Characteristics of nitrogen mineralization in soils under different forest types in cold-temperate forest region
-
摘要:目的研究不同林型不同海拔下森林土壤凋落物层和表层矿质土壤中氮矿化特征及与培养时间、土壤理化性质的关系,以了解森林土壤中针阔叶林下氮的矿化潜能,为充分地理解森林土壤氮循环提供参考。方法采用实验室好气培养法,以我国寒温带林区大兴安岭的偃松林、杜鹃−白桦林、杜鹃−落叶松林、杜香−落叶松林下漂灰土和棕色针叶林土的凋落物层及表层矿质土壤为研究对象,按培养时间测定其中的铵态氮、硝态氮含量及全氮、有机质、有机碳、含水量、pH、土壤机械组成等理化性质,研究4种林型下土壤中氮矿化与培养时间、海拔的关系,并通过主成分分析探讨氮矿化的潜在驱动因素。结果4种林型下,凋落物层中氮矿化以氨化作用占优势,表层矿质土壤中以硝化作用占优势。随培养时间的延长,凋落物层的矿化氮含量呈现先增后减的趋势,而表层矿质土壤中矿化氮含量呈现先减后增的趋势,培养初期有明显的矿化滞后期。pH对表层矿质土壤氮矿化产生了直接影响,而有机质、有机碳、全氮、土壤机械组成是土壤氮矿化过程中潜在的主要驱动因子。结论寒温带林区不同林型下凋落物层和表层矿质土壤中的氮矿化特征,因培养时间的差异导致氮矿化的趋势差异,两个层次均表现为随着海拔的升高,氮矿化量减少。通过比较分析,能够深入地认识寒温带林区森林土壤氮矿化潜力的变化趋势,研究结果为进一步理解森林土壤氮循环提供科学依据。Abstract:ObjectiveThe relationship between nitrogen mineralization in forest soil litter layer (O layer) and surface mineral soil (A layer) under different altitudes of different forest types and soil physical and chemical properties was studied in order to better understand the mineralization potential law of nitrogen under different forest types in the northern forest soil, and to understand the nitrogen cycle of forest soil more fully.MethodThe method of laboratory aerobic culture was used to study the litter layer and surface soil layer of Pinus pumila forest, Rhododendron dauricum-Betula platyphylla forest, Rhododendron dauricum-Larix dahurica forest, Ledum palustre-Larix dahurica forest, brown coniferous forest soils and bleached podzolic soils in Huzhong Nature Reserve in Daxing’an Mountains’ cold-temperate forest area of China. The physicochemical properties of ammonium nitrogen, nitrate nitrogen, total nitrogen, organic matters, organic carbon, water content, pH and soil mechanical composition were measured at the time of culture, and the relationship between nitrogen mineralization and incubation time and altitude in the soil under 4 forest types was studied, and the regularity of nitrogen mineralization was discussed by principal component analysis to find potential driving factors.ResultAmmonification is dominant in the 4 types of forest litter, and nitrification is dominant in the surface mineral soil. The mineralized nitrogen content in the litter layer increases first and then decreases with the prolongation of the culture time. The mineralized nitrogen content in the surface mineral soil decreases first and then increases with the prolongation of the culture time, and there is an obvious late period of mineralization in the early stage of culture. The amount of nitrogen mineralization decreased with the elevation rises. pH and environmental factors (water content) have a direct impact on nitrogen mineralization in surface soil, and organic matters, organic carbon, total nitrogen and soil mechanical composition are the main driving factors in the process of soil nitrogen mineralization.ConclusionNitrogen mineralization characteristics in litter layer and surface mineral soil of different forest types in cold temperate forest areas lead to different trends of nitrogen mineralization due to the difference of cultivation time. Both levels show that with the increase of altitude, the amount of nitrogen mineralization decreases. Through comparative analysis, the changing trend of nitrogen mineralization potential of forest soil in cold temperate forest region can be deeply understood. The results provide scientific basis for further understanding of nitrogen cycle in forest soil.
-
-
图 1 4种林型O层和A层铵态氮含量变化
O层中杜香−落叶松林相关系数:R2 = 0.930 9,P < 0.01;杜鹃−落叶松林相关系数:R2 = 0.922 3,P < 0.05;杜鹃−白桦林相关系数:R2 = 0.926 3,P < 0.01;偃松林相关系数:R2 = 0.967 6,P < 0.01。A层中杜香−落叶松林相关系数:R2 = 0.937 7,P < 0.01;杜鹃−落叶松林相关系数:R2 = 0.944 8,P < 0.01;杜鹃−白桦林相关系数:R2 = 0.942 8,P < 0.01;偃松林相关系数:R2 = 0.996 7,P < 0.01。Correlation coefficient of Ledum palustre-Larix dahurica forest, R2 = 0.930 9,P < 0.01; correlation coefficient of Rhododendron dauricum-Larix dahurica forest, R2 = 0.922 3,P < 0.05; correlation coefficient of Rhododendron dauricum-Betula platyphylla forest, R2 = 0.926 3,P < 0.01; correlation coefficient of Pinus pumila forest, R2 = 0.967 6,P < 0.01 in surface soil layer. Correlation coefficient of Ledum palustre-Larix dahurica forest, R2 = 0.937 7,P < 0.01; correlation coefficient of Rhododendron dauricum-Larix dahurica forest, R2 = 0.944 8,P < 0.01; correlation coefficient of Rhododendron dauricum-Betula platyphylla forest, R2 = 0.942 8,P < 0.01; correlation coefficient of Pinus pumila forest, R2 = 0.996 7,P < 0.01.
Figure 1.
NH+4 change in 4 forest litter layers and surface mineral soils图 3 4种林型O层和A层硝态氮含量变化
O层中杜香−落叶松林相关系数:R2 = 0.969 6,P < 0.01;杜鹃−落叶松林相关系数:R2 = 0.990 5,P < 0.01;杜鹃−白桦林相关系数:R2 = 0.991 2,P < 0.01;偃松林相关系数:R2 = 0.990 7,P < 0.01。A层中杜香−落叶松林相关系数:R2 = 0.988 5,P < 0.01;杜鹃−落叶松林相关系数:R2 = 0.991 6,P < 0.01;杜鹃−白桦林相关系数:R2 = 0.973 6,P < 0.01;偃松林相关系数:R2 = 0.995 8,P < 0.01。Correlation coefficient of Ledum palustre-Larix dahurica, R2 = 0.969 6,P < 0.01; correlation coefficient of Rhododendron dauricum-Larix dahurica forest, R2 = 0.990 5,P < 0.01; correlation coefficient of Rhododendron dauricum-Betula platyphylla forest, R2 = 0.991 2,P < 0.01; correlation coefficient of Pinus pumila forest, R2 = 0.990 7,P < 0.01 in surface soil layer. Correlation coefficient of Ledum palustre-Larix dahurica forest, R2 = 0.988 5,P < 0.01; correlation coefficient of Rhododendron dauricum-Larix dahurica forest, R2 = 0.991 6,P < 0.01; correlation coefficient of Rhododendron dauricum-Betula platyphylla forest, R2 = 0.973 6,P < 0.01; correlation coefficient of Pinus pumila forest, R2 = 0.995 8,P < 0.01.
Figure 3.
NO−3 change in 4 forest litter layers and surface soil layers图 5 4种林型O层和A层净矿化氮的含量变化
O层中杜香−落叶松林相关系数R2 = 0.943 5,P < 0.01;杜鹃−落叶松林相关系数R2 = 0.937 1,P < 0.01;杜鹃−白桦林相关系数R2 = 0.967 2,P < 0.01;偃松林相关系数R2 = 0.984 7,P < 0.01。A层中杜香−落叶松林相关系数R2 = 0.979 9,P < 0.01;杜鹃−落叶松林相关系数R2 = 0.978 5,P < 0.01;杜鹃−白桦林相关系数R2 = 0.970 3,P < 0.01;偃松林相关系数R2 = 0.991 6,P < 0.01。Correlation coefficient of Ledum palustre-Larix dahurica, R2 = 0.943 5,P < 0.01; correlation coefficient of Rhododendron dauricum-Larix dahurica forest, R2 = 0.937 1,P < 0.01; correlation coefficient of Rhododendron dauricum-Betula platyphylla forest, R2 = 0.967 2,P < 0.01; correlation coefficient of Pinus pumila forest, R2 = 0.984 7,P < 0.01 in surface soil layer. Correlation coefficient of Ledum palustre-Larix dahurica forest, R2 = 0.979 9,P < 0.01; correlation coefficient of Rhododendron dauricum -Larix dahurica forest, R2 = 0.978 5,P < 0.01; correlation coefficient of Rhododendron dauricum-Betula platyphylla forest, R2 = 0.970 3,P < 0.01; correlation coefficient of Pinus pumila forest, R2 = 0.991 6,P < 0.01.
Figure 5. Net mineralized N change in litter layers and surface soil layers
表 1 林地基本情况
Table 1 Basic information of the sample plots
林分类型 Stand type 海拔 Elevation/m 林下土壤类型 Soil type 林龄 Stand age 主要树种 Dominant tree species 偃松林
Pinus pumila forest850 ~ 1 100 漂灰土Bleached podzolic soils 90 ~ 120 a,
原始林
Primary forest偃松 Pinus pumila 杜鹃−白桦林
Rhododendron dauricum-
Betula platyphylla forest680 ~ 760 典型棕色针叶林土
Brown coniferous forest soils30 ~ 40 a,
次生林
Secondary forest兴安杜鹃、细叶杜香 、越橘 、绣线菊 Rhododendron dauricum, Ledum palustre, Vaccinium vitis-idaea, Spiraea salicifolia 杜鹃−落叶松林
Rhododendron dauricum-
Larix dahurica forest620 ~ 700 典型棕色针叶林土
Brown coniferous forest soils90 ~ 120 a,
原始林
Primary forest兴安杜鹃、细叶杜香 、越橘、东北赤杨 Rhododendron dauricum, Ledum palustre, Vaccinium vitis-idaea, Alnus mandshurica 杜香−落叶松林
Ledum palustre-Larix dahurica forest400 ~ 600 表潜棕色针叶林土
Surface-gleyed brown coniferous forest soils90 ~ 120 a,
原始林
Primary forest细叶杜香、笃斯越橘、地衣 、泥炭藓 Ledum palustre, Vaccinium uliginosum, lichen, sphagnum 表 2 主成分分析方案
Table 2 Solution of principal component (PC) analysis
变量
Variable公因子方差
Communalities主成分1
PC 1主成分2
PC 2主成分3
PC 3pH 0.929 0.746 含水量 Water content (WC) 0.857 0.934 铵态氮 NH+4 0.893 0.962 硝态氮 NO−3 0.896 0.934 有机质 Organic matter (OM) 0.877 1.032 有机碳 Organic carbon (OC) 0.886 0.750 全氮 Total N (TN) 0.956 0.848 砂粒 Gravel (GR) 0.854 − 0.703 粉粒 Silt (SI) 0.854 − 0.986 黏粒 Clay particle (CP) 0.977 0.882 -
[1] 窦华亭, 张福锁, 刘全清. 土壤中有机态氮对作物的有效性及其在推荐施肥中的作用[J]. 北京农业大学学报, 1993, 19(3):71−78. Dou H T, Zhang F S, Liu Q Q. Availability of soil organic nitrogen and its importance in the fertilization[J]. Journal of China Agricultural University, 1993, 19(3): 71−78.
[2] Jin L L, Fu Z W, Wan Q Y, et al. Effect of seasonal freeze–thaw cycle on net nitrogen mineralization of soil organic layer in the subalpine/alpine forests of western Sichuan, China[J]. Acta Ecologica Sinica, 2013, 33(1): 32−37. doi: 10.1016/j.chnaes.2012.12.005
[3] 李铭, 朱立川, 张全发, 等. 不同土地利用类型对丹江口库区土壤氮矿化的影响[J]. 植物生态学报, 2012, 36(6):530−538. Li M, Zhu L C, Zhang Q F, et al. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China[J]. Acta Phytoecologica Sinica, 2012, 36(6): 530−538.
[4] 田红灯, 田大伦, 闫文德, 等. 贵阳市4种森林类型土壤氮矿化的研究[J]. 中南林业科技大学学报, 2012, 32(11):100−104. Tian H D, Tian D L, Yan W D, et al. Study of soil nitrogen mineralization in different forests in Guiyang city[J]. Journal of Central South University of Forestry and Technology, 2012, 32(11): 100−104.
[5] Owen J S, Villar M C. Net mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan[J]. Forest Ecology and Management, 2003, 176(1−3): 519−530. doi: 10.1016/S0378-1127(02)00225-6
[6] Yang J Y, Fan J. Review of study on mineralization, saturation and cycle of nitrogen in forest ecosystems[J]. Journal of Forestry Research, 2003, 14(3): 239−243, 265. doi: 10.1007/BF02856838
[7] 王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净矿化氮的影响[J]. 生态学报, 2004, 24(11):2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018 Wang C H, Xing X R, Han X G. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China[J]. Acta Ecologica Sinica, 2004, 24(11): 2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018
[8] Zaman M, Chang S X. Substrate type, temperature and moisture content affect gross and net N mineralization and nitrification rates in agro forest systems[J]. Biology and Fertile of Soils, 2004, 39(4): 269−279. doi: 10.1007/s00374-003-0716-0
[9] Thomsen I K, Olesen J E, Schjonning P, et al. Net mineralization of soil N and 15 N-ryegrass residues in differently textured soils of similar mineralogical composition[J]. Soil Biology and Biochemistry, 2001, 33(3): 277−285. doi: 10.1016/S0038-0717(00)00138-3
[10] 武启骞, 王传宽. 季节性雪被变化对森林凋落物分解及土壤氮动态的影响[J]. 应用生态学报, 2018, 29(7):2422−2432. Wu Q Q, Wang C K. Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2422−2432.
[11] Nele A, Steven S, Das K C, et al. Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties[J]. GCB Bioenergy, 2015, 7(1): 135−144. doi: 10.1111/gcbb.2014.7.issue-1
[12] Weintraub M N, Schimel J P. Interaction between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils[J]. Ecosystem, 2003, 6: 129−143. doi: 10.1007/s10021-002-0124-6
[13] Bonito G M, Coleman D C, Hainess B L, et al. Can nitrogen budgets explain difference in soil nitrogen mineralization rates of forest stands along an elevation gradient[J]. Forest Ecology and Management, 2003, 176: 563−574. doi: 10.1016/S0378-1127(02)00234-7
[14] 王学霞, 董世魁, 高清竹, 等. 青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究[J]. 草业学报, 2018, 27(6):1−9. Wang X X, Dong S K, Gao Q Z, et al. The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Platea[J]. Acta Prataculturae Sinica, 2018, 27(6): 1−9.
[15] 颜燕燕, 林啸. 河口湿地土壤氮矿化速率的干土效应响应[J]. 安徽农业科学, 2018, 46(2):100−104, 111. doi: 10.3969/j.issn.0517-6611.2018.02.029 Yan Y Y, Lin X. Response of soil nitrogen mineralization characteristics to dry soil effect in Min River estuary[J]. Anhui Agriculture University, 2018, 46(2): 100−104, 111. doi: 10.3969/j.issn.0517-6611.2018.02.029
[16] 续勇波, 蔡祖聪. 热带亚热带土壤氮素反硝化研究进展[J]. 生态环境学报, 2014, 23(9):1557−1566. doi: 10.3969/j.issn.1674-5906.2014.09.025 Xu Y B, Cai Z C. Progresses in research on denitrification in tropical and subtropical soils of terrestrial ecosystems[J]. Journal of Ecological Environment, 2014, 23(9): 1557−1566. doi: 10.3969/j.issn.1674-5906.2014.09.025
[17] 鲁如坤主编. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K. Soil agrochemical analysis method [M]. Beijing: China Agricultural Science and Technology Press, 2000.
[18] Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated produce[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167−1169. doi: 10.1016/0038-0717(90)90046-3
[19] 石冰洁. 旱作农田地表覆盖对土壤氮素矿化及玉米产量的影响[D]. 杨凌: 西北农林科技大学, 2017. Shi B J. Effect of surface mulching on soil nitrogen mineralization and yield in dry farm [D]. Yangling: Northwest Agriculture and Forestry University, 2017.
[20] 高雷, 崔晓阳, 郭亚芬, 等. 小兴安岭地区典型红松林下不同形态土壤氮的动态变化[J]. 北京林业大学学报, 2017, 39(12):52−60. Gao L, Cui X Y, Guo Y F, et al. Dynamic changes of multi-form nitrogen in typical Pinus Koraiensis forest of Xiaoxing ’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 52−60.
[21] 田冬, 高明, 徐畅. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报, 2016, 30(1):255−261. Tian D, Gao M, Xu C. Effect of soil moisture addition on nitrogen mineralization and soil pH in purple soil of three different textures[J]. Journal of Soil and Water Conservation, 2016, 30(1): 255−261.
[22] 章家恩, 刘文高, 胡刚. 不同土地利用方式下土壤微生物数量与土壤肥力的关系[J]. 土壤与环境, 2002(2):140−143. doi: 10.3969/j.issn.1674-5906.2002.02.008 Zhang J E, Liu W G, Hu G. The relationship between soil microbial biomass and soil fertility under different land use patterns[J]. Soil and Environment, 2002(2): 140−143. doi: 10.3969/j.issn.1674-5906.2002.02.008
[23] Yvonne O, Nina B, Gerd G, et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment[J/OL]. Global Biogeochemical Cycles, 2011, 25(2) [2018−03−25]. http://kns.cnki.net/kns/detail/detail.aspx?FileName=SPQD00004403131&DbName=SPQD_U.
[24] 王星, 崔晓阳, 郭亚芬. 寒温带林区不同林型土壤中游离氨基酸的研究[J]. 南京林业大学学报(自然科学版), 2016, 40(4):42−48. Wang X, Cui X Y, Guo Y F. Free amino acid of different forest types in cold-temperate forest soil[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(4): 42−48.
[25] Kraus T E C, Yu Z, Preston C M, et al. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins[J]. Journal of Chemical Ecology, 2003, 29(3): 703−730. doi: 10.1023/A:1022876804925
[26] 赵志宏. 季节性冻融循环对五台山典型植被土壤氮矿化的影响[D]. 太原: 太原理工大学, 2017. Zhao Z H, Effects of seasonal freezing- thawing cycles on soil nitrogen mineralization in typical vegetations of Wu Tai mountains [D]. Taiyuan: Taiyuan University of Technology, 2017.
[27] 傅民杰. 东北典型温带森林生态系统氮素转化释放过程的研究[D]. 哈尔滨: 东北林业大学, 2009. Fu M J. Nitrogen transformation and release in typical temperate forest ecosystems in Northeast China [D]. Harbin: Northeast Forestry University, 2009.
[28] 赵文君, 崔迎春, 吴鹏, 等. 喀斯特原生乔木林和次生林土壤氮矿化特征[J]. 南京林业大学学报(自然科学版), 2017, 41(5):13−17. Zhao W J, Cui Y C, Wu P, et al. Characteristics of soil nitrogen mineralization in a Karst forest and a secondary forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 13−17.
[29] 刘东. 杨树基因型及混交模式对根际土壤养分和微生物学特征的影响[D]. 南京: 南京林业大学, 2013. Liu D. Effects of poplar genetypes and free species compositions on soil microbial properties and nutrient condition in the rhizosphere [D]. Nanjing: Nanjing Forestry University, 2013.
[30] 王峰, 陈玉真, 尤志明, 等. 不同施氮量对两种茶园土壤硝化作用和pH值的影响[J]. 茶叶科学, 2015, 35(1):82−90. doi: 10.3969/j.issn.1000-369X.2015.01.016 Wang F, Chen Y Z, You Z M, et al. Effects of different nitrogen application rates on nitrification and pH of two tea garden soil[J]. Tea Science, 2015, 35(1): 82−90. doi: 10.3969/j.issn.1000-369X.2015.01.016
[31] 殷睿, 徐振锋, 吴福忠, 等. 川西亚高山不同海拔森林土壤活性氮库及净氮矿化的季节动态[J]. 应用生态学报, 2013, 24(12):3347−3353. Yin R, Xu Z F, Wu F Z, et al. Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3347−3353.
-
期刊类型引用(6)
1. 于子涵,郑子成,王永东,李廷轩. 川西低山丘陵区植茶土壤团聚体矿质氮分布特征. 水土保持学报. 2022(01): 263-267 . 百度学术
2. 石新竹,魏建兵,刘景琦,吴尚遇. 基于质量平衡方程的浑河上游清原流域氮素时空变化. 安徽农业科学. 2022(09): 72-77 . 百度学术
3. 张宏伟,崔晓阳,郭亚芬. 寒温带林区不同林型土壤酶活性和微生物生物量的变化特征. 东北林业大学学报. 2021(08): 64-69 . 百度学术
4. 左倩倩,王邵军,王平,曹乾斌,赵爽,杨波. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响. 生态学报. 2021(18): 7339-7347 . 百度学术
5. 冯奥哲,孔涛,孙溥璠,刘紫薇,任曦玥,郑爽. 沙地不同密度樟子松人工林土壤矿化氮质量分数与矿化特征. 东北林业大学学报. 2021(10): 96-103 . 百度学术
6. 王世佳,郭亚芬,崔晓阳. 寒温带林区不同林型下冻融土壤活性有机碳的变化. 北京林业大学学报. 2021(12): 65-72 . 本站查看
其他类型引用(6)