高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海南省3座城市的植物多样性水平对比研究

何荣晓 杨帆 闫蓬勃 韦家瑜

何荣晓, 杨帆, 闫蓬勃, 韦家瑜. 海南省3座城市的植物多样性水平对比研究[J]. 北京林业大学学报, 2019, 41(4): 107-115. doi: 10.13332/j.1000-1522.20180315
引用本文: 何荣晓, 杨帆, 闫蓬勃, 韦家瑜. 海南省3座城市的植物多样性水平对比研究[J]. 北京林业大学学报, 2019, 41(4): 107-115. doi: 10.13332/j.1000-1522.20180315
He Rongxiao, Yang Fan, Yan Pengbo, Wei Jiayu. Comparison in plant diversity in Haikou, Sanya and Wenchang cities of Hainan Province, southern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 107-115. doi: 10.13332/j.1000-1522.20180315
Citation: He Rongxiao, Yang Fan, Yan Pengbo, Wei Jiayu. Comparison in plant diversity in Haikou, Sanya and Wenchang cities of Hainan Province, southern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 107-115. doi: 10.13332/j.1000-1522.20180315

海南省3座城市的植物多样性水平对比研究

doi: 10.13332/j.1000-1522.20180315
基金项目: 海南省重点研发计划项目(ZDYF2018181),海南省自然科学基金项目(317003),海南大学科研启动基金项目(KYQD(ZR)1839)
详细信息
    作者简介:

    何荣晓,博士,讲师。主要研究方向:城市植物多样性与生态景观规划。Email:rx.he@hainu.edu.cn 地址:570228 海南省海口市人民大道58号

    责任作者:

    闫蓬勃,博士,林业工程师。主要研究方向:城市林业与园林植物。Email:yyypb@126.com 地址:541006 广西壮族自治区桂林市雁山区良丰路26号

  • 中图分类号: S731.2

Comparison in plant diversity in Haikou, Sanya and Wenchang cities of Hainan Province, southern China

  • 摘要: 目的通过对海南省3座城市的植物组成进行分析,探讨了各城市植物多样性形成差异的驱动因素,为今后城市植物多样性保护和布局等研究工作提供参考。方法以海南省的海口、文昌和三亚为研究对象,在城市规划区域内进行随机抽样的调查方法,调查内容包括样方内的物种、胸径、冠幅、株高、数量、植被覆盖面积等信息,应用β相异性指数研究群落和物种的组成差异,对各城市植物多样性在物种、功能和谱系层面进行显著性差异分析,通过对比探讨影响城市植物多样性差异的因素。结果(1)海口市规划区共统计了227种植物,归属于71科184属;三亚市规划区共统计了244种植物,归属于76科204属;文昌市规划区共统计了230种植物,归属于72科181属。(2)3座城市的乡土物种β相异性均高于外来物种,乔木层的物种β相异性比灌木层和草本层低。(3)3座城市的乔木层物种多样性指数无显著差异;文昌的灌木层物种多样性指数显著低于海口和三亚2个城市(P < 0.05);三亚和文昌草本层的Simpson指数和Shannon-Wiener指数均呈现显著差异(P < 0.05),且文昌的各多样性指数值较高。(4)文昌和另外2座城市之间灌木层的功能均匀度指数(FEve)和功能离散度指数(FDis)均呈现了显著差异,文昌的灌木层功能多样性指数显著低于海口和三亚(分别为P < 0.01和P < 0.001),与灌木层的物种多样性结果一致。(5)文昌乔木层的谱系多样性指数(PD)值显著高于海口,三亚灌木层的PD指数值显著高于文昌,文昌草本层的PD指数值显著高于海口和三亚(P < 0.01)。灌木层和草本层的谱系均匀度指数(PSE)结果与PD指数一致(分别为P < 0.001和P < 0.01),但在乔木层没有呈现显著差异(P = 0.690)。结论海南省3座城市的乡土物种组成差异性比外来物种更为明显,但整体植被种类未呈现出明显的同质性的特征。3座城市物种多样性、功能多样性和谱系多样性水平的高低趋势基本保持一致。未来研究中,分析城市中多个层面的植物多样性差异,可以更全面地对多样性格局的保护和控制提供决策依据。

     

  • 图  1  海口、文昌和三亚的地理位置

    Figure  1.  Location of Haikou, Wenchang and Sanya cities

    图  2  3座城市的规划区及样方分布图

    Figure  2.  Maps of urban planning areas and locations of sampling plots

    图  3  3座城市不同生活型的物种多样性指数

            不同小写字母代表差异显著。下同。Different lowercase letters indicate significant difference. The same below.

    Figure  3.  Species diversity indices in different life types in the three cities

    图  4  3座城市不同生活型的功能多样性指数

    Figure  4.  Functional diversity indices in different life types in the three cities

    图  5  3座城市不同生活型的谱系多样性

    Figure  5.  Phylogenetic diversity indices in different life types in the three cities

    表  1  城市规划区样方调查植物种类组成统计

    Table  1.   Statistics of floristic composition in the urban planning area of the three cities

    类型 Type    海口 Haikou 三亚 Sanya 文昌 Wenchang
    种数
    Species number
    比例
    Proportion/%
    种数
    Species number
    比例
    Proportion/%
    种数
    Species number
    比例
    Proportion/%
    乔木层 Tree layer 69 30.40 81 33.20 69 30.00
    灌木层 Shrub layer 75 33.04 78 31.97 69 30.00
    草本层 Grass layer 83 36.56 85 34.83 92 40.00
    乡土种 Native species 111 48.90 134 54.92 140 60.87
    外来种 Exotic species 116 51.10 110 45.08 90 39.13
    总物种数 Total species number 227 244 230
    下载: 导出CSV

    表  2  各城市间的β相异性指数

    Table  2.   β dissimilarity indices between any two cities

    城市
    City
    组别
    Group
    Jaccard相异性指数
    Jaccard dissimilarity index
    Bray-Curtis相异性指数
    Bray-Curtis dissimilarity index
    有/无数据
    Presence/absence data
    多度数据
    Abundant data
    有/无数据
    Presence/absence data
    多度数据
    Abundant data
    乔木层 Tree layer 0.484 0.647 0.319 0.478
    灌木层 Shrub layer 0.703 0.811 0.542 0.683
    海口&文昌
    Haikou & Wenchang
    草本层 Grass layer 0.704 0.797 0.543 0.565
    乡土种 Native species 0.694 0.532
    外来种 Exotic species 0.576 0.405
    总体 Total 0.644 0.475
    乔木层 Tree layer 0.515 0.773 0.347 0.631
    灌木层 Shrub layer 0.583 0.795 0.412 0.660
    海口&三亚
    Haikou & Sanya
    草本层 Grass layer 0.698 0.749 0.536 0.599
    乡土种 Native species 0.659 0.492
    外来种 Exotic species 0.552 0.381
    总体 Total 0.607 0.435
    乔木层 Tree layer 0.585 0.799 0.413 0.666
    灌木层 Shrub layer 0.699 0.914 0.537 0.842
    文昌&三亚
    Wenchang & Sanya
    草本层 Grass layer 0.689 0.717 0.525 0.558
    乡土种 Native species 0.692 0.529
    外来种 Exotic species 0.616 0.446
    总体 Total 0.661 0.494
    注:有/无数据,仅采集判断样地中是否存在这一物种,对物种的多度、出现频率等信息不予考虑。Notes: presence /absence data, only the presence of species in the sample plot was collected, and information such as the abundance and frequency of occurrence of the species was not considered.
    下载: 导出CSV
  • [1] Singh A, Abhilash P C. Agricultural biodiversity for sustainable food production[J]. Journal of Cleaner Production, 2018, 172: 1368−1369. doi: 10.1016/j.jclepro.2017.10.279
    [2] Heywood V H. Ethnopharmacology, food production, nutrition and biodiversity conservation: towards a sustainable future for indigenous peoples[J]. Journal of Ethnopharmacology, 2011, 137(1): 1−15. doi: 10.1016/j.jep.2011.05.027
    [3] Farinha-Marques P, Lameiras J M, Fernandes C, et al. Urban biodiversity: a review of current concepts and contributions to multidisciplinary approaches[J]. Innovation: The European Journal of Social Science Research, 2011, 24(3): 247−271. doi: 10.1080/13511610.2011.592062
    [4] Witte J P M, Meuleman J A M, Van der Schaaf S, et al. Eco-hydrology and biodiversity[J]. Unsaturated Zone Modelling: Progress, Challenges and Applications, 2004(6): 301−329.
    [5] Marinidou E. Estimation of tree cover contribution to climate regulation and biodiversity conservation: a methodology design and application in Chiapas, México[M]. Turrialba: CATIE, 2009.
    [6] Dobson A P. Soil conservation and biodiversity[M]. New York: W.H. Freeman and Co, 1996.
    [7] 马克平, 钱迎倩. 生物多样性保护及其研究进展[J]. 应用与环境生物学报, 1998, 4(1):96−100.

    Ma K P, Qian Y Q. Biodiversity conservation and its research progress[J]. Chinese Journal of Applied and Environmental Biology, 1998, 4(1): 96−100.
    [8] Malla U M. Biodiversity: living wealth of Nepal[J]. Nepal Geographical Society, 2011, 32: 1−24.
    [9] Schmidt O, Bolger T, Creamer R, et al. The living soil: biodiversity and functions[J/OL]. The Soils of Ireland, 2018: 257−265[2018−12−30]. https://doi.org/10.1007/978-3-319-71189-8_18.
    [10] 雷一东, 唐先华. 城市植物多样性应用及其实现途径[J]. 城市问题, 2007(3):32−35. doi: 10.3969/j.issn.1002-2031.2007.03.007

    Lei Y D, Tang X H. Application of urban plant diversity and its realization[J]. Urban Problems, 2007(3): 32−35. doi: 10.3969/j.issn.1002-2031.2007.03.007
    [11] Riley C B, Herms D A, Gardiner M M. Exotic trees contribute to urban forest diversity and ecosystem services in inner-city Cleveland, OH[J]. Urban Forestry & Urban Greening, 2018, 29: 367−376.
    [12] Knapp S, Kühn I, Stolle J, et al. Changes in the functional composition of a Central European urban flora over three centuries[J]. Perspectives in Plant Ecology Evolution and Systematics, 2010, 12(3): 235−244. doi: 10.1016/j.ppees.2009.11.001
    [13] Sukopp H. Human-caused impact on preserved vegetation[J]. Landscape & Urban Planning, 2004, 68(4): 347−355.
    [14] Gilbert O L. The ecology of urban habitats[M]. New York: Chapman & Hall, 1989.
    [15] Decandido R, Muir A A, Gargiullo M B. A first approximation of the historical and extant vascular flora of New York City: implications for native plant species conservation[J]. Journal of the Torrey Botanical Society, 2004, 131(3): 243−251. doi: 10.2307/4126954
    [16] Mckinney M L. Urbanization as a major cause of biotic homogenization[J]. Biological Conservation, 2006, 127(3): 247−260. doi: 10.1016/j.biocon.2005.09.005
    [17] Alberti M. Eco-evolutionary dynamics in an urbanizing planet[J]. Trends in Ecology & Evolution, 2015, 30(2): 114−126.
    [18] 毛齐正, 马克明, 邬建国, 等. 城市生物多样性分布格局研究进展[J]. 生态学报, 2013, 33(4):1051−1064.

    Mao Q Z, Ma K M, Wu J G, et al. An overview of advances in distribution pattern of urban biodiversity[J]. Acta Ecologica Sinica, 2013, 33(4): 1051−1064.
    [19] 王光美, 杨景成, 姜闯道, 等. 生物同质化研究透视[J]. 生物多样性, 2009, 17(2):117−126.

    Wang G M, Yang J C, Jiang C D, et al. A literature review on biotic homogenization[J]. Biodiversity Science, 2009, 17(2): 117−126.
    [20] Nowak D J, Walton J T, Stevens J C, et al. Effect of plot and sample size on timing and precision of urban forest assessments[J]. Arboriculture and Urban Forestry, 2008, 34(6): 386−390.
    [21] 杨小波, 海南植物名录[M]. 北京: 科学出版社. 2013.

    Yang X B. Hainan plant list[M]. Beijing: Science Press, 2013.
    [22] Williams N S G, Hahs A K, Vesk P A. Urbanisation, plant traits and the composition of urban floras[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17(1): 78−86. doi: 10.1016/j.ppees.2014.10.002
    [23] Knapp S, Kühn, Bakker J P, et al. How species traits and affinity to urban land use control large-scale species frequency[J]. Diversity & Distributions, 2009, 15(3): 533−546.
    [24] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1993.

    China Botanical Editorial Committee of Chinese Academy of Sciences. Flora reipublicae popularis sinicae[M]. Beijing: Science Press, 1993.
    [25] Webb C O, Donoghue M J. Phylomatic: tree assembly for applied phylogenetics[J]. Molecular Ecology Notes, 2005, 5(1): 181−183. doi: 10.1111/men.2005.5.issue-1
    [26] Faith D P. Conservation evaluation and phylogenetic diversity[J]. Biological Conservation, 1992, 61(1): 1−10. doi: 10.1016/0006-3207(92)91201-3
    [27] Helmus M R, Bland T J, Williams C K, et al. Phylogenetic measures of biodiversity[J]. The American Naturalist, 2007, 169(3): E68−E83. doi: 10.1086/511334
    [28] Yan P, Yang J. Species diversity of urban forests in China[J]. Urban Forestry & Urban Greening, 2017, 28: 160−165.
    [29] Yang J, La Sorte F A, Pysek P, et al. The compositional similarity of urban forests among the world’s cities is scale dependent[J]. Global Ecology and Biogeography, 2015, 24(12): 1413−1423. doi: 10.1111/geb.2015.24.issue-12
    [30] Hope D, Gries C, Zhu W, et al. Socioeconomics drive urban plant diversity[J]. Proceedings of the National Academy of Sciences, 2003, 100(15): 8788−8792. doi: 10.1073/pnas.1537557100
    [31] Lubbe C S, Siebert S J, Cilliers S S. Political legacy of South Africa affects the plant diversity patterns of urban domestic gardens along a socio-economic gradient[J]. Scientific Research and Essays, 2010, 5(19): 2900−2910.
    [32] 中国知网. 中国经济社会发展统计数据库[DB/OL]. 2014[2018−10−01]. http://tongji.cnki.net/kns55/Publish/Area/xj21.html.

    China National Knowledge Infrastructure. China economic and social development statistics database[DB/OL]. 2014[2018−10−01]. http://tongji.cnki.net/kns55/Publish/Area/xj21.html.
    [33] Walker J S, Grimm N B, Briggs J M, et al. Effects of urbanization on plant species diversity in central Arizona[J]. Frontiers in Ecology and the Environment, 2009, 7(9): 465−470. doi: 10.1890/080084
    [34] Ignatieva M. Plant material for urban landscapes in the era of globalization: roots, challenges and innovative solutions[J]. Applied Urban Ecology: A Global Framework. Wiley-Blackwell, 2011: 139−151.
    [35] Smith R M, Thompson K, Hodgson J G, et al. Urban domestic gardens (IX): composition and richness of the vascular plant flora, and implications for native biodiversity[J]. Biological Conservation, 2006, 129(3): 312−322. doi: 10.1016/j.biocon.2005.10.045
    [36] Lososová Z, Chytry M, Lubomír T, et al. Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types[J]. Biological Conservation, 2012, 145(1): 179−184. doi: 10.1016/j.biocon.2011.11.003
    [37] Dearborn D C, Kark S. Motivations for conserving urban biodiversity[J]. Conservation Biology the Journal of the Society for Conservation Biology, 2010, 24(2): 432−440. doi: 10.1111/cbi.2010.24.issue-2
    [38] Byers J E. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes[J]. Oikos, 2002, 97(3): 449−458. doi: 10.1034/j.1600-0706.2002.970316.x
    [39] Kühn I, Brandl R, Klotz S. The flora of German cities is naturally species rich[J]. Evolutionary Ecology Research, 2004, 6(5): 749−764.
    [40] Chao A, Chazdon R L, Shen C T J. Abundance-based similarity indices and their estimation when there are unseen species in samples[J]. Biometrics, 2006, 62(2): 361−371. doi: 10.1111/j.1541-0420.2005.00489.x
    [41] Zhao J, Ouyang Z, Xu W, et al. Sampling adequacy estimation for plant species composition by accumulation curves: a case study of urban vegetation in Beijing, China[J]. Landscape and Urban Planning, 2010, 95(3): 113−121. doi: 10.1016/j.landurbplan.2009.12.008
    [42] Legendre P, De Cáceres M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning[J]. Ecology Letters, 2013, 16(8): 951−963. doi: 10.1111/ele.2013.16.issue-8
    [43] Mouchet M A, Sébastien V, Mason N W H, et al. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules[J]. Functional Ecology, 2010, 24(4): 867−876. doi: 10.1111/fec.2010.24.issue-4
    [44] Duncan R P, Clemants S E, Corlett R T, et al. Plant traits and extinction in urban areas: a meta-analysis of 11 cities[J]. Global Ecology and Biogeography, 2011, 20(4): 509−519. doi: 10.1111/j.1466-8238.2010.00633.x
    [45] 慈秀芹, 李捷. 系统发育多样性在植物区系研究与生物多样性保护中的应用[J]. 生物多样性, 2017, 25(2):175−181.

    Ci X Q, Li J. Phylogenetic diversity and its application in floristics and biodiversity conservation[J]. Biodiversity Science, 2017, 25(2): 175−181.
    [46] Cadotte M W, Dinnage R, Tilman D. Phylogenetic diversity promotes ecosystem stability[J]. Ecology, 2012, 93(Suppl.8): S223−S233.
    [47] Cadotte M W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity[J]. Proceedings of the National Academy of Sciences, 2013, 110(22): 8996−9000. doi: 10.1073/pnas.1301685110
    [48] 周晓果, 卢文科, 叶铎, 等. 基于系统发育和功能性状的森林群落构建机制[J]. 广西科学, 2014(5):525−533. doi: 10.3969/j.issn.1005-9164.2014.05.010

    Zhou X G, Lu W K, Ye D, et al. Assembly mechanism of forest community based on phylogeny and functional traits[J]. Guangxi Sciences, 2014(5): 525−533. doi: 10.3969/j.issn.1005-9164.2014.05.010
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  585
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-10
  • 修回日期:  2019-03-04
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回