高级检索

    长白山阔叶红松林生态系统生产力与温度的关系

    Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China

    • 摘要:
      目的气候变暖背景下生态系统碳循环的温度敏感性研究是全球变化生态学的主要研究内容之一,森林生态系统生产力对温度的响应和适应机制是理解生态系统的温度敏感性的重要手段,长白山阔叶红松林作为典型的温带森林生态系统及重要的碳汇,研究其生产力对环境温度的响应,对提升中国森林植被碳循环模拟的准确性至关重要。
      方法本研究以长白山阔叶红松林为对象,收集长白山通量站2003—2011年共9年的观测数据,通过进行整合分析,量化了生态系统碳循环的3个关键过程:生态系统总初级生产力、净生态系统生产力和生态系统呼吸的温度响应曲线,并进一步分析环境因子对其最适温的影响。
      结果研究发现总初级生产力、净生态系统生产力的温度响应均表现为一条峰值曲线,并存在最适温,GPP的最适温(tGPP)与NEP的最适温(tNEP)存在显著线性正相关关系。在年际尺度上,一年中最高空气温度的改变是引起tGPPtNEP变化的主要因素,而年均温和夏季温度对tGPPtNEP的变化没有显著影响。当最高温度升高1 ℃时,tGPPtNEP分别增加0.41和0.66 ℃。降水、光和有效辐射、饱和蒸汽压差等环境因子对tGPPtNEP无显著影响,但夏季降水能够降低温度对tGPP的影响。
      结论通过上述研究说明,生态系统的初级生产力及净生产力存在温度适应现象,当研究碳循环与气候变化相互作用的模型时需要充分考虑生态系统生产力的温度适应,从而更加准确地预测碳循环对气候变暖的响应和反馈。

       

      Abstract:
      ObjectiveStudying the temperature sensitivity of ecosystem carbon cycle in the climate change scenario is one of the major subjects of global change ecology, which demands the incorporation of temperature acclimation of ecosystem productivity. Exploring the response of productivity to ambient temperature in the broadleaved Korean pine forest, a typical temperate forest ecosystem and an important carbon sink, is helpful for better understanding the fundamental processes of ecosystems in a changing environment, which will promote the accuracy of carbon cycle simulation of forest vegetation in China.
      MethodIn this study, we investigated the temperature response of gross primary productivity, net ecosystem productivity and ecosystem respiration using flux data of a Korean pine forest in northeastern China from 2003 to 2011, and further explored the influence of environmental factors on the above three carbon processes.
      ResultThe results suggested that both the temperature responses of gross primary productivity and net ecosystem productivity were one-peaked curves with their optimum temperatures (tGPP and tNEP) positively correlated with the maximum temperature in a year. For 1 ℃ increase in the maximum temperature, tGPP and tNEP increased by 0.41 ℃ and 0.66 ℃ in the interannual scale, respectively. Environmental factors such as annual precipitation, photosynthetically active radiation, and vapor pressure deficit had no significant effect on tGPP and tNEP, while summer precipitation might have the ability to mediate the effects of tGPP caused by the rising temperature.
      ConclusionTherefore, there was a thermal acclimation of photosynthesis at the ecosystem-level. Previous models might exaggerate the impact of climate change on carbon fluxes if ignoring the influence of photosynthesis thermal acclimation.

       

    /

    返回文章
    返回