高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土区刺槐和油松人工林土壤微生物PLFA分析

魏安琪 魏天兴 刘海燕 王莎

魏安琪, 魏天兴, 刘海燕, 王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析[J]. 北京林业大学学报, 2019, 41(4): 88-98. doi: 10.13332/j.1000-1522.20180287
引用本文: 魏安琪, 魏天兴, 刘海燕, 王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析[J]. 北京林业大学学报, 2019, 41(4): 88-98. doi: 10.13332/j.1000-1522.20180287
Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. doi: 10.13332/j.1000-1522.20180287
Citation: Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. doi: 10.13332/j.1000-1522.20180287

黄土区刺槐和油松人工林土壤微生物PLFA分析

doi: 10.13332/j.1000-1522.20180287
基金项目: 国家重点研发计划课题(2016YFC050170502),国家科技支撑课题(2015BAD07B02),国家生态系统观测研究共享服务平台项目(2016-2018)
详细信息
    作者简介:

    魏安琪。主要研究方向:资源环境规划与管理。Email:1106838997@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    魏天兴,教授,博士生导师。主要研究方向:林业生态工程与流域自然地理过程。Email:weitx@bjfu.edu.cn 地址:同上

  • 中图分类号: S792.26;S791.254;S714.3

PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area

  • 摘要: 目的研究黄土丘陵沟壑区不同人工林恢复对土壤微生物群落结构多样性产生的影响,为该区植被恢复评价提供数据参考。方法以山西吉县典型刺槐和油松人工林以及自然恢复的荒草地为研究对象,采用磷脂脂肪酸(PLFA)生物标记法(MIDI系统),分别对土壤表层0 ~ 20 cm和20 ~ 40 cm土层的PLFA种类进行分析,比较不同人工林植被恢复后土壤微生物PLFA数量以及微生物群落结构的差异,并探讨土壤化学性质对土壤微生物群落结构的影响。结果土壤微生物PLFA总量,细菌、放线菌、革兰氏阳性菌和丛枝菌根真菌PLFA含量及多样性指标(Shannon-Wiener、 Simpson及Pielou指数)均呈现出刺槐林最高、油松林次之,且均显著高于荒草地的趋势(P < 0.05)。2种人工林土壤中表征环境胁迫的直链饱和脂肪酸/单不饱和脂肪酸(SAT/MONO)值显著低于荒草地(P < 0.05)。主成分分析结果显示,不同植被类型及土层深度的土壤微生物群落结构存在差异,且3种植被表层土壤微生物群落结构之间的差异达到了显著水平(P < 0.05)。冗余分析和Pearson相关分析结果显示,土壤微生物群落结构变化的主要影响因素是土壤全氮含量和pH值。结论刺槐和油松人工林的恢复对土壤微生物群落结构多样性有显著影响,对土壤生态系统的修复具有积极意义。与油松相比,刺槐更有利于土壤微生物状况的改善。

     

  • 图  1  不同植被下PLFA的组成

    Figure  1.  Composition of PLFA in different vegetations

    图  2  不同植被下SAT / MONO值的比较

    Figure  2.  Comparison of SAT / MONO ratio in different vegetations

    图  3  不同植被下各类群PLFA含量

    Bac. 细菌;F. 真菌;Act. 放线菌;G+. 革兰氏阳性菌;G−. 革兰氏阴性菌;AMF. 丛枝菌根真菌。下同。Bac, bacteria; F, fungi; Act, actinobacteria; G+, gram-positive bacteria; G−, gram-negative bacteria; AMF, arbuscular mycorrhizal fungi. Same as below.

    Figure  3.  PLFA content of various groups under different vegetations

    图  4  不同植被下土壤微生物PLFA主成分分析

    Figure  4.  Principal component analysis of soil microbial PLFA under different vegetations

    图  5  不同植被下土壤微生物群落结构与土壤化学性质的RDA分析

    Figure  5.  RDA analyses for soil microbial community structure and soil chemical properties in different vegetations

    表  1  样地基本信息

    Table  1.   General information of sample sites

    植被 Vegetation 坡度
    Slope gradient/(°)
    坡向
    Slope aspect/(°)
    树龄/a
    Stand age/year
    密度/(株·hm− 2) Density/(tree·ha− 1) 树高
    Tree height/m
    胸径 DBH/cm 生物量/(t·hm− 2) Biomass/(t·ha− 1)
    刺槐林
    Robinia pseudoacacia forest (RP)
    25 ES32 19 1 550 9.3 15.7 4.628
    油松林
    Pinus tabuliformis forest (PT)
    23 ES36 19 1 175 9.6 12.3 4.281
    荒草地
    Grassland (GL)
    20 ES37
    注:ES表示东南方向。Note: ES means southeast direction.
    下载: 导出CSV

    表  2  不同植被下土壤的化学性质

    Table  2.   Soil chemical properties under different vegetations

    土壤参数
    Soil parameter
    0 ~ 20 cm 20 ~ 40 cm
    RP PT GL RP PT GL
    pH 7.55 ± 0.01 Bb 7.53 ± 0.02 Bb 7.74 ± 0.01 Ab 7.64 ± 0.02 Ba 7.61 ± 0.02 Ba 7.89 ± 0.01 Aa
    有机质
    Organic matter (OM)/(g.kg− 1)
    10.41 ± 0.03 Aa 8.89 ± 0.02 Ba 5.47 ± 0.04 Ca 8.38 ± 0.02 Bb 9.11 ± 0.01 Ab 5.5 ± 0.04 Ca
    全氮
    Total nitrogen (TN)/(g.kg− 1)
    0.97 ± 0.04 Aa 0.84 ± 0.02 Ba 0.70 ± 0.02 Ca 0.67 ± 0.01 Ab 0.62 ± 0.02 Bb 0.48 ± 0.02 Cb
    全磷
    Total phosphorus (TP)/(g.kg− 1)
    0.61 ± 0.00 Aa 0.60 ± 0.00 Ba 0.56 ± 0.00 Cb 0.60 ± 0.00 Aa 0.58 ± 0.00 Cb 0.59 ± 0.00 Ba
    全钾
    Total potassium (TK)/(g.kg− 1)
    10.62 ± 0.49 Ba 11.88 ± 0.26 Aa 7.62 ± 0.56 Ca 9.02 ± 0.16 Ab 8.27 ± 0.11 Bb 6.41 ± 0.43 Cb
    速效氮
    Available nitrogen (AN)/(mg.kg− 1)
    16.26 ± 0.06 Aa 12.77 ± 0.09 Bb 12.28 ± 0.01 Ca 14.9 ± 0.09 Ab 13.48 ± 0.03 Ba 10.08 ± 0.13 Cb
    有效磷
    Available phosphorus (AP)/(mg.kg− 1)
    5.29 ± 0.03 Aa 5.13 ± 0.05 Ba 4.48 ± 0.03 Cb 5.24 ± 0.01 Aa 5.12 ± 0.00 Ba 5.05 ± 0.01 Ca
    速效钾
    Available potassium (AK)/(mg.kg− 1)
    116.26 ± 1.67 Ba 121.47 ± 0.89 Aa 83.82 ± 0.32 Cb 92.72 ± 0.42 Bb 117.22 ± 1.38 Ab 90.32 ± 0.49 Ca
    注:同一指标下,大写字母表示同一土层深度不同植被间差异显著(P < 0.05),小写字母表示同一植被不同土层间差异显著(P < 0.05)。下同。Notes: under the same indicator, uppercase letters indicate significant differences between different vegetation types within the same soil depth (P < 0.05), and lowercase letters indicate significant differences between different soil depths of the same vegetation type (P < 0.05). Same as below.
    下载: 导出CSV

    表  3  不同植被下土壤微生物PLFA总量

    Table  3.   Total amount of soil microbial PLFA under different vegetations nmol/g

    项目 Item 0 ~ 20 cm 20 ~ 40 cm
    RP PT GL RP PT GL
    PLFA总量 Total PLFA 110.38 ± 1.77 Aa 97.00 ± 2.33 Ba 75.24 ± 1.12 Ca 59.93 ± 1.24 Ab 50.27 ± 1.46 Bb 39.66 ± 0.84 Cb
    下载: 导出CSV

    表  4  不同植被下土壤微生物PLFA多样性指数

    Table  4.   Soil microbial PLFA diversity index under different vegetations

    多样性指数 Diversity index 0 ~ 20 cm 20 ~ 40 cm
    RP PT GL RP PT GL
    Shannon-Wiener指数 Shannon-Wiener index 3.32 ± 0.03 Aa 3.31 ± 0.01 Aa 3.20 ± 0.01 Ba 3.16 ± 0.02 Ab 3.04 ± 0.01 Bb 2.93 ± 0.02 Cb
    Simpson指数 Simpson index 0.95 ± 0.00 Aa 0.95 ± 0.00 Aa 0.94 ± 0.00 Ba 0.94 ± 0.00 Ab 0.93 ± 0.0 0Bb 0.92 ± 0.00 Cb
    Pielou指数 Pielou index 0.87 ± 0.01 Aa 0.87 ± 0.00 Aa 0.84 ± 0.00 Ba 0.82 ± 0.00 Ab 0.80 ± 0.00 Bb 0.77 ± 0.01 Cb
    下载: 导出CSV

    表  5  土层、植被类型及其交互作用对微生物群落结构的影响(P值)

    Table  5.   Effects of soil depths, vegetation types and their interactions on microbial community structure (P values)

    因子 Factor Bac F Act G+ G− AMF
    植被类型 Vegetation type (VT) < 0.001 0.012 < 0.001 < 0.001 < 0.001 < 0.001
    土层 Soil depth (SD) < 0.001 0.072 < 0.001 < 0.001 < 0.001 < 0.001
    VT × SD < 0.001 0.001 < 0.001 < 0.001 0.038 0.652
    下载: 导出CSV

    表  6  不同植被在主成分1和主成分2上的得分

    Table  6.   Scores of different vegetations in PC1 and PC2

    主成分 Principal component 0 ~ 20 cm 20 ~ 40 cm
    RP PT GL RP PT GL
    主成分1 PC1 1.59 ± 0.02 Aa 0.88 ± 0.10 Ba 0.14 ± 0.01 Ca − 0.40 ± 0.06 Ab − 0.90 ± 0.08 Bb − 1.30 ± 0.04 Cb
    主成分2 PC2 − 0.60 ± 0.12 Ba 1.83 ± 0.05 Aa − 1.20 ± 0.07 Cb − 0.70 ± 0.24 Ba 0.25 ± 0.29 Ab 0.42 ± 0.11 Aa
    下载: 导出CSV

    表  7  土壤微生物群落结构与土壤化学性质间的相关系数

    Table  7.   Correlation coefficients between soil microbial community structure and soil chemical properties

    土壤化学性质
    Soil chemical property
    Bac F Act G+ G− AMF
    pH − 0.753** − 0.270 − 0.710** − 0.741** − 0.776** − 0.707**
    OM 0.553* 0.322 0.618** 0.573* 0.510* 0.520*
    TN 0.958** 0.316 0.975** 0.965** 0.903** 0.959**
    TP 0.349 0.351 0.449 0.400 0.251 0.310
    TK 0.860** 0.461 0.802** 0.854** 0.855** 0.787**
    AN 0.552* − 0.114 0.642** 0.565* 0.527* 0.594**
    AP 0.113 0.355 0.233 0.165 0.021 0.058
    AK 0.526* 0.663** 0.526* 0.537* 0.491* 0.437
    注:标粗的数据表示差异显著,**表示在P < 0.01水平上差异显著,*表示在P < 0.05水平上差异显著。Notes: bold data indicate a significant difference, ** indicates significant difference at P < 0.01 level, * indicates significant difference at P < 0.05 level.
    下载: 导出CSV
  • [1] 胡婵娟, 郭雷. 植被恢复的生态效应研究进展[J]. 生态环境学报, 2012, 21(9):1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023

    Hu C J, Guo L. Advances in the research of ecological effects of vegetation restoration[J]. Ecology and Environmental Sciences, 2012, 21(9): 1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023
    [2] 胡建忠, 朱金兆. 黄土高原退化生态系统的恢复重建方略[J]. 北京林业大学学报(社会科学版), 2005, 4(1):13−19. doi: 10.3969/j.issn.1671-6116.2005.01.003

    Hu J Z, Zhu J Z. Tactics of vegetation restoration and reconst-ruction for degraded ecosystem in the Loess Plateau[J]. Journal of Beijing Forestry University (Social Sciences), 2005, 4(1): 13−19. doi: 10.3969/j.issn.1671-6116.2005.01.003
    [3] 汪滨, 张志强. 黄土高原典型流域退耕还林土地利用变化及其合理性评价[J]. 农业工程学报, 2017, 33(7):235−245.

    Wang B, Zhang Z Q. Land use change driven by sloping land conversion program in typical watershed on Loess Plateau and its rationality evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 235−245.
    [4] 赵阳, 余新晓. 黄土丘陵沟壑区典型流域气候和土地利用变化对径流泥沙产量的影响[J]. 北京林业大学学报, 2013, 35(3):39−45.

    Zhao Y, Yu X X. Effects of climate variation and land use change on runoff-sediment yield in typical watershed of loess hilly-gully region[J]. Journal of Beijing Forestry University, 2013, 35(3): 39−45.
    [5] 张学霞, 陈丽华. 黄土高原地区流域景观格局对水土流失的影响分析[J]. 北京林业大学学报, 2008, 30(增刊2):95−102.

    Zhang X X, Chen L H. Effects of watershed landscape pattern on soil and water loss in the Loess Plateau Region[J]. Journal of Beijing Forestry University, 2008, 30(Suppl.2): 95−102.
    [6] 李梁, 张建军, 陈宝强, 等. 晋西黄土区封禁小流域植被群落特征变化[J]. 北京林业大学学报, 2017, 39(10):78−89.

    Li L; Zhang J J, Chen B Q, et al. Changes of vegetation commu-nity characteristics in closed small watershed of the Loess Plateau in western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 78−89.
    [7] 胡婵娟, 傅伯杰, 刘国华, 等. 黄土丘陵沟壑区典型人工林下土壤微生物功能多样性[J]. 生态学报, 2009, 29(2):727−733. doi: 10.3321/j.issn:1000-0933.2009.02.022

    Hu C J, Fu B J, Liu G H, et al. Soil microbial functional and diversity under typical artificial woodlands in the hilly area of the Loess Plateau[J]. Acta Ecologica Sinica, 2009, 29(2): 727−733. doi: 10.3321/j.issn:1000-0933.2009.02.022
    [8] Xiao L, Liu G B, Zhang J Y, et al. Long-term effects of vegeta-tional restoration on soil microbial communities on the Loess Plateau of China[J]. Restoration Ecology, 2016, 24(6): 794−804. doi: 10.1111/rec.2016.24.issue-6
    [9] 罗达, 史作民, 唐敬超, 等. 南亚热带乡土树种人工纯林及混交林土壤微生物群落结构[J]. 应用生态学报, 2014, 25(9):2543−2550.

    Luo D, Shi Z M, Tang J C, et al. Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2543−2550.
    [10] 范周周, 卢舒瑜, 王娇, 等. 岩溶与非岩溶区不同林分根际土壤微生物及酶活性[J]. 北京林业大学学报, 2018, 40(7):55−61.

    Fan Z Z, Lu S Y, Wang J, et al. Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas[J]. Journal of Beijing Forestry University, 2018, 40(7): 55−61.
    [11] Chang E H, Tian G L, Chiu C Y. Soil microbial communities in natural and managed cloud montane forests[J]. Forests, 2017, 8(2): 33. doi: 10.3390/f8010033
    [12] 安文明, 韩晓阳, 李宗善, 等. 黄土高原不同植被恢复方式对土壤水分坡面变化的影响[J]. 生态学报, 2018, 38(13):4852−4860.

    An W M, Han X Y, Li Z S, et al. Effects of different vegetation restoration types on the slope difference of soil water content in the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(13): 4852−4860.
    [13] 刘玉林, 朱广宇, 邓蕾, 等. 黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响[J]. 应用生态学报, 2018, 29(7):2163−2172.

    Liu Y L, Zhu G Y, Deng L, et al. Effects of natural vegetation restoration and afforestation on soil carbon and nitrogen storage in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2163−2172.
    [14] 张海涵, 唐明, 陈辉, 等. 黄土高原5种造林树种菌根根际土壤微生物群落多样性研究[J]. 北京林业大学学报, 2008, 30(3):85−90. doi: 10.3321/j.issn:1000-1522.2008.03.015

    Zhang H H, Tang M, Chen H, et al. Diversity of soil microbial communities in the mycorrhizosphere of five afforestation tree species in the Loess Plateau[J]. Journal of Beijing Forestry University, 2008, 30(3): 85−90. doi: 10.3321/j.issn:1000-1522.2008.03.015
    [15] 王雅, 刘爽, 郭晋丽, 等. 黄土高原不同植被类型对土壤养分、酶活性及微生物的影响[J]. 水土保持通报, 2018, 38(1):62−68.

    Wang Y, Liu S, Guo J L, et al. Influence of different vegetation types on soil nutrients, enzyme activities and microbial diversities in Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 62−68.
    [16] 李静, 蔚晓燕, 唐明. 黄土高原纸坊沟流域不同植物对土壤微生物生物量和土壤酶活性的影响[J]. 西北植物学报, 2013, 33(2):387−393. doi: 10.3969/j.issn.1000-4025.2013.02.027

    Li J, Yu X Y, Tang M. Effects of Different plants on soil microbial biomass and enzyme activities in Zhifanggou Watershed of Loess Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(2): 387−393. doi: 10.3969/j.issn.1000-4025.2013.02.027
    [17] 李彦林, 陈吉祥, 张彦, 等. 半干旱黄土高原生态区不同土地利用类型土壤可培养微生物群落分析[J]. 干旱区资源与环境, 2017, 31(9):150−155.

    LI Y L, Chen J X, Zhang Y, et al. Analysis of culturable microbial communities in different land utilization types in semi-arid loess plateau ecological zones[J]. Journal of Arid Land Resources and Environment, 2017, 31(9): 150−155.
    [18] 翟辉, 张海, 张超, 等. 黄土峁状丘陵区不同类型林分土壤微生物功能多样性[J]. 林业科学, 2016, 52(12):84−91. doi: 10.11707/j.1001-7488.20161210

    Zhai H, Zhang H, Zhang C, et al. Soil microbial functional diversity in different types of stands in the hilly-gully regions of Loess Plateau[J]. Scientia Silvae Sinicae, 2016, 52(12): 84−91. doi: 10.11707/j.1001-7488.20161210
    [19] 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法: 从培养到非培养[J]. 生态学报, 2012, 32(14):4421−4433.

    Liu G H, Ye Z F, Wu W Z. Culture-dependent and culture-independent approaches to studying soil microbial diversity[J]. Acta Ecologica Sinica, 2012, 32(14): 4421−4433.
    [20] 白震, 何红波, 张威, 等. 磷脂脂肪酸技术及其在土壤微生物研究中的应用[J]. 生态学报, 2006, 26(7):2387−2394. doi: 10.3321/j.issn:1000-0933.2006.07.043

    Bai Z, He H B, Zhang W, et al. PLFAs technique and it's application in the study of soil microbiology[J]. Acta Ecologica Sinica, 2006, 26(7): 2387−2394. doi: 10.3321/j.issn:1000-0933.2006.07.043
    [21] Bloem J, Hopkins D W, Benedetti A. Microbiological methods for assessing soil quality[M]. Wallingford: CABI Publishing, 2005: 205.
    [22] Dong W Y, Zhang X Y, Dai X Q, et al. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China[J]. Applied Soil Ecology, 2014, 84(3): 140−147.
    [23] Willers C, Jansen Van Rensburg P J, Claassens S. Microbial signature lipid biomarker analysis, an approach that is still preferred, even amid various method modifications[J]. Journal of Applied Microbiology, 2015, 118(6): 1251−1263. doi: 10.1111/jam.2015.118.issue-6
    [24] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146−196.

    Lu R K. Soil agricultural chemical analysis method[M].Beijing: China Agricultural Science and Technology Press, 2000: 146−196.
    [25] Bossio D. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utili-zation patterns[J]. Microbial Ecology, 1998, 35(3-4): 265−278.
    [26] 李欣玫, 左易灵, 薛子可, 等. 不同荒漠植物根际土壤微生物群落结构特征[J]. 生态学报, 2018, 38(8):2855−2863.

    Li X M, Zuo Y L, Xue Z K, et al. Characteristics of microbial community structure in rhizosphere soil of different desert plants[J]. Acta Ecologica Sinica, 2018, 38(8): 2855−2863.
    [27] 李南洁, 曾清苹, 何丙辉, 等. 缙云山柑橘林土壤微生物磷脂脂肪酸(PLFAs)及酶活性的季节变化特征[J]. 环境科学, 2017, 38(1):309−317.

    Li N J, Zeng Q P, He B H, et al. Seasonal variations of soil microbial PLFAs and soil enzyme activity under the citrus plantation in Mt[J]. Environmental Science, 2017, 38(1): 309−317.
    [28] 吴则焰, 林文雄, 陈志芳, 等. 武夷山不同海拔植被带土壤微生物PLFA分析[J]. 林业科学, 2014, 50(7):105−112.

    Wu Z Y, Lin W X, Chen Z F, et al. Phospholipid fatty acid analy-sis of soil microbes at different elevation of Wuyi Mountains[J]. Scientia Silvae Sinicae, 2014, 50(7): 105−112.
    [29] 杨淑娇, 杨永平, 石玲玲, 等. 基于PLFA的高山栎和高山松林松茸菌塘土壤微生物群落特征研究[J]. 生态学报, 2018, 38(5):1630−1638.

    Yang S J, Yang Y P, Shi L L, et al. Comparison of soil microbial community composition and structure in Tricholoma matsutake shiro and non-shiro soils in Quercus semecarpifolia and Pinus densata forests[J]. Acta Ecologica Sinica, 2018, 38(5): 1630−1638.
    [30] 刘海燕, 魏天兴, 王仙. 黄土丘陵区人工林土壤微生物PLFA标记多样性分析[J]. 北京林业大学学报, 2016, 38(1):28−35.

    Liu H Y, Wei T X, Wang X. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28−35.
    [31] Pollierer M M, Ferlian O, Scheu S. Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions[J]. Soil Biology Biochemistry, 2015, 91: 248−257. doi: 10.1016/j.soilbio.2015.08.035
    [32] Fisk M C, Ruether K F, Yavitt J B. Microbial activity and functional composition among northern peatland ecosystems[J]. Soil Biology Biochemistry, 2003, 35(4): 591−602. doi: 10.1016/S0038-0717(03)00053-1
    [33] Zhang Q, Wu J, Yang F, et al. Alterations in soil microbial community composition and biomass following agricultural land use change[J]. Scientific Reports, 2016, 6: 36587. doi: 10.1038/srep36587
    [34] Kang H, Gao H, Yu W, et al. Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island[J]. Science of the Total Environment, 2018, 625: 1423−1432. doi: 10.1016/j.scitotenv.2017.12.180
    [35] 孔滨, 孙波, 郑宪清, 等. 水热条件和施肥对黑土中微生物群落代谢特征的影响[J]. 土壤学报, 2009, 46(1):100−106. doi: 10.3321/j.issn:0564-3929.2009.01.014

    Kong B, Sun B, Zheng X Q, et al. Effect of hydrothermal conditions and fertilization on metabolic characteristics of microbial community in a black soil[J]. Acta Pedologica Sinica, 2009, 46(1): 100−106. doi: 10.3321/j.issn:0564-3929.2009.01.014
    [36] 郑灏, 杨志坚, 冯金玲, 等. 不同林下套种模式对油茶幼林根区土壤化学特性及微生物的影响[J]. 福建农林大学学报(自然版), 2015, 44(2):147−153.

    Zheng H, Yang Z J, Feng J L, et al. Effects of interplanting patterns on chemical properties and microbial community in root zone soils of young Camellia oleifera forest[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(2): 147−153.
    [37] 樊芳玲, 谢德体, 魏朝富, 等. 坡耕地−桑树系统土壤微生物群落结构的PLFA分析[J]. 生态学报, 2016, 36(12):3812−3823.

    Fan F L, Xie D T, Wei C F, et al. PLFA analysis showed that the configuration modes of sloping crop-mulberry systems affect the soilmicrobial community structure[J]. Acta Ecologica Sinica, 2016, 36(12): 3812−3823.
    [38] Richter A, Schöning I, Kahl T, et al. Regional environmental conditions shape microbial community structure stronger than local forest management intensity[J]. Forest Ecology and Management, 2018, 409: 250−259. doi: 10.1016/j.foreco.2017.11.027
    [39] Vitousek P. Ecosystem science and human-environment inter-actions in the Hawaiian Archipelago[J]. Journal of Ecology, 2006, 94(3): 510−521. doi: 10.1111/j.1365-2745.2006.01119.x
    [40] Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microen-vironments of conventional, low-input, and organic cropping systems[J]. Soil Biology Biochemistry, 2011, 43(1): 20. doi: 10.1016/j.soilbio.2010.09.005
    [41] Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biology & Biochemistry, 2015, 84: 53−64.
    [42] Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands[J]. Soil Biology & Biochemistry, 1999, 31(7): 1021−1030.
    [43] Lv F L, Xue S, Wang G L, et al. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China[J/OL]. PLoS One, 2017, 12(2): e0172382[2018−07−18]. https://doi.org/10.1371/journal.pone.0172382.
    [44] 郭芸, 孙本华, 王颖, 等. 长期施用不同肥料塿土PLFA指纹特征[J]. 中国农业科学, 2017, 50(1):94−103.

    Guo Y, Sun B H, Wang Y, et al. PLFA fingerprint characteristics of an anthropogenic loess soil under long-term different ferti-lizations[J]. Scientia Agricultura Sinica, 2017, 50(1): 94−103.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  1213
  • HTML全文浏览量:  429
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-08
  • 修回日期:  2018-11-16
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回