• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

松材线虫生防放线菌的筛选、鉴定及其毒性因子初步研究

黄冰纷, 陈俊梅, 李文鹏, 宋希磊, 王博文, 张成, 赵素雅, 牛秋红

黄冰纷, 陈俊梅, 李文鹏, 宋希磊, 王博文, 张成, 赵素雅, 牛秋红. 松材线虫生防放线菌的筛选、鉴定及其毒性因子初步研究[J]. 北京林业大学学报, 2019, 41(4): 99-106. DOI: 10.13332/j.1000-1522.20180302
引用本文: 黄冰纷, 陈俊梅, 李文鹏, 宋希磊, 王博文, 张成, 赵素雅, 牛秋红. 松材线虫生防放线菌的筛选、鉴定及其毒性因子初步研究[J]. 北京林业大学学报, 2019, 41(4): 99-106. DOI: 10.13332/j.1000-1522.20180302
Huang Bingfen, Chen Junmei, Li Wenpeng, Song Xilei, Wang Bowen, Zhang Cheng, Zhao Suya, Niu Qiuhong. Screening and identification of actinomycetes for biological control of Bursaphelenchus xylophilus and preliminary study on their toxicity factors[J]. Journal of Beijing Forestry University, 2019, 41(4): 99-106. DOI: 10.13332/j.1000-1522.20180302
Citation: Huang Bingfen, Chen Junmei, Li Wenpeng, Song Xilei, Wang Bowen, Zhang Cheng, Zhao Suya, Niu Qiuhong. Screening and identification of actinomycetes for biological control of Bursaphelenchus xylophilus and preliminary study on their toxicity factors[J]. Journal of Beijing Forestry University, 2019, 41(4): 99-106. DOI: 10.13332/j.1000-1522.20180302

松材线虫生防放线菌的筛选、鉴定及其毒性因子初步研究

基金项目: 河南省高校科技创新人才支持计划项目(17HASTIT041),研究生创新基金项目(2017cx008、2018cx010)
详细信息
    作者简介:

    黄冰纷。主要研究方向:线虫生物防治。Email:1365914254@qq.com 地址:473000 河南省南阳市卧龙区卧龙路1638号南阳师范学院

    责任作者:

    牛秋红,博士,教授。主要研究方向:微生物学与分子生物学。Email:qiuhongniu723@163.com 地址:同上

  • 中图分类号: S763.306.4

Screening and identification of actinomycetes for biological control of Bursaphelenchus xylophilus and preliminary study on their toxicity factors

  • 摘要:
    目的从土壤中筛选、鉴定出对松材线虫有较高杀灭活性的放线菌,并确定其毒力因子。
    方法以藤黄八叠球菌、枯草杆菌、大肠杆菌3个敏感菌株为抑菌检测对象,从南阳师范学院校园内、白河边、宝天曼、卧龙岗等地采集的土壤样品中筛选有抑菌活性的放线菌,采用形态学观察以及基于16S rRNA序列分析等方法对抑菌活性最高的菌株进行分类鉴定,将该菌株进行杀松材线虫活性测试,并分离纯化出杀线活性物质。
    结果筛选出4株有抑菌活性的放线菌菌株:C611、C612、C614、C619,其中C611菌株对藤黄八叠球菌、枯草杆菌和大肠杆菌均有较高抑制活性。结合该菌株形态学、生理学特征以及16S rRNA序列分析等结果,将其初步确定为链霉菌属。将C611发酵液处理松材线虫7 d后,线虫死亡率高达85%,空白对照组死亡率为0,对C611发酵液进行分离纯化后,初步确定活性成分为呋喃它酮。使用含量为0.1%呋喃它酮纯溶液测试杀线虫活性,作用于线虫5 d后其死亡率高达96%。
    结论本研究筛选到的生防放线菌C611,鉴定出其活性物质为呋喃它酮,丰富了松材线虫生防菌的种类,本研究首次发现呋喃它酮对线虫有较强毒杀作用,为松材线虫生物防治奠定了一定的理论基础。
    Abstract:
    ObjectiveThis paper aims to screen and identify the actinomycetes with high killing activity against pine wood nematodes Bursaphelenchus xylophilus from soil, and determine their virulent factors.
    MethodUsing Sarcina lutea, Bacillus subtilis and Escherichia coli as testing strains to determine the antibacterial activities, the actimomycetes with biocontrol activities to B. xylophilus were screened from the soil samples of Nanyang Normal University campus, Baihe Edge, Baotianman and other fields. Morphological observation and molecular identifications based on 16S rRNA sequence analysis were used to classify and identify the strain with the highest activities. The activity of the strain against pine wood nematode was tested, and the virulent substance was isolated and purified.
    ResultFour actinomycete strains with antibacterial activity were screened: C611, C612, C614 and C619. The strain C611 showed the highest inhibitory activity against S. lutea, B. subtilis and E. coli among the four strains. The strain was identified as Streptomyces sp. according to the morphological and phylogenetic analysis. After 7 days of treatment of pine wood nematode with C611 fermentation broth, the mortality rate of nematode reached 85%, and that of blank control group was 0. The active ingredient was determined to be furan ketone (furaltadone) after separation and purification of C611 fermentation broth.The nematode mortality reached 96% after 5 days treated with 0.1% pure furatanone solution.
    ConclusionThe actinomycete C611 was isolated and identified furaltadone as a key virulence factor in this study, which enriched the species of biological control microbe against pine wood nematodes. It was first reported that furantone had strong toxicity to nematodes and laid a theoretical foundation for biological control of pine wood nematode.
  • 图  1   C611对3个敏感菌株的抑制结果

    A. C611对大肠杆菌的抑制结果;B. C611对枯草芽孢杆菌的抑制结果;C. C611对藤黄八叠球菌的抑制结果。A, inhibitory effect on E. coli of C611; B, inhibitory effect on B. subtilis of C611; C, inhibitory effect of C611 on S. lutea.

    Figure  1.   Inhibitory effects of C611 on three sensitive strains

    图  2   4个菌株菌落形态

    Figure  2.   Colony morphology of 4 strains

    图  3   C611菌丝及孢子丝

    A. C611菌丝形态;B. C611孢子丝形态。A, hyphae morphology of C611; B, spore silk morphology of C611.

    Figure  3.   Hyphae and spore filaments of C611

    图  4   放线菌分离株C611的系统发育学分析

    发育树节点的数字表示Bootstrap值;括号中的数字为序列登录号。The numbers at each branch points indicate Bootstrap value; numbers in paretheses are accession No. of sequence in GenBank.

    Figure  4.   Phylogenetic analysis of C611 based on 16S rRNA sequence

    图  5   C611发酵液及空白处理后的松材线虫形态

    A. 无菌水对照处理7 d后的松材线虫形态;B. C611发酵液处理7 d后的松材线虫形态。A, the morphology of Bursaphelenchus xylophilus after 7 days treated by C611 fermentation liquor; B, the morphology of Bursaphelenchus xylophilus after 7 days treated by aseptic water.

    Figure  5.   Morphology of Bursaphelenchus xylophilus after treated by C611 fermentation broth and blank control

    图  6   C611杀线虫活性物质色谱分析图

    Figure  6.   Chromatographic analysis of active substances of C611

    图  7   0.1%呋喃它酮及空白处理后的松材线虫形态

    A. 无菌水处理4 h后线虫形态;B. 0.1%呋喃它酮处理4 h处理后线虫形态;C. 无菌水处理20 h后线虫形态;D. 0.1%呋喃它酮处理20 h处理后线虫形态。A, the morphology of Bursaphelenchus xylophilus after 4 hours treated by aseptic water;B, the morphology of B. xylophilus after 4 hours treated by 0.1% furaltadone;C, the morphology of B. xylophilus after 20 hours treated by aseptic water; D, the morphology of B. xylophilus after 20 hours treated by 0.1% furaltadone.

    Figure  7.   Morphology of Bursaphelenchus xylophilus after treated by 0.1% furaltadone and blank control

    表  1   抑菌测试结果对比

    Table  1   Comparison of the inhibitory effect of actinomycetes on different test strains

    菌株编号
    Strain No.
    藤黄八叠球菌
    Sarcina lutea
    枯草杆菌
    Bacillus subtilis
    大肠杆菌
    Escherichia coli
    C611 +++ ++ +++
    C612 + +++ ++
    C614 +
    C619 ++ +
    注:“+”表示抑菌效果,“−”表示无抑菌效果,“+”越多代表抑菌效果越好。Notes: “+” means bacteriostatic effect, “−” means no bacteriostatic effect, more “+” means better antibacterial effects.
    下载: 导出CSV

    表  2   C611发酵液杀线虫活性

    Table  2   Activity of killing nematode of C611 fermentation broth %

    组别 Group 死亡率 Mortality
    3 d 4 d 5 d 6 d 7 d
    C611 30 40 50 60 85
    空白对照 Blank contrast 0 0 0 0 0
    下载: 导出CSV

    表  3   0.1%呋喃它酮杀线虫活性

    Table  3   Nematode activity of 0.1% furazolidone %

    时间 Time 死亡率 Mortality
    0.1%呋喃它酮
    0.1% furazolidone
    空白对照
    Blank contrast
    4 h 10 (0) 0 (0)
    1 d 30.33 (0.58) 0 (0)
    2 d 41.67 (2.89) 0 (0)
    3 d 71.67 (2.89) 0 (0)
    4 d 91 (1.73) 1 (0)
    5 d 96 (1.73) 1.33 (0.58)
    注:括号内数据为标准差。Note: data in paretheses are standard deviation.
    下载: 导出CSV
  • [1] 王璇. 松材线虫CYP450基因致病机理研究[D]. 北京: 中国林业科学研究院, 2016.

    Wang X. The pathogenesis of CYP450 genes from pine wood nematode (Bursaphelenchus xylophilus)[D]. Beijing: Chinese Academy of Forestry Sciences, 2016.

    [2] 段玉玺主编. 大豆胞囊线虫病及其防治[M]. 北京: 金盾出版社, 2006.

    Duan Y X. Soybean cyst nematode and its control[M]. Beijing: Jindun Press, 2006.

    [3] 朱丽梅, 吴小芹, 陈江天, 等. 一株毒杀松材线虫的解淀粉芽孢杆菌活性物质的基本性质[J]. 中国生物防治, 2009, 25(4):359−363. doi: 10.3321/j.issn:1005-9261.2009.04.014

    Zhu L M, Wu X Q, Chen J T, et al. Elementary properties of the nematicidal crude Toxin produced by Bacillus Amyloliquefaciens JK-JS3[J]. Chinese Journal of Biological Control, 2009, 25(4): 359−363. doi: 10.3321/j.issn:1005-9261.2009.04.014

    [4] 李娟, 张克勤. 食线虫微生物防控病原线虫的研究[J]. 中国生物报, 2013, 29(4):481−489.

    Li J, Zhang K Q. Research on nematophagous microorganisms for biological control of pathogenic nematodes[J]. Chinese News of Biological, 2013, 29(4): 481−489.

    [5] 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治报, 2015, 31(5):789−800.

    Jin N, Liu Q, Jian H. Advances on biological control of plant-parasitic nematodes[J]. Chinese Report of Biological Control, 2015, 31(5): 789−800.

    [6]

    Dicklow M B, Acosta N, Zuckerman B M. A novel Streptomyces species for controlling plant-parasitic nematodes[J]. Journal of Chemical Ecology, 1993, 9(2): 159−173.

    [7]

    Kruger G R, Xing L J, et al. Meloidogyne incognita resistance in soybean under midwest condition[J]. Crop Science, 2008, 48: 716−726. doi: 10.2135/cropsci2007.04.0196

    [8] 安德荣, 慕小倩, 刘翠娟, 等. 土壤拮抗放线菌的分离和筛选[J]. 微生物学杂志, 2002, 22(5):1−3. doi: 10.3969/j.issn.1005-7021.2002.05.001

    An D R, Mu X Q, Liu C J, et al. Isolation and screening of antabonistic actinomyces from soil[J]. Journal of Microbiology, 2002, 22(5): 1−3. doi: 10.3969/j.issn.1005-7021.2002.05.001

    [9] 陈立杰, 陈井生, 董健, 等. 放线菌次生代谢产物对不同来源大豆胞囊线虫J2毒性的研究[J]. 大豆科学, 2008, 27(4):637−640.

    Chen L J, Chen J S, Dong J, et al. Toxicity of secondary metabolites of actinomyces to soybean cyst nematode J2 from different sources[J]. Soybean Science, 2008, 27(4): 637−640.

    [10] 祝明亮, 李天飞, 张克勤, 等. 根结线虫生防资源概况及进展[J]. 微生物学通报, 2004, 31(1):100−104. doi: 10.3969/j.issn.0253-2654.2004.01.023

    Zhu M L, Li T F, Zhang K Q, et al. Resources survey and progress of biocontrol on root-knot nematodes[J]. Journal of Microbiology, 2004, 31(1): 100−104. doi: 10.3969/j.issn.0253-2654.2004.01.023

    [11]

    Sun M H, Gao L, Shi Y X, et al. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential[J]. Journal of Invertebrate Pathology, 2006, 93(1): 22−28. doi: 10.1016/j.jip.2006.03.006

    [12]

    Chubachi K, et al. Suppressive effects of antinematodal Streptomyces spp. on root-knot nematodes of cucumber caused by Meloidogyne incognita[J]. Biocontrol Science, 2002, 7(1): 25−29. doi: 10.4265/bio.7.25

    [13] 牛秋红, 董冰雪, 黄思良, 等. 松材线虫生防细菌的筛选、鉴定及其毒性因子的初步研究[J]. 中国生物工程杂志, 2010, 30(8):76−81.

    Niu Q H, Dong B X, Huang S L, et al. Screening, identification and virulence factor determination of the bacteria with nematicidal activity to Bursaphelenchus xylophilus[J]. China Biotechnology, 2010, 30(8): 76−81.

    [14] 李亮亮, 谈家金, 陈凤毛. 两株松材线虫拮抗细菌的筛选和鉴定[J]. 南京林业大学学报(自然科学版), 2017, 41(4):37−41.

    Li L L, Tan J J, Chen F M. The Screening and identification of two bacterial strains with nematicidal activity against Bursaphelenchus xylophilus[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4): 37−41.

    [15] 陆铮铮, 彭丽娟, 丁海霞, 等. 烟草青枯菌拮抗放线菌的筛选及鉴定[J]. 中国烟草科学, 2013, 34(2):54−58.

    Lu Z Z, Peng L J, Ding H X, et al. Screening and identifying of antagonistic actinomycetes against Ralstonia solancearum[J]. Chinese Tobacco Sciense, 2013, 34(2): 54−58.

    [16] 刘东风. 棕榈油中脂肪酸组成的气相色谱:质谱分析[J]. 福建轻纺, 2018(1):47−50. doi: 10.3969/j.issn.1007-550X.2018.01.004

    Liu D F. Analysis of fatty acids in palm oil by gas chromatography-mass spectrometry[J]. Journal of Fujian Textile, 2018(1): 47−50. doi: 10.3969/j.issn.1007-550X.2018.01.004

    [17]

    McCracken R J, et al. Transfer of nitrofuran residues from parent broiler breeder chickens to broiler progeny[J]. British Poultry Science, 2005, 46(3): 287−292. doi: 10.1080/00071660500098327

    [18] 马媛媛. 抗线虫放线菌筛选及其对番茄生长与根际微生态系统的影响[D]. 陕西杨凌: 西北农林科技大学, 2017.

    Ma Y Y. Screening of nematode resistant actinomycetes and their effects on tomato growth and rhizosohere microecological system[D]. Shaanxi Yanglin: Northwest University of Agriculture and Forestry Science and Technology, 2017.

    [19] 黄惠琴, 袁维道, 魏华, 等. 一株抗根结线虫放线菌的筛选与鉴定[J]. 生物技术通报, 2013(11):175−179.

    Huang H Q, Yuan W D, Wei H, et al. Screening and identification of an actinomycete strain with nematicidal activity[J]. Biote chnology Bulletin, 2013(11): 175−179.

    [20] 谭卓. 链霉菌Snea253代谢物中脂溶性活性物质的结构解析及杀线虫机理研究[D]. 沈阳: 沈阳农业大学, 2016.

    Tan Z. Chemical structure analysis on metabolite and nematicidal mechanism of Streptomyces venezuelae Snea352[D]. Shenyang: Shenyang Agricultural University, 2016.

    [21] 谭卓, 朱峰, 朱晓峰, 等. 委内瑞拉链霉菌Snea253杀线虫活性化合物的分离纯化与结构鉴定[J]. 江苏农业科学, 2017, 45(11):81−84.

    Tan Z, Zhu F, Zhu X F, et al. Isolation, purification and structural identification of nematocidal compounds from Streptomyces venezuela Snea253[J]. Jiangsu Agricultural Sciences, 2017, 45(11): 81−84.

    [22] 王云, 郑豪盈, 樊永欣, 等. 一株北里孢菌株的分离鉴定及其对松材线虫的致病性[J]. 微生物学通报, 2014, 41(10):2035−2042.

    Wang Y, Zheng H Y, Fan Y X, et al. Screening, identification and the virulence factor of an actinomycete Strain Kitasatospora sp. C620 to Bursaphelenchus xylophilus[J]. Journal of Microbiology, 2014, 41(10): 2035−2042.

    [23] 田阳, 何宗均, 孙建华. 海洋放线菌BH3A8代谢产物杀线虫活性研究[J]. 天津农业科学, 2014, 20(11):9−14. doi: 10.3969/j.issn.1006-6500.2014.11.003

    Tian Y, He Z J, Sun J H. Nematicidal activity about metabolic of Marine Actinomyces BH3A8[J]. Tianjin Agricultural Sciences, 2014, 20(11): 9−14. doi: 10.3969/j.issn.1006-6500.2014.11.003

    [24] 陈聪聪, 王超, 郭群群, 等. 杀松材线虫海洋放线菌HT-8的鉴定及培养条件的研究(英文)[J]. 微生物学杂志, 2016, 36(6):54−60. doi: 10.3969/j.issn.1005-7021.2016.06.009

    Chen C C, Wang C, Guo Q Q, et al. Identification and culture condition study of marine actinomycete HT-8 with nematicidal activity against pine wood nematode[J]. Journal of Microbiology, 2016, 36(6): 54−60. doi: 10.3969/j.issn.1005-7021.2016.06.009

    [25] 生威, 吴雪宁, 李诗洁, 等. 呋喃它酮代谢物可视化凝胶柱快速免疫检测方法研究[J]. 现代食品科技, 2017, 33(5):277−281.

    Sheng W, Wu X N, Li S J, et al. Study of a Gel-based Immunoassay Method for the Rapid Visual Detection of Furaltadone Metabolites[J]. Modern Food Science and Technology, 2017, 33(5): 277−281.

    [26] 冯敏. 呋喃它酮代谢物酶免疫分析方法的研究[D]. 太原: 山西大学, 2017.

    Feng M. Study of enzyme immunoassay for Furaltadone metabolite[D]. Taiyuan: Shanxi University, 2017.

  • 期刊类型引用(0)

    其他类型引用(4)

图(7)  /  表(3)
计量
  • 文章访问数:  2755
  • HTML全文浏览量:  495
  • PDF下载量:  34
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-11-22
  • 网络出版日期:  2019-04-29
  • 发布日期:  2019-03-31

目录

    /

    返回文章
    返回