高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征

任玉连 陆梅 曹乾斌 李聪 冯峻 王志胜

任玉连, 陆梅, 曹乾斌, 李聪, 冯峻, 王志胜. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104-115. doi: 10.13332/j.1000-1522.20180319
引用本文: 任玉连, 陆梅, 曹乾斌, 李聪, 冯峻, 王志胜. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104-115. doi: 10.13332/j.1000-1522.20180319
Ren Yulian, Lu Mei, Cao Qianbin, Li Cong, Feng Jun, Wang Zhisheng. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104-115. doi: 10.13332/j.1000-1522.20180319
Citation: Ren Yulian, Lu Mei, Cao Qianbin, Li Cong, Feng Jun, Wang Zhisheng. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104-115. doi: 10.13332/j.1000-1522.20180319

南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征

doi: 10.13332/j.1000-1522.20180319
基金项目: 云南省应用基础研究面上项目(2013FB053),西南林业大学博士科研启动基金项目(111901),云南省高校优势特色重点学科(05000511311),西南林业大学科技创新(C17129)
详细信息
    作者简介:

    任玉连。主要研究方向:土壤生态。Email:renyulian0411@163.com 地址:650224 云南省昆明市盘龙区白龙路300号西南林业大学生态与环境学院

    责任作者:

    陆梅,博士,副教授。主要研究方向:土壤微生物生态与湿地生态。Email:lumeizx@126.com 地址:同上

  • 中图分类号: S714.7;S718.5

Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China

  • 摘要: 目的植被群落随山地海拔升高呈现有规律的垂直分布,能够引起样地微气候及土壤性质的改变,进而影响碳氮在土壤中的沉积。因此,不同典型植被类型土壤碳氮储量的空间分布特征是山地生态系统碳氮循环研究的重要内容。本文旨在探明南滚河自然保护区不同典型植被类型土壤有机碳及全氮储量沿海拔梯度的变化及其与环境因子的耦合关系。方法选取南滚河自然保护区沿海拔形成的3种典型植被类型(沟谷雨林、半常绿季雨林和中山湿性常绿阔叶林)为研究对象,研究不同植被类型之间土壤有机碳及全氮储量的变化规律,并运用线性回归和RDA冗余分析等方法研究环境因子沿海拔变化对土壤有机碳及全氮储量的影响。结果不同典型植被类型土壤有机碳与全氮储量随海拔升高呈现显著增加的变化趋势(P < 0.05),即沟谷雨林(89.10 t/hm2,11.94 t/hm2) < 半常绿季雨林(190.30 t/hm2,25.34 t/hm2) < 中山湿性常绿阔叶林(508.05 t/hm2,56.55 t/hm2),这种变化规律与凋落物厚度、年均降水量、土壤含水量、总有机碳及全氮沿海拔的变化相一致;不同植被类型土壤有机碳储量均随土层深度增加呈先增后降的垂直变化规律,而土壤全氮储量则随土层深度增加呈逐渐降低趋势;土壤有机碳及全氮储量与海拔、土壤含水量、总有机碳、全氮、凋落物厚度和年均降水量呈极显著正相关(P < 0.01),与土壤密度、pH、年均气温和土壤温度呈极显著负相关(P < 0.01),冗余分析表明凋落物厚度与土壤含水量是影响有机碳和全氮储量的主导因子。结论热带地区植被类型沿海拔梯度有规律的分布,能够通过改变样地微气候(如温度、水分)、凋落物输入(凋落物厚度)及土壤理化环境(如土壤密度、C与N含量等),进而显著影响土壤有机碳及全氮储量的空间分布。

     

  • 图  1  不同典型植被类型土壤有机碳和全氮储量垂直分布特征

    RF. 沟谷雨林;HF. 半常绿季雨林;MF. 中山湿性常绿阔叶林。在不同土层,同一植被带间不同小写字母表示差异显著(P < 0.05)。下同。 RF, ravine rainforest; HF, half evergreen monsoon forest; MF, mid-montane humid evergreen broadleaved forest. Different lowercase letters indicate significant difference (P < 0.05) among the same vegetation types in different soil layers. The same below.

    Figure  1.  Vertical distribution characteristics of soil organic carbon and nitrogen stock in different typical vegetation types

    图  2  不同典型植被类型土壤有机碳和全氮储量

    不同小写字母表示不同典型植被类型土壤有机碳和全氮储量的差异显著(P < 0.05)。Different lowercase letters at different typical vegetation types of the soil organic carbon and nitrogen stock indicate significant differences (P < 0.05).

    Figure  2.  Soil organic carbon and total nitrogen stock of different typical vegetation types

    图  3  不同典型植被类型水热条件和凋落物厚度的变化特征

    不同小写字母表示不同典型植被类型水热条件和凋落物厚度的差异显著(P < 0.05)。Different lowercase letters at different typical vegetation type of the hydro-thermal conditions and litter thickness indicate significant differences (P < 0.05).

    Figure  3.  Variation characteristics of hydro-thermal conditions and litter thickness of different typical vegetation types

    图  4  环境因子与土壤有机碳及全氮储量之间的关系

    Figure  4.  Relationship between environment factors and soil organic carbon and total nitrogen stock

    图  5  环境因子与土壤有机碳、全氮储量的冗余度分析

    CS. 有机碳储量Organic carbon storage;NS. 全氮储量Nitrogen storage;AP. 年均降水量Average annual precipitation;M. 海拔Altitude;LT. 凋落物厚度Litter thickness;AT. 年均气温Average annual air temperature;ST. 土壤温度Soil temperature;WC. 含水量Water content;TN. 全氮Total nitrogen;C/N. 碳氮比Carbon to nitrogen ratio.

    Figure  5.  Redundancy analysis of environment factors and soil organic carbon and total nitrogen stock

    表  1  样地基本情况

    Table  1.   Basic situation of the sample plot

    项目
    Item
    沟谷雨林
    Ravine rainforest
    半常绿季雨林
    Semi-evergreen monsoon rainforest
    中山湿性常绿阔叶林
    Mid-montane humid evergreen broadleaved forest
    样地编号
    Sample site No.
    E1、E2、E3E4、E5、E6E7、E8、E9
    海拔
    Altitude/m
    543 ~ 5541 260 ~ 1 2702 173 ~ 2 178
    经纬度
    Latitude and longitude
    98°59′17″ ~ 98°59′18″E98°57′55″ ~ 98°57′55″E99°12′36″ ~ 99°12′37″E
    23°13′41″ ~ 23°13′42″N23°15′38″ ~ 23°15′39″N23°19′20″ ~ 23°19′21″N
    坡度
    Slope degree/(°)
    10 ~ 1335 ~ 3810 ~ 14
    坡向
    Slope aspect
    北偏东 North by east北偏西 North by west南偏东 South by east
    优势植物
    Dominant plant
    重阳木、紫茎泽兰、褐鞘沿阶草Bischofia polycarpa, Ageratina adenophora, Ophiopogon dracaenoides黄牛木、莎草、山香缘 Cratoxylon cochinchinensis, Cyperum rotundus, Turpinia montana木姜子、土牛膝、紫茎泽兰 Neolitsea homilantha, Achyranthes asper, Ageratina adenophora
    郁闭度
    Canopy density
    0.930.880.86
    土壤类型
    Soil type
    砖红壤 Latosol赤红壤 Lateritic red soil黄壤 Yellow soil
    母质
    Parent material
    千枚岩 Phyllite砂岩 Sandstone砂岩 Sandstone
    下载: 导出CSV

    表  2  不同典型植被类型土壤理化性质分布特征

    Table  2.   Distribution characteristics of soil physicochemical property in different typical vegetation types

    典型植被类型
    Typical vegetation type
    土层深度
    Soil depth/cm
    含水量
    Water content/%
    土壤密度
    Soil bulk density/
    (g·cm− 3)
    总有机碳
    Total organic
    carbon/(g·kg− 1)
    全氮
    Total nitrogen/
    (g·kg− 1)
    碳氮比
    Carbon to nitrogen ratio(C/N)
    pH
    沟谷雨林
    Ravine rainforest
    0 ~ 2042.19 ± 3.41Ab1.28 ± 0.04Ba13.11 ± 0.83Ac2.84 ± 0.94Ab4.62 ± 0.14Bb5.17 ± 0.05Ba
    20 ~ 4039.24 ± 1.71Ab1.41 ± 0.07Aa9.50 ± 0.22Bb1.28 ± 0.66Bb7.57 ± 0.46Aa5.62 ± 0.04Aa
    40 ~ 6040.70 ± 1.82Ab1.47 ± 0.02Aa3.86 ± 0.06Cc1.06 ± 0.34Bb3.64 ± 0.16Bb5.81 ± 0.09Aa
    平均 Average40.71 ± 0.49C1.38 ± 0.03A8.83 ± 1.55C1.73 ± 0.32B5.28 ± 0.52A5.53 ± 0.11A
    半常绿季雨林
    Semi-evergreen monsoon rainforest
    0 ~ 2048.02 ± 2.73Ab0.92 ± 0.03Bb19.76 ± 1.82Ab3.36 ± 0.58Ab6.07 ± 0.64Ba5.00 ± 0.03Aa
    20 ~ 4046.43 ± 1.94Aab1.18 ± 0.02Ab11.54 ± 1.09Bb1.62 ± 0.19Bb7.13 ± 0.10ABab5.12 ± 0.09Aab
    40 ~ 6043.35 ± 2.46Ab1.22 ± 0.01Ab8.15 ± 0.17Cb0.94 ± 0.06Cb8.81 ± 0.53Aa5.26 ± 0.06Aab
    平均 Average45.93 ± 0.79B1.11 ± 0.06B13.15 ± 1.99B1.97 ± 0.42B7.34 ± 0.46A5.13 ± 0.04A
    中山湿性常绿阔叶林
    Mid-montane humid evergreen broadleaved forest
    0 ~ 2060.00 ± 3.76Aa0.91 ± 0.02Bb89.79 ± 2.98Aa15.36 ± 1.24Aa5.86 ± 0.19Ba3.91 ± 0.07Bb
    20 ~ 4058.23 ± 2.34Aa1.13 ± 0.05Ab48.13 ± 1.85Ba7.88 ± 0.89Ba6.14 ± 0.21Bb4.23 ± 0.03ABb
    40 ~ 6056.55 ± 4.20Aa1.16 ± 0.04Ab35.61 ± 1.17Ba4.32 ± 0.44Ca8.28 ± 0.16Aa4.50 ± 0.04Ab
    平均 Average58.26 ± 0.58A1.06 ± 0.04B57.85 ± 9.46A9.19 ± 1.88A6.76 ± 0.44A4.22 ± 0.10B
    注:不同小写字母表示不同植被类型相同土层的差异显著(P < 0.05),不同大写字母表示同一植被类型不同土层的差异显著(P < 0.05)。
    Notes: different lowercase letters indicate significant differences in soil layers of different vegetation types (P < 0.05), and different capital letters indicate significant differences in different soil layers of the same vegetation type (P < 0.05).
    下载: 导出CSV
  • [1] Reich P B, Hohhie S E, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440: 922−925. doi: 10.1038/nature04486
    [2] 苗娟, 周传艳, 李世杰, 等. 不同林龄云南松林土壤有机碳和全氮积累特征[J]. 应用生态学报, 2014, 25(3):625−631.

    Miao J, Zhou C Y, Li S J, et al. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 625−631.
    [3] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19):5437−5448.

    Liu S R, Wang H, Luan J W. Review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448.
    [4] Post W M, Emanuel W R. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 151−159.
    [5] Boruclci W J, Chameides W L. Lightning: estimates of rates of energy dissipation and nitrogen fixation[J]. Reviews of Geophysics and Space Physic, 1984, 22(4): 363−372. doi: 10.1029/RG022i004p00363
    [6] 黄从德, 张健, 杨万勤, 等. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 2009, 29(3):1217−1225. doi: 10.3321/j.issn:1000-0933.2009.03.017

    Huang C D, Zhang J, Yang W Q, et al. Spatial distribution characteristics of forest soi1 organic carbon stock in Sichuan Province[J]. Acta Ecologica Sinica, 2009, 29(3): 1217−1225. doi: 10.3321/j.issn:1000-0933.2009.03.017
    [7] 李君剑, 杜宏宇, 刘菊, 等. 关帝山不同海拔土壤碳矿化和微生物特征[J]. 中国环境科学, 2018, 38(5):1811−1817. doi: 10.3969/j.issn.1000-6923.2018.05.026

    Li J J, Du H Y, Liu J, et al. Soil organic mineralization and microbial characteristics along an altitudinal gradient in Guandi Mountain[J]. China Environmental Science, 2018, 38(5): 1811−1817. doi: 10.3969/j.issn.1000-6923.2018.05.026
    [8] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623−1627. doi: 10.1126/science.1097396
    [9] Davidson E A, Verchot L V, Cattnio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biochemistry, 2000, 48(1): 53−69.
    [10] Melillo J M, Butler S, Johnson J, et al. Soil warming,carbon-nitrogen interactions,and forest carbon budgets[J]. Proceedings of the National Academy of Science of the United States of America, 2011, 108(23): 9508−9512. doi: 10.1073/pnas.1018189108
    [11] 罗由林, 李启权, 王昌全, 等. 川中丘陵县域土壤碳氮比空间变异特征及其影响因素[J]. 应用生态学报, 2015, 26(1):177−185.

    Luo Y L, Li Q Q, Wang C Q, et al. Spatial variability of soil C/N ratio and its influence factors at a county scale in hilly area of Mid-Sichuan Basin, Southwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 177−185.
    [12] 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000, 24(6):674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006

    Wang Q B, Li L H, Bai Y F, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities[J]. Acta Phytoecologica Sinica, 2000, 24(6): 674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006
    [13] Garten C T, Post W M, Hanson P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2): 115−145.
    [14] 姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学, 2005, 41(1):10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003

    Jiang P K. Study on soil active organic carbon pool under different stands[J]. Forestry Science, 2005, 41(1): 10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003
    [15] 肖以华. 冰雪灾害导致的凋落物对亚热带森林土壤碳氮及温室气体通量的影响[D]. 北京: 中国林业科学研究院, 2012.

    Xiao Y H. Effects of litter caused by ice storm input on soil carbon, nitrogen and greenhouse gases flux in subtropical forests of China[D]. Beijing: Chinese Academy of Forestry, 2012.
    [16] Luan J W, Liu S R, Wang J X, et al. Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China[J]. Soil Biology and Biochemistry, 2011, 43(3): 503−512. doi: 10.1016/j.soilbio.2010.11.010
    [17] Rosenkranz P, Dannenmann M, Bruggemann N, et al. Gross rates of ammonification and nitrification at a nitrogen-saturated spruce (Picea abies (L.) Karst.) stand in southern Germany[J]. European Journal of Soil Science, 2010, 61(5): 745−758. doi: 10.1111/j.1365-2389.2010.01274.x
    [18] Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon[M]//Powlson D S. Evaluation of soil organic matter models. Berlin: Heidelberg Springer-Verlag, 1996: 201−224.
    [19] 杨万勤, 邓仁菊, 张健. 森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报, 2007, 18(12):2889−2895.

    Yang W Q, Deng R J, Zhang J. Forest litter decomposition and its responses to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889−2895.
    [20] Austin A T, Vitousek P M. Precipitation,decomposition and litter decomposability of Metrosideros polymorpha in native forest on Hawaii[J]. Journal of Ecology, 2000, 88(1): 129−138. doi: 10.1046/j.1365-2745.2000.00437.x
    [21] 潘学鹏, 吴喜芳, 沈彦俊, 等. 三江并流河源区植被覆盖度对气候要素的响应[J]. 山地学报, 2015, 33(2):218−226.

    Pan X P, Wu X F, Shen Y J, et al. Responses of vegetation coverage changes to climate factors in the source regions of three parallel rivers[J]. Mountain Research, 2015, 33(2): 218−226.
    [22] Njeru C M, Ekesi S, Mohamed S A, et al. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem[J]. Geoderma Regional, 2017, 10: 29−38. doi: 10.1016/j.geodrs.2017.04.002
    [23] 彭舜磊, 王华太, 陈昌东, 等. 宝天曼自然保护区森林土壤碳氮储量分布格局分析[J]. 水土保持研究, 2015, 22(5):30−34.

    Peng S L, Wang H T, Chen C D, et al. Distribution patterns of soil organic carbon and nitrogen storage in forestland of Baotianman Nature Reserve[J]. Research of Soil and Water Conservation, 2015, 22(5): 30−34.
    [24] Xiao Y, An Kai, Yang Y, et al. Forest carbon storage trends along altitudinal gradients in Beijing, China[J]. Journal of Resources and Ecology, 2014, 5(2): 148−156. doi: 10.5814/j.issn.1674-764X.2014.02.007
    [25] Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s[J]. Global Change Biology, 2007, 13(9): 1989−2007. doi: 10.1111/j.1365-2486.2007.01409.x
    [26] 唐芳林, 杜凡, 孙国政. 云南南滚河国家级自然保护区综合科学考察研究[M]. 北京: 中国林业出版社, 2015: 8.

    Tang F L, Du F, Sun G Z. Research on comprehensive scientific investigation of Nangunhe National Nature Reserve in Yunnan[M]. Beijing: China Science and Technology Press, 2015: 8.
    [27] Deng L, Wang K B, Chen M L, et al. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China[J]. Catena, 2013, 110: 1−7. doi: 10.1016/j.catena.2013.06.016
    [28] Zhou G Y, Li L G, Wei X H, et al. Litter-fall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China[J]. Plant Ecology, 2007, 188(1): 77−89.
    [29] 党坤良, 张长录, 陈海滨, 等. 秦岭南坡不同海拔土壤肥力的空间分异规律[J]. 林业科学, 2006, 42(1):16−21. doi: 10.3321/j.issn:1001-7488.2006.01.003

    Dang K L, Zhang C L, Chen H B, et al. Spatial distribution and variation pattern of soil fertility at different altitude on south slope in Qinling Mountains[J]. Scientia Silvae Sinicae, 2006, 42(1): 16−21. doi: 10.3321/j.issn:1001-7488.2006.01.003
    [30] Gao Y, Cheng J M, Ma Z R, et al. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China[J]. Annals of Forest Science, 2014, 71(4): 427−435. doi: 10.1007/s13595-013-0355-z
    [31] Paul E A. Dynamics of organic matter in soils[J]. Plant and Soil, 1984, 76: 275−285. doi: 10.1007/BF02205586
    [32] 李雪峰, 张岩, 牛丽君, 等. 长白山白桦(Betula platyphlla)纯林和桦山杨(Populus davidiana)混交林凋落物的分解[J]. 生态学报, 2007, 27(5):1782−1790. doi: 10.3321/j.issn:1000-0933.2007.05.014

    Li X F, Zhang Y, Niu L J, et al. Litter decomposition processes in the pure birch (Betula platyphlla) and the birch and poplar (Populus davidiana) mixed forest[J]. Acta Ecologica Sinica, 2007, 27(5): 1782−1790. doi: 10.3321/j.issn:1000-0933.2007.05.014
    [33] 张金茜, 巩杰, 柳冬青. 甘肃白龙江流域土壤有机碳与全氮储量的空间格局特征[J]. 土壤通报, 2018, 49(1):23−30.

    Zhang J Q, Gong J, Liu D Q. Spatial distribution characteristics of the storages of soil organic carbon and total nitrogen in the Bailongjiang Watershed of Gansu[J]. Chinese Journal of Soil Science, 2018, 49(1): 23−30.
    [34] 苏永中, 赵哈林. 土壤有机碳储量影响因素及其环境效应的研究进展[J]. 中国沙漠, 2002, 22(3):220−228. doi: 10.3321/j.issn:1000-694X.2002.03.004

    Su Y Z, Zhao H L. Advances in researches on soil organic carbon storages, affecting factors and its environmental effects[J]. Journal of Desert Research, 2002, 22(3): 220−228. doi: 10.3321/j.issn:1000-694X.2002.03.004
    [35] 刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J]. 生态环境学报, 2010, 19(4):883−888. doi: 10.3969/j.issn.1674-5906.2010.04.025

    Liu B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain[J]. Ecology and Environmental Sciences, 2010, 19(4): 883−888. doi: 10.3969/j.issn.1674-5906.2010.04.025
    [36] 肖英, 任希. 不同森林覆盖下长沙土壤氮的垂直变化及氮储量[J]. 中南林业科技大学学报, 2013, 33(6):104−107.

    Xiao Y, Ren X. Vertical variation and storage of soil total nitrogen under different forest cover[J]. Journal of Central South University of Forestry and Technology, 2013, 33(6): 104−107.
    [37] 阿米娜木·艾力, 常顺利, 张毓涛, 等. 天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素[J]. 生态学报, 2014, 34(7):1626−1634.

    Aminem E L, Chang S L, Zhang Y T, et al. Altitudinal distribution rule of Picea schrenkiana forest’s soil organic carbon and its influencing factors[J]. Acta Ecologica Sinica, 2014, 34(7): 1626−1634.
    [38] 刘倩, 王书丽, 邓邦良, 等. 武功山山地草甸不同海拔凋落物-土壤碳、氮、磷含量及其生态化学计量特征[J]. 应用生态学报, 2018, 29(5):1535−1541.

    Liu Q, Wang S L, Deng B L, et al. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry in litters and soils on meadow of Wugong Mountain Jiangxi, China at different altitudes[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1535−1541.
    [39] Xiang C H, Luan J W, Luo Z S, et al. Labile soil organic carbon distribution on influenced by vegetation types along an elevation gradient in west Sichuan,China[J]. Acta Ecologica Sinica, 2010, 30(4): 1025−1034.
    [40] 杨晓梅, 程积民, 孟蕾, 等. 黄土高原森林草原区土壤有机碳库研究[J]. 草业科学, 2010, 27(2):18−23.

    Yang X M, Cheng J M, Meng L, et al. Study on soil organic carbon pool at forest-steppe zone of Loess Plateau[J]. Pratacultural Science, 2010, 27(2): 18−23.
    [41] Quideau S A, Chadwick O A, Trumbore S E, et al. Vegetation control on soil organic matter dynamics[J]. Organic Geochemistry, 2001, 32(2): 247−252. doi: 10.1016/S0146-6380(00)00171-6
    [42] Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial red field-type ratios[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351
    [43] 张希彪, 上官周平. 人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J]. 生态学报, 2006, 26(11):3685−3695. doi: 10.3321/j.issn:1000-0933.2006.11.022

    Zhang X B, Shangguan Z P. Effect of Human-induced disturbance on physical properties of soil in artificial Pinus tabulaeformis Carr. forests of the Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(11): 3685−3695. doi: 10.3321/j.issn:1000-0933.2006.11.022
    [44] Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry, 2000, 48(1): 21−51. doi: 10.1023/A:1006238902976
    [45] Jiang Y, Zhang Y G, Liang W J, et al. Profile distribution and storage of soil organic carbon in an aquic brown soil as affected by land use[J]. Scientia Agricultura Sinica, 2005, 38(3): 544−550.
    [46] Puri G, Ashman M R. Relationship between soil microbial biomass and gross N mineralization[J]. Soil Biology Biochemistry, 1998, 30(2): 251−256. doi: 10.1016/S0038-0717(97)00117-X
    [47] Calderon J F, Louise E J, Scow K M. Microbial response to simulated tillage in cultivated and uncultivated soils[J]. Soil Biology Biochemistry, 2000, 32(11): 1547−1559.
    [48] Huang C Y. Pedology[M]. Beijing: Chinese Agriculture Press, 2000: 67−68.
    [49] Zhang P, Zhang T, Chen N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northem slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 518−524.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1409
  • HTML全文浏览量:  486
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-10
  • 修回日期:  2019-02-20
  • 网络出版日期:  2019-08-29
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回