高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山不同演替阶段森林群落分类结构形成机制

范秀华 徐程扬

范秀华, 徐程扬. 长白山不同演替阶段森林群落分类结构形成机制[J]. 北京林业大学学报, 2019, 41(3): 24-32. doi: 10.13332/j.1000-1522.20180301
引用本文: 范秀华, 徐程扬. 长白山不同演替阶段森林群落分类结构形成机制[J]. 北京林业大学学报, 2019, 41(3): 24-32. doi: 10.13332/j.1000-1522.20180301
Fan Xiuhua, Xu Chengyang. Formation mechanism of taxonomic structures for forest communities in different successional stages in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 24-32. doi: 10.13332/j.1000-1522.20180301
Citation: Fan Xiuhua, Xu Chengyang. Formation mechanism of taxonomic structures for forest communities in different successional stages in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 24-32. doi: 10.13332/j.1000-1522.20180301

长白山不同演替阶段森林群落分类结构形成机制

doi: 10.13332/j.1000-1522.20180301
基金项目: 国家重点研发计划重点专项(2017YFC050400103),国家自然科学基金项目(31670643)
详细信息
    作者简介:

    范秀华,教授。主要研究方向:森林生态系统功能。Email:blfanxh@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    徐程扬,博士,教授。主要研究方向:森林培育。Email:cyxu@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.5

Formation mechanism of taxonomic structures for forest communities in different successional stages in Changbai Mountains of northeastern China

  • 摘要: 目的群落分类结构是群落内物种组成的一种直观反映形式,群落分类结构指标与零假设模型的差异能够反映出局域生态学过程(环境过滤和种间竞争等)对群落分类结构形成的影响。方法基于长白山地区3块处于不同演替阶段的阔叶红松林样地数据,本文首先分析了长白山典型群落在不同空间尺度上的分类结构特征,并利用群落随机零模型计算标准化差异值(SES)判断影响群落构建的主要生态学过程。结果研究结果表明:长白山地区处于不同演替阶段的森林群落分类结构均具有一定的尺度依赖性,随着尺度的增大,属种比和科种比呈现下降趋势。幂函数模型能够很好地拟合3块样地的属−种关系和科−种关系。通过比较实际群落与随机群落分类结构的差异,我们发现在局域尺度上,次生针阔混交林和椴树红松林的属种比和科种比均显著低于随机群落(SES为负值),次生杨桦林群落属种比的SES值则在绝大多数尺度上为正值。结论环境过滤和扩散的限制作用对次生针阔混交林和原始椴树红松林群落分类结构形成的影响要强于种间竞争,而在次生杨桦林中,竞争作用始终占据主导作用。群落的分类结构受到多种生态学过程的综合影响,它们的相对作用强度会随尺度和演替阶段的变化而发生改变。

     

  • 图  1  调查样地地理位置

    Figure  1.  Locations of the study sample plots

    图  2  次生杨桦林物种丰富度与属数和科数的关系

    黑线代表属种关系,红色断线代表科种关系。下同。Black line represents genus-species relationship and red dashed line represents family-species relationship. The same below.

    Figure  2.  Relationship between species richness and generic or family richness in secondary poplar and birch mixed forest

    图  3  次生针阔混交林物种丰富度与属数和科数的关系

    Figure  3.  Relationship between species richness and generic or family richness in secondary mixed conifer and broadleaved forest

    图  4  原始椴树红松林物种丰富度与属数和科数的关系

    Figure  4.  Relationships between species richness and generic or family richness in mixed Tilia sp. and Korean pine forest

    图  5  不同尺度属−种关系参数

    Figure  5.  Exponents of genus-species relationship at different sample scales

    图  6  不同尺度科−种关系参数

    Figure  6.  Exponents of family-species relationship at different sample scales

    图  7  次生杨桦林零模型不同空间尺度上属种比和科种比的标准化差异值(均值和置信区间)

    Figure  7.  Standardized effect size (SES) (mean value and the 95% confidence interval) of the null model at different scales in secondary poplar and birch mixed forest

    图  8  次生针阔混交林零模型不同空间尺度上属种比和科种比的标准化差异值(均值和置信区间)

    Figure  8.  Standardized effect size (SES) (mean value and the 95% confidence interval) of the null model at different scales in secondary mixed conifer and broadleaved forest

    图  9  原始椴树红松林零模型不同空间尺度上属种比和科种比的标准化差异值(均值和置信区间)

    Figure  9.  Standardized effect size (SES) (mean value and the 95% confidence interval) of the null model at different scales in mixed Tilia sp. and Korean pine forest

    表  1  3块样地基本统计信息

    Table  1.   Statistical information of the three study sample plots

    样地 Sample plot纬度位置 Latitude经度位置 Longitude平均海拔
    Average altitude/m
    个体数
    Number of individuals
    物种数
    Number of species
    次生杨桦林
    Secondary poplar and birch mixed forest (PBF)
    42°19′10″N128°07′49″E878.721 02350
    次生针阔混交林
    Secondary mixed conifer and broadleaved forest (CBF)
    42°20′54″N128°07′59″E813.015 64244
    原始椴树红松林
    Mixed Tilia sp. and Korean pine forest (TKF)
    42°13′41″N128°04′34″E1 020.6 12 08726
    下载: 导出CSV

    表  2  3块样地不同取样尺度下样方数量

    Table  2.   Number of quadrats at five different scales for three sample plots

    取样面积 Sampling size样方数量 Number of samples
    10 m × 10 m520
    20 m × 20 m130
    30 m × 30 m 48
    40 m × 40 m 30
    50 m × 50 m 20
    下载: 导出CSV

    表  3  3块样地不同空间尺度属种比和科种比

    Table  3.   Ratios of generic richness (G) to species richness (S)(G/S) and family richness (F) to species richness (F/S) at five different spatial scales

    样地
    Sample plot
    空间尺度
    Spatial scale
    属种比
    Genus richness/
    species richness
    (G/S)
    科种比
    Family richness/
    species richness
    (F/S)
    最大值 Max.最小值 Min.均值 Mean最大值 Max.最小值 Min.均值 Mean
    PBF10 m × 10 m1.000.500.791.000.350.65
    20 m × 20 m0.890.610.760.750.340.52
    30 m × 30 m0.900.620.730.630.360.49
    40 m × 40 m0.900.570.720.600.350.44
    50 m × 50 m0.800.560.700.530.340.42
    CBF10 m × 10 m1.000.330.721.000.330.61
    20 m × 20 m0.920.500.680.710.380.53
    30 m × 30 m0.800.570.660.640.380.48
    40 m × 40 m0.710.560.640.560.370.46
    50 m × 50 m0.700.570.630.550.350.44
    TKF10 m × 10 m1.000.400.761.000.280.58
    20 m × 20 m1.000.440.650.750.300.45
    30 m × 30 m0.830.440.600.500.330.42
    40 m × 40 m0.750.440.590.620.330.41
    50 m × 50 m0.660.500.570.460.330.39
    下载: 导出CSV
  • [1] Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10854−10861. doi: 10.1073/pnas.0403458101
    [2] Diamond J M. Assembly of species communities[J]. Ecology and Evolution of Communities, 1975: 343−444.
    [3] Gotelli N J. Null model analysis of species co-occurrence patterns[J]. Ecology, 2000, 81(9): 2606−2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
    [4] Jabot F, Chave J. Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate bayesian inference[J]. The American Naturalist, 2011, 178(2): E37−47. doi: 10.1086/660829
    [5] Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the holy grail[J]. Functional Ecology, 2002, 16(5): 545−556. doi: 10.1046/j.1365-2435.2002.00664.x
    [6] Ulrich W, Hajdamowicz I, Zalewski M, et al. Species assortment or habitat filtering: a case study of spider communities on lake islands[J]. Ecological Research, 2010, 25: 375−381. doi: 10.1007/s11284-009-0661-y
    [7] Burns J H, Strauss S Y. More closely related species are more ecologically similar in an experimental test[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5302−5307. doi: 10.1073/pnas.1013003108
    [8] Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322: 580−582. doi: 10.1126/science.1160662
    [9] Baldeck C A, Kembel S W, Harms K E, et al. A taxonomic comparison of local habitat niches of tropical trees[J]. Oecologia, 2013, 173(4): 1491−1498. doi: 10.1007/s00442-013-2709-5
    [10] Hubbell S P. The unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001.
    [11] Zobel M. Plant species co-existence: the role of historical, evolutionary and ecological factors[J]. Oikos, 1992, 65(2): 314−320. doi: 10.2307/3545024
    [12] Eriksson O. The species-pool hypothesis and plant community diversity[J]. Oikos, 1993, 68(2): 371−374. doi: 10.2307/3544854
    [13] Vellend M. Conceptual synthesis in community ecology[J]. Quarterly Review of Biology, 2010, 85(2): 183−206. doi: 10.1086/652373
    [14] Ernest S K, Brown J H, Thibault K M, et al. Zero sum, the niche, and meta-communities: long-term dynamics of community assembly[J]. The American Naturalist, 2008, 172: 257−269. doi: 10.1086/592402
    [15] Elton C. Competition and the structure of ecological communities[J]. Journal of Animal Ecology, 1946, 15(1): 54−68. doi: 10.2307/1625
    [16] Passy S, Legendre P. Power law relationships among hierarchical taxonomic categories in algae reveal a new paradox of the plankton[J]. Global Ecology & Biogeography, 2006, 15(5): 528−535.
    [17] Wang S, Tang Z, Qiao X, et al. The influence of species pools and local processes on the community structure: a test case with woody plant communities in China ’s mountains[J]. Ecography, 2012, 35(12): 1168−1175. doi: 10.1111/j.1600-0587.2012.00045.x
    [18] Enquist B J, Haskell J P, Tiffney B H. General patterns of taxonomic and biomass partitioning in extant and fossil plant communities[J]. Nature, 2002, 419: 610−613.
    [19] Webb C O, Ackerly D D, Mcpeek M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 8(33): 475−505.
    [20] Lessard J P, Weinstein B G, Borregaard M K, et al. Process-based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering[J]. American Naturalist, 2016, 187: 75−88. doi: 10.1086/684128
    [21] Zhang C Y, Jin W B, Gao L S, et al. Scale dependent structuring of spatial diversity in two temperate forest communities[J]. Forest Ecology and Management, 2014, 316: 110−116. doi: 10.1016/j.foreco.2013.07.025
    [22] Cavender B J, Adrienne K, Brianna M. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale[J]. Ecology, 2006, 87(7): S109−S122.
    [23] Swenson N G, Enquist B J, Jill T, et al. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities[J]. Ecology, 2007, 88(7): 1770−1780. doi: 10.1890/06-1499.1
    [24] Shen G, Yu M, Hu X, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity[J]. Ecology, 2009, 90: 3033−3041. doi: 10.1890/08-1646.1
    [25] Wang X, Swenson N G, Wiegand T, et al. Phylogenetic and functional diversity area relationships in two temperate forests[J]. Ecography, 2013, 36(8): 883−893. doi: 10.1111/j.1600-0587.2012.00011.x
    [26] Roxburgh S H, Chesson P. A new method for detecting species associations with spatially autocorrelated data[J]. Ecology, 1998, 79(6): 2180−2192. doi: 10.1890/0012-9658(1998)079[2180:ANMFDS]2.0.CO;2
    [27] Palmer M W, van der Maarel E. Variance in species richness, species association, and niche limitation[J]. Oikos, 1995, 73(2): 203−213.
    [28] Mouillot D, Poulin R. Taxonomic partitioning shedding light on the diversification of parasite communities[J]. Oikos, 2004, 104(1): 205−207. doi: 10.1111/oik.2004.104.issue-1
    [29] Stokes C J, Archer S R. Niche differentiation and neutral theory: an integrated perspective on shrub assemblages in a parkland savanna[J]. Ecology, 2010, 91(4): 1152−1162. doi: 10.1890/08-1105.1
    [30] Gómez J P, Bravo G A, Brumfield R T, et al. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds[J]. Journal of Animal Ecology, 2010, 79(6): 1181−1192. doi: 10.1111/j.1365-2656.2010.01725.x
    [31] Mayfield M M, Levine J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities[J]. Ecology Letters, 2010, 13(9): 1085. doi: 10.1111/j.1461-0248.2010.01509.x
    [32] Seifert T, Seifert S, Seydack A, et al. Competition effects in an Afrotemperate forest[J]. Forest Ecosystems, 2014, 1: 13. doi: 10.1186/s40663-014-0013-4
    [33] Rahbek C. The role of spatial scale and the perception of large-scale species-richness patterns[J]. Ecology Letters, 2005, 8(2): 224−239.
    [34] Weiher E, Freund D, Bunton T, et al. Advances, challenges and a developing synthesis of ecological community assembly theory[J]. Philosophical Transactions Biological Sciences, 2011, 366: 2403−2413. doi: 10.1098/rstb.2011.0056
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  567
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-22
  • 修回日期:  2018-09-15
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回