高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素基聚电解质薄膜的制备及其力学性能

苏玲 庞久寅 任世学 李淑君 姜贵全

苏玲, 庞久寅, 任世学, 李淑君, 姜贵全. 木质素基聚电解质薄膜的制备及其力学性能[J]. 北京林业大学学报, 2019, 41(2): 125-133. doi: 10.13332/j.1000-1522.20180281
引用本文: 苏玲, 庞久寅, 任世学, 李淑君, 姜贵全. 木质素基聚电解质薄膜的制备及其力学性能[J]. 北京林业大学学报, 2019, 41(2): 125-133. doi: 10.13332/j.1000-1522.20180281
Su Ling, Pang Jiuyin, Ren Shixue, Li Shujun, Jiang Guiquan. Preparation of lignin-based polyelectrolyte film and its mechanical properties[J]. Journal of Beijing Forestry University, 2019, 41(2): 125-133. doi: 10.13332/j.1000-1522.20180281
Citation: Su Ling, Pang Jiuyin, Ren Shixue, Li Shujun, Jiang Guiquan. Preparation of lignin-based polyelectrolyte film and its mechanical properties[J]. Journal of Beijing Forestry University, 2019, 41(2): 125-133. doi: 10.13332/j.1000-1522.20180281

木质素基聚电解质薄膜的制备及其力学性能

doi: 10.13332/j.1000-1522.20180281
基金项目: 

国家自然科学基金项目 31800480

北华大学博士启动基金项目 202117085

吉林省科技厅项目 20170203001SF

吉林省林业厅 JLT[2017]14号

吉林省教育厅项目 JJKH20170045KJ

详细信息
    作者简介:

    苏玲,博士,讲师。主要研究方向:纤维化学、生物质复合材料。Email:sulingling2007@163.com 地址: 132013吉林省吉林市丰满区滨江东路3999号北华大学材料科学与工程学院

    责任作者:

    姜贵全,博士,教授。主要研究方向:植物多酚化学。Email:jiangguiquan11@163.com 地址:同上

  • 中图分类号: TS201

Preparation of lignin-based polyelectrolyte film and its mechanical properties

  • 摘要: 目的对工业废弃碱木质素改性制备阳离子木质素聚电解质,将其与聚乙烯醇改性产物羧甲基化聚乙烯醇复合制备聚电解质复合薄膜。分析不同因素对聚电解质薄膜力学性能的影响,并对薄膜结构、热稳定性等进行表征,为木质素基聚电解质在缓释、地膜、包装方面的应用提供理论依据。方法首先对木质素和聚乙烯醇分别进行季铵化和羧甲基化改性,制备阴、阳离子聚电解质。以甲醛为交联剂,聚乙烯醇为成膜剂,采用流延法制备三甲基木质素季铵盐/羧甲基化聚乙烯醇(TLQA/CMPVA)反应薄膜,通过红外光谱、扫描电镜、热重分析等对聚电解质薄膜结构、形貌、热性能进行表征。结果木质素季铵盐中季铵根离子质量摩尔浓度为1.81 mmol/g,羧甲基化聚乙烯醇中羧酸根离子为0.62 mmol/g。制备具有较佳力学性能的聚电解质薄膜的条件为:TLQA/CMPVA反应薄膜的固含量为10%,固含中聚乙烯醇(PVA)质量分数为30%,三甲基木质素季铵盐(TLQA)和羧甲基化聚乙烯醇(CMPVA)(质量比为3:7)的质量分数为70%,甲醛加入质量分数为3.88%,溶液pH值为9。所制备聚电解质反应薄膜的最佳断裂伸长率为222.13%,拉伸强度为6.80 MPa。聚电解质反应薄膜的平面较光滑,断面不平整,聚电解质共混薄膜平面粗糙。聚电解质反应薄膜分子结构中有醚键形成;聚电解质反应薄膜的热稳定性大于聚电解质共混薄膜的热稳定性。结论木质素和聚乙烯醇改性后,通过加入成膜剂聚乙烯醇、交联剂甲醛,聚电解质薄膜热稳定性得到提高,可获得具有较好力学性能和缓释性能的TLQA/CMPVA聚电解质反应薄膜。

     

  • 图  1  TLQA的合成

    Figure  1.  Formation mode of TLQA

    图  2  CMPVA的合成

    Figure  2.  Formation mode of CMPVA

    图  3  TLQA与CMPVA质量比对薄膜力学性能的影响

    Figure  3.  Effects of mass ratio of TLQA to CMPVA on mechanical properties of films

    图  4  甲醛加入质量分数对薄膜力学性能的影响

    Figure  4.  Effects of formaldehyde mass fraction on tensile properties of films

    图  5  pH值对薄膜力学性能的影响

    Figure  5.  Effects of pH value on mechanical properties of films

    图  6  TLQA、CMPVA反应薄膜、TLQA/CMPVA共混薄膜和TLQA/CMPVA反应薄膜红外光谱图

    Figure  6.  FTIR spectra of TLQA, CMPVA reaction film, TLQA/CMPVA blend film and TLQA/CMPVA reaction film

    图  7  CMPVA薄膜、TLQA/CMPVA共混薄膜和TLQA/CMPVA反应薄膜扫描电镜图(×1 000)

    Figure  7.  SEM pictures of CMPVA film, TLQA/CMPVA blend film and TLQA/CMPVA reaction film (×1 000)

    图  8  木质素、TLQA、PVA、CMPVA和TLQA/CMPVA薄膜的TG-DTG曲线

    Figure  8.  TG-DTG curves for lignin, TLQA, PVA, CMPVA and TLQA/CMPVA film

    图  9  薄膜中元素Fe(Ⅲ)的缓释对比

    Figure  9.  Slow release of Fe(Ⅲ) in films

    表  1  不同物质不同阶段的降解

    Table  1.   Degradation of different materials at different stages

    物质
    Material
    第一阶段
    First stage
    第二阶段
    Second stage
    第三阶段
    Third stage
    第四阶段
    Fourth stage
    Tonset Tmax Tonset Tmax Tonset Tmax Tonset Tmax
    PVA 64.7 159.7 249.7 347.3 412.2
    CMPVA 50.2 88.4 197.2 257.2 387.2 424.7
    木质素Lignin 50.2 78.6 191.5 307.8
    TLQA 50.2 90.6 133.9 253.8
    TLQA/CMPVA共混薄膜TLQA/CMPVA blend film 58.0 95.5 173.2 237.8 250.7 284.2
    TLQA/CMPVA反应薄膜TLQA/CMPVA reaction film 64.7 98.0 173.9 244.3 251.6 289.1
    注:Tonset起始降解温度,Tmax最大降解速率温度。Notes: Tonset means initial degradation temperature, Tmax means the temperature at maximum degradation rate.
    下载: 导出CSV
  • [1] Lankalapalli S, Kolapalli V R M. Polyelectrolyte complexes: a review of their applicability in drug delivery technology[J]. Indian Journal of Pharmaceutical Sciences, 2009, 71(5): 481-487. doi: 10.4103/0250-474X.58165
    [2] Hamman J H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems[J]. Marine Drugs, 2010, 8(4): 1305-1322. doi: 10.3390/md8041305
    [3] Ma Y L, Dai J X, Wu L L, et al. Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin[J]. Polymer, 2017, 114: 113-121. doi: 10.1016/j.polymer.2017.02.083
    [4] Cooper C L, Dubin P L, Kayitmazer A B, et al. Polyelectrolyte-protein complexes[J]. Current Opinion in Colloid & Interface Science, 2005, 10(1/2): 52-78. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028707427/
    [5] Dobrynin A V, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces[J]. Progress in Polymer Science, 2005, 30(11): 1049-1118. doi: 10.1016/j.progpolymsci.2005.07.006
    [6] Ortiz J A, Matsuhiro B, Zapata P A. Preparation and characterization of maleoylagarose/pnipaam graft copolymers and formation of polyelectrolyte complexes with chitosan[J]. Carbohydrate Polymers, 2018, 182: 81-91. doi: 10.1016/j.carbpol.2017.11.012
    [7] 吴庆喜.聚合电解质复合物用于结肠给药缓控释微胶囊的制备与性能研究[D].杭州: 浙江大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014226111.htm

    Wu Q X. Preparation of controlled release microcapsules for colon drug delivery based on polyelectrolyte complexes[D]. Hangzhou: Zhejiang University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014226111.htm
    [8] 王晓静.层层自组装壳聚糖/木质素磺酸钠微胶囊的制备及性能研究[D].北京: 北京化工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013274055.htm

    Wang X J. Preparation and properties of chitosan/sodium lignosulfonate microcapsules formulated by layer-by-layer self-assembly[D]. Beijing: Beijing University of Chemical Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013274055.htm
    [9] Zhang Q, Wang D, Bei Y, et al. Flocculation performance of trimethyl quaternary ammonium salt of lignin-sodium alginate polyampholyte[J]. Bioresources, 2013, 8(3): 3544-3555. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gncl201421016
    [10] 方桂珍, 何伟华, 宋湛谦.阳离子絮凝剂木质素季胺盐的合成与脱色性能研究[J].林产化学与工业, 2003, 23(2): 37-41. doi: 10.3321/j.issn:0253-2417.2003.02.009

    Fang G Z, He W H, Song Z Q. Synthesis and performance of quaternary ammonium salt of lignin as cationic flocculant[J]. Chemistry and Industry of Forest Products, 2003, 23(2): 37-41. doi: 10.3321/j.issn:0253-2417.2003.02.009
    [11] Liong M, Shao H L, Haun J B, et al. Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications[J]. Advanced Materials, 2010, 22(45): 5168-5172. doi: 10.1002/adma.201002219
    [12] Su L, Zhang S M, Jiang G Q, et al. Layer-by-layer self-assembly of a lignin-poly (vinyl alcohol) based polyelectrolyte with a conductivity method[J]. Journal of Applied Polymer Science, 2017, 134(9): 44416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2b716f92b76e77915282d10cb0ea5e2
    [13] Zhang H Y, Li X Y, Wang X G. Nanomechanical properties of polyaniline and azo polyelectrolyte multilayer films[J]. Chinese Journal of Polymer Science, 2010, 28(2): 269-275. doi: 10.1007/s10118-010-9066-1
    [14] Sakloetsakun D, Preechagoon D, Bernkop-Schnurch A, et al. Chitosan-gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties[J]. Pharmaceutical Development and Technology, 2016, 21(5): 590-599. http://www.ncbi.nlm.nih.gov/pubmed/25886079
    [15] Su L, Fang G Z. Tensile properties of alkaline lignin-poly vinyl alcohol film with formaldehyde crosslinker[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 281-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201423036
    [16] Yu C S, Li B. Preparation and characterization of carboxymethyl polyvinyl alcohol-graphite nanosheet composites[J]. Polymer Composites, 2008, 29(9): 998-1005. doi: 10.1002/pc.v29:9
    [17] 焉学佳, 邓永红, 王晓工.一种偶氮聚电解质在不同pH值条件下的静电逐层自组装研究[J].高分子学报, 2007(5): 440-445. doi: 10.3321/j.issn:1000-3304.2007.05.007

    Yan X J, Deng Y H, Wang X G. pH effect on electrostatic layer-by-layer self-assembly of a side-chain azo polyelectrolyte[J]. Acta Polymerica Sinica, 2007(5): 440-445. doi: 10.3321/j.issn:1000-3304.2007.05.007
    [18] Yan J K, Ma H L, Cai P F, et al. Structural characteristics and antioxidant activities of different families of 4-acetamido-tempo-oxidised curdlan[J]. Food Chemistry, 2014, 143: 530-535. doi: 10.1016/j.foodchem.2013.07.129
    [19] Matsumura K, Nakajima N, Sugai H, et al. Self-degradation of tissue adhesive based on oxidized dextran and poly-l-lysine[J]. Carbohydrate Polymers, 2014, 113: 32-38. doi: 10.1016/j.carbpol.2014.06.073
    [20] 金晓晓, 王江涛, 白洁.壳聚糖与柠檬醛缩合反应产席夫碱及其抗菌活性[J].化工进展, 2009, 28(11): 2014-2018. http://d.old.wanfangdata.com.cn/Periodical/hgjz200911026

    Jin X X, Wang J T, Bai J. Synthesis and antibacterial activity of schiff base from chitosan and citral[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 2014-2018. http://d.old.wanfangdata.com.cn/Periodical/hgjz200911026
    [21] 张伟, 马玉峰, 王春鹏, 等.木质素活化改性制备酚醛树脂胶黏剂研究进展[J].高分子通报, 2012(10): 13-20. http://d.old.wanfangdata.com.cn/Periodical/gfztb201210003

    Zhang W, Ma Y F, Wang C P, et al. The progress in study of phenolic resin adhesive modified by lignin[J]. Polymer Bulletin, 2012(10): 13-20. http://d.old.wanfangdata.com.cn/Periodical/gfztb201210003
    [22] Singh R, Prakash A, Dhiman S K, et al. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers[J]. Bioresource Technology, 2014, 165: 319-322. doi: 10.1016/j.biortech.2014.02.076
    [23] 孟平蕊, 李良波, 荣凤玲, 等.新型聚阴离子电解质膜材料羧甲基化PVA的合成表征及性能[J].功能材料, 2006, 37(10): 1566-1568. doi: 10.3321/j.issn:1001-9731.2006.10.014

    Meng P R, Li L B, Rong F L, et al. The synthesis and characterization and performance of a novel polyantion electrolyte membranematerlal carboxymethylated PVA[J]. Journal of Functional Materials, 2006, 37(10): 1566-1568. doi: 10.3321/j.issn:1001-9731.2006.10.014
    [24] Mukherjee G S. Calorimetric characterization of membrane materials based on polyvinyl alcohol[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(1): 21-25. doi: 10.1007/s10973-008-9833-1
    [25] Li F X, Wang W C, Wang X L, et al. Changes of structure and property of alkali soluble hydroxyethyl celluloses (HECs) and their regenerated films with the molar substitution[J]. Carbohydrate Polymers, 2014, 114: 206-212. doi: 10.1016/j.carbpol.2014.08.015
    [26] Mukherjee G S, Shukla N, Singh R K, et al. Studies on the properties of carboxymethylated polyvinyl alcohol[J]. Journal of Scientific & Industrial Research, 2004, 63: 596-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4156635
    [27] Chen L, Wang X H, Yang H P, et al. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 499-507. doi: 10.1016/j.jaap.2015.03.018
    [28] Hou G X, Gao J G, Tian C, et al. Preparation and characterization of nanocomposite films by hybrid cationic ring opening polymerization of glycidyl-POSS[J]. Materials Chemistry and Physics, 2014, 148(1/2): 236-244. http://www.sciencedirect.com/science/article/pii/S0254058414004787
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  165
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2018-10-26
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回