tGPP, the optimum temperature of GPP;tNEP, the optimum temperature of NEP.
    下载: 导出CSV

    表  2  tNEPtGPP与气候变量之间回归分析的决定系数(R2)和P

    Table  2.   Coefficient of determination (R2) and P value of the regression analysis between tNEP and tGPP with climatic variables

    因子Factor年降水量MAP饱和蒸汽压差VPD光合有效辐射PAR年降水量,饱和蒸汽压差,光合有效辐射MAP, VPD, PAR
    R2P valueR2P valueR2P valueR2P value
    tGPP0.100.450.340.080.290.100.120.39
    tNEP0.230.110.070.500.27 0.080.070.40
    下载: 导出CSV
  • [1] Arkin P A, Smith T M, Sapiano M R P, et al. The observed sensitivity of the global hydrological cycle to changes in surface temperature[J]. Environmental Research Letters, 2010, 5(3): 533-534. doi: 10.1088/1748-9326/5/3/035201
    [2] Cox P M, Betts R, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184-187. doi: 10.1038/35041539
    [3] Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988. doi: 10.1126/science.1201609
    [4] 刘国华, 傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013

    Liu G H, Fu B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013
    [5] Maselli F, Papale D, Puletti N, et al. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems[J]. Remote Sensing of Environment, 2009, 113(3): 657-667. doi: 10.1016/j.rse.2008.11.008
    [6] Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329: 834-838. doi: 10.1126/science.1184984
    [7] Piao S L, Wang X H, Ciais P, et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 2011, 17(10): 3228-3239. doi: 10.1111/gcb.2011.17.issue-10
    [8] Musavi T, Migliavacca M, Reichstein M, et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity[J]. Nature Ecology & Evolution, 2017, 1(2): 48. https://www.nature.com/articles/s41559-016-0048
    [9] 常顺利, 杨洪晓, 葛剑平. 净生态系统生产力研究进展与问题[J]. 北京师范大学学报(自然科学版), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021

    Chang S L, Yang H X, Ge J P. Chang, S. Advance and questions in net ecosystem production[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021
    [10] Ryan M G. Effects of climate change on plant respiration[J]. Ecological Applications, 1991, 1(2): 157-167. doi: 10.2307/1941808
    [11] Weston D J, Bauerle W L. Inhibition and acclimation of C (3) photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer rubrum (red maple)[J]. Tree Physiology. 2007, 27(8): 1083-1092. doi: 10.1093/treephys/27.8.1083
    [12] Feller U, Craftsbrandner S J, Salvucci M E. Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco[J]. Plant Physiology, 1998, 116(2): 539-546. doi: 10.1104/pp.116.2.539
    [13] Salvucci M E, Craftsbrandner S J. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments[J]. Plant Physiology, 2004, 134(4): 1460-1470. doi: 10.1104/pp.103.038323
    [14] Scafaro A P, Xiang S, Long B M, et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered rubisco content[J]. Global Change Biology, 2016, 23(7): 2783-2800. doi: 10.1111/gcb.13566
    [15] Niu S L, Luo Y Q, Fei S F, et al. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes[J]. Global Change Biology, 2011, 17(10): 3102-3114. doi: 10.1111/gcb.2011.17.issue-10
    [16] Hüve K, Bichele I, Rasulov B, et al. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation[J]. Plant Cell & Environment, 2011, 34(1): 113-126.
    [17] O'Sullivan O S, Weerasinghe K W, Evans J R, et al. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function[J]. Plant Cell & Environment, 2013, 36(7): 1268-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ef4b8021fc1e94322e463098c57ba79
    [18] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101-117. doi: 10.1007/s11120-013-9874-6
    [19] Niu S L, Li Z X, Xia J Y, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental & Experimental Botany, 2008, 63(1): 91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dbae3afdb0ddda7fa99903b0e45bbe2
    [20] Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species[J]. Plant Cell & Environment, 2010, 30(9): 1176-1190. https://www.ncbi.nlm.nih.gov/pubmed/17661754/
    [21] Gunderson C A, O'Hara K H, Campion C M, et al. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate[J]. Global Change Biology, 2010, 16(8): 2272-2286.
    [22] Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis[J]. Plant Cell & Environment, 2007, 30(9): 1086-1106. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1056702
    [23] Falge E, Tenhunen J, Baldocchi D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements[J]. Agricultural & Forest Meteorology, 2002, 113(1): 75-95. https://www.sciencedirect.com/science/article/pii/S016819230200103X
    [24] Yuan W P, Luo Y Q, Liang S, et al. Thermal adaptation of net ecosystem exchange[J]. Biogeosciences Discussions, 2011, 8(6): 1109-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000642153
    [25] Niu S L, Luo Y Q, Fei S F, et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms[J]. New Phytologist, 2012, 194(3): 775-783. doi: 10.1111/j.1469-8137.2012.04095.x
    [26] 王叶, 延晓冬.全球气候变化对中国森林生态系统的影响[J].大气科学, 2006, 30(5): 1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27

    Wang Y, Yan X D. The response of the forest ecosystem in China to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27
    [27] 程肖侠, 延晓冬.气候变化对中国东北主要森林类型的影响[J].生态学报, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011

    Cheng X X, Yan X D. Effects of climate change on typical forest in the northeast of China[J]. Acta Ecologica Sinica, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011
    [28] Guan D X, Wu J B, Zhao X S, et al. Annual CO2 flux over old temperate mixed forest in north-eastern China[J]. Agricultural & Forest Meteorology, 2006, 137(3): 138-149. https://www.sciencedirect.com/science/article/pii/S0168192306000578
    [29] Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China[J]. Global Change Biology, 2010, 14(11): 2555-2571. doi: 10.1111/j.1365-2486.2008.01663.x
    [30] Zhang J H, Yu G R, Han S J, et al. Seasonal and annual variation of CO2, flux above a broad-leaved Korean pine mixed forest[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):63-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e045e68ad78e0943f0bda4da37a346eb
    [31] Baldocchi D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2015, 20(12): 3600-3609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5912c407e2bb3470bacdb644a99b67c
    [32] Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583. doi: 10.5194/bg-3-571-2006
    [33] Chu H S, Baldocchi D D, John R, et al. Fluxes all of the time: a primer on the temporal representativeness of FLUXNET[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(2): 289-307. doi: 10.1002/jgrg.v122.2
    [34] 于贵瑞, 张雷明, 孙晓敏.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005

    Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005
    [35] 郝占庆, 于德永, 杨晓明, 等.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报, 2002, 13(7): 785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005

    Hao Z Q, Yu D Y, Yang X M, et al. α diversity of communities and their variety along altitude gradient on northern slope of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2002, 13(7):785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005
    [36] 张雷明, 曹沛雨, 朱亚平, 等.长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子[J].植物生态学报, 2015, 39(12):1156-1165. doi: 10.17521/cjpe.2015.0112

    Zhang L M, Cao P Y, Zhu Y P, et al. Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest, Changbai Mountain[J]. Chinese Journal of Plant Ecology, 2015, 39(12): 1156-1165. doi: 10.17521/cjpe.2015.0112
    [37] 朱先进, 于贵瑞, 王秋凤, 等.仪器的加热效应校正对生态系统碳水通量估算的影响[J].生态学杂志, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037

    Zhu X J, Yu G R, Wang Q F, et al. Instrument heating correction effect on estimation of ecosystem carbon and water fluxes[J]. Chinese Journal of Ecology, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037
    [38] Kirschbaum M U F. Modelling forest growth and carbon storage in response to increasing CO2 and temperature[J]. Tellus, 2010, 51(5): 871-888. doi: 10.1034/j.1600-0889.1999.t01-4-00002.x
    [39] Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 2003, 8(7): 343-351. doi: 10.1016/S1360-1385(03)00136-5
    [40] Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219-231. doi: 10.1093/treephys/tpr141
    [41] Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404: 861. doi: 10.1038/35009084
    [42] Jarvi M P, Burton A J. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil[J]. Plant Cell & Environment, 2018, 41(3): 504-516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a66874337ad8952d7432177a9651b6e4
    [43] Wang X C, Wang C K, Yu G R. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements[J]. Science in China Series D: Earch Sciences, 2008, 51(8):1129-1143. doi: 10.1007/s11430-008-0087-3
    [44] Smith N G, Dukes J S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types[J]. Global Change Biology, 2017, 23(11): 4840-4853. doi: 10.1111/gcb.2017.23.issue-11
    [45] Booth B B B, Jones C D, Collins M, et al. High sensitivity of future global warming to land carbon cycle processes[J]. Environmental Research Letters, 2012, 7(2): 24002. doi: 10.1088/1748-9326/7/2/024002
    [46] Churkina G, Schimel D, Braswell B H, et al. Spatial analysis of growing season length control over net ecosystem exchange[J]. Global Change Biology, 2010, 11(10): 1777-1787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2deb78baeb285c3a6f31bc36ebcf52c
    [47] Baldocchi D, Falge E, Gu L, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(82): 2415-2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
    [48] Smith N G, Malyshev S L, Shevliakova E, et al. Foliar temperature acclimation reduces simulated carbon sensitivity to climate[J]. Nature Climate Change, 2016, 6(2): 219-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6822eb95fd49bc01c7da8b14bc77943
    [49] Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: decadal changes in solar radiation at earth's surface[J]. Science, 2005, 308: 847-850. doi: 10.1126/science.1103215
    [50] Rambal S, Ourcival J M, Joffre R, et al. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy[J]. Global Change Biology, 2010, 9(12): 1813-1824. doi: 10.1111/j.1365-2486.2003.00687.x
    [51] Ma S, Osuna J L, Verfaillie J, et al. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna[J]. Photosynthesis Research, 2017, 132(11): 1-15. doi: 10.1007%2Fs11120-017-0388-5
    [52] Zhang L M, Yu G R, Sun X M, et al. Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):47-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81396a44ad07b6a0582a64e3eba0082f
    [53] 吴玉莲, 王襄平, 李巧燕, 等.长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析[J].北京大学学报(自然科学版), 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021

    Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on BIOME-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1972
  • HTML全文浏览量:  322
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-13
  • 修回日期:  2018-11-05
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回