高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究

于淼 戈晓宇

于淼, 戈晓宇. 基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究[J]. 北京林业大学学报, 2018, 40(12): 97-109. doi: 10.13332/j.1000-1522.20180324
引用本文: 于淼, 戈晓宇. 基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究[J]. 北京林业大学学报, 2018, 40(12): 97-109. doi: 10.13332/j.1000-1522.20180324
Yu Miao, Ge Xiaoyu. Effects of rain flood control about low impact development system in West 10 Plot of Shougang based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2018, 40(12): 97-109. doi: 10.13332/j.1000-1522.20180324
Citation: Yu Miao, Ge Xiaoyu. Effects of rain flood control about low impact development system in West 10 Plot of Shougang based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2018, 40(12): 97-109. doi: 10.13332/j.1000-1522.20180324

基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究

doi: 10.13332/j.1000-1522.20180324
基金项目: 

北京市共建项目 2015BLUREE01

中央高校基本科研业务费专项 2017ZY11

详细信息
    作者简介:

    于淼。主要研究方向:风景园林规划与设计。Email:ym-la@hotmail.com  地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    戈晓宇,博士,讲师。主要研究方向:风景园林规划与设计。Email:datou86604@163.com  地址:同上

  • 中图分类号: UT982.29

Effects of rain flood control about low impact development system in West 10 Plot of Shougang based on the SWMM simulation

  • 摘要: 目的根据《新首钢高端产业综合服务区控制性详细规划》要求,首钢西十项目以消纳北京市3年一遇24 h降雨量(108 mm)为目标进行低影响开发系统设计,从雨水渗透滞留与储存利用两个角度考虑,以西十地块的现状特征为依据制定相应的设计策略。方法针对渗透滞留系统,通过SWMM建立低影响开发模型和传统开发模型,模拟不同重现期(1年一遇、2年一遇、3年一遇、5年一遇、10年一遇、20年一遇)24 h降雨条件下的径流排放过程,对比分析两种开发模式的径流总量、峰值流量和峰现时间;针对储蓄利用系统,通过SWMM模拟2017年全年降雨过程,以周为单位统计外源雨水调蓄池收集的径流总量,与西十地块植物灌溉需水量相比较,分析雨水调蓄池中收集径流的利用情况。结果(1) 依据场地现状在其内部设计绿色屋顶、透水铺装、下凹绿地、植草沟、生物滞留池、雨水调蓄池6种LID设施,在1年一遇、2年一遇、3年一遇、5年一遇、10年一遇、20年一遇的降雨条件下,西十地块低影响开发系统对径流总量的削减率为100%、100%、100%、78.79%、50.41%、34.73%;对峰值流量的削减率为100%、100%、100%、70.12%、33.33%、19.44%,1~3年重现期峰值消失,其后峰值出现时间推迟375、310、240 min。(2)2017年,外源雨水地块雨水调蓄池接纳径流总量9 617 m3,径流收集主要集中在第25~35周,单周最大收水总量为2 078 m3,发生在第27周(6月初),第1~20周、43~52周收水量基本为0;2017年第25周、第27周、第29~32周、第34~35周、第41周雨水调蓄池收集径流量在满足本周灌溉需求后仍有余量,冬季雨水调蓄池空置率较大。结论(1) 低影响开发设施对雨洪问题具有良好的调控效果,可以减少径流总量、峰值流量和推迟峰现时间,但随着时间的推迟削减能力逐渐减弱。低影响开发系统的雨洪调控能力具有上限。(2)根据北京市2017年全年降雨量日值统计,外源雨水地块雨水调蓄池中径流收集的利用率为43.65%,有30周(210 d)雨水调蓄池空置率为100%,较为浪费。在进行低影响开发系统设计时,应综合考虑成本造价等因素。

     

  • 图  1  西十地块及外源雨水地块范围

    Figure  1.  Scope of West 10 Plot and exogenous rainwater area

    图  2  场地条件

    Figure  2.  Site conditions

    图  3  低影响开发系统设计流程图

    Figure  3.  System of rainwater in low impact development (LID) model

    图  4  首钢西十低影响开发系统平面图

    Figure  4.  Plan of LID system of West 10 Plot

    图  5  传统开发模式径流排放路径

    Figure  5.  Drainage path of runoff in traditional development model

    图  6  首钢西十传统雨水系统平面图

    Figure  6.  Plan of traditional storm-water system in Shougang West 10 Plot

    图  7  首钢西十传统雨水系统概化图

    Figure  7.  Generalized map of traditional storm-water system in Shougang West 10 Plot

    图  8  西十地块1年一遇24小时降雨出口径流曲线

    Figure  8.  Runoff curve of 1-year-once 24 hour rainfall event in West 10 Plot

    图  9  西十地块2年一遇24小时降雨出口径流曲线

    Figure  9.  Runoff curve of 2-year-once 24 hour rainfall event in West 10 Plot

    图  10  西十地块3年一遇24小时降雨出口径流曲线

    Figure  10.  Runoff curve of 3-year-once 24 hour rainfall event in West 10 Plot

    图  11  西十地块5年一遇24小时降雨出口径流曲线

    Figure  11.  Runoff curve of 5-year-once 24 hour rainfall event in West 10 Plot

    图  12  西十地块10年一遇24小时降雨出口径流曲线

    Figure  12.  Runoff curve of 10-year-once 24 hour rainfall event in West 10 Plot

    图  13  西十地块20年一遇24小时降雨出口径流曲线

    Figure  13.  Runoff curve of 20-year-once 24 hour rainfall event in West 10 Plot

    图  14  外源雨水地块1年一遇24小时降雨雨水调蓄池瞬时容积变化曲线

    Figure  14.  nstantaneous volume change curve of rain retention barrel of 1-year-once 24 hour rainfall event in exogenous site

    图  15  外源雨水地块2年一遇24小时降雨雨水调蓄池瞬时容积变化曲线

    Figure  15.  Instantaneous volume change curve of rain retention barrel of 2-year-once 24 hour rainfall event in exogenous site

    图  16  外源雨水地块3年一遇24小时降雨雨水调蓄池瞬时容积变化曲线

    Figure  16.  Instantaneous volume change curve of rain retention barrel of 3-year-once 24 hour rainfall event in exogenous site

    图  17  外源雨水地块5年一遇24小时降雨雨水调蓄池瞬时容积变化曲线

    Figure  17.  Instantaneous volume change curve of rain retention barrel of 5-year-once 24 hour rainfall event in exogenous site

    图  18  外源雨水地块10年一遇24小时降雨雨水调蓄池瞬时容积变化曲线

    Figure  18.  Instantaneous volume change curve of rain retention barrel of 10-year-once 24 hour rainfall event in exogenous site

    图  19  外源雨水地块20年一遇24小时降雨雨水调蓄池瞬时容积变化曲线

    Figure  19.  Instantaneous volume change curve of rain retention barrel of 20-year-once 24 hour rainfall event in exogenous site

    图  20  2017年每周植物需水量与雨水调蓄池容积量关系图

    Figure  20.  Diagram of weekly plant water requirement and rainwater storage of rain retention barrel in 2017

    表  1  各类LID设施设计要点

    Table  1.   Design points of LID facilities

    区域Area 低影响开发设施LID facility 设计要点Design point
    西十地块West 10 Plot 种植屋面Planting roof 将具备条件的平屋顶(6 495.1 m2)改建为可上人的屋顶花园,为办公人员提供多样活动空间的同时,在急降雨时可滞存一部分雨水以达到推迟峰现时间的目的The flat roof (6 495.1 m2) which can be converted into a roof garden provides office workers with a variety of activity spaces and retains rainwater in case of emergency rainfall to delay the peak time
    透水铺装Permeable pavement 将场地中工业废弃物加工成透水混凝土砖,应用于地块内主园路(6 647.8 m2)Permeable concrete bricks which are processed from industrial wastes in the site applied to the main garden road (6 647.8 m2) in the plot
    植草沟Vegetative swale 沿硬质边缘形成线性景观带(425.4 m2),以接纳铺装及绿地上的地表径流,将径流输送至雨水花园内部A linear landscape belt (425.4 m2) is formed along the hard edge to accept the surface runoff from pavement and green space and transport the runoff to the rain garden
    下凹式绿地Rain garden 选择地块内部地势较低的区域集中布置两处下凹绿地(1 090.5 m2),一处位于建筑下沉庭院内,可就近接纳周边绿地及铺装上的地表径流;另一处利用下洼料场基址设计成90余米长的带状雨水花园,其为地表终端LID设施,接纳场地内全部径流Two concave green spaces (1 090.5 m2) are arranged centrally in the low-lying area inside the plot. One is located in the sunken courtyard of the building, which can receive the runoff of surrounding green space and pavement. Another site is designed as a belt rain garden more than 90 m long, which is the surface terminal LID facility and accepts all runoff in the site
    生物滞留池Bio-retention cell 在人群活动量相对较小的地势低洼区域布置了1 035.8 m2的生物滞留池,当强降雨发生后,生物滞留池中一定时间内的雨水积蓄不影响场地的正常使用In low-lying areas with relatively small amount of population activity, 1 035.8 m2 of bio-retention cell was arranged. When heavy rainfall occurred, rainwater accumulation in the bio-retention cell within a certain period of time did not affect the normal use of the site
    外源雨水地块Exogenous rainwater area 透水铺装Permeable pavement 将场地中工业废弃物加工成透水混凝土砖,应用于秀池北街、秀池东路人行道(7 422.0 m2)Permeable concrete bricks which are processed from industrial wastes in the site applied to the sidewalks of Xiuchi North Street and Xiuchi East Road (7 422.0 m2)
    植草沟Vegetative swale 沿硬质边缘形成线性景观带(443.1 m2),以接纳铺装及绿地上的地表径流,将径流输送至雨水调蓄池中A linear landscape belt (443.1 m2) is formed along the hard edge to accept the surface runoff from pavement and green space and transport the runoff to the rain retention barrel
    雨水调蓄池Rain retention barrel 外源雨水场地低处设置有雨水调蓄池,以接纳建筑屋顶雨水及全部地表径流。以设计目标为根据进行计算,外源雨水地块雨水调蓄池总容量为4 189 m3,方可达到消纳北京市3年重现期24 h降雨量这一目标。雨水调蓄池内雨水用于西十地块植物灌溉,并设有溢水口,当降雨强度超过地块内部LID设施消纳能力时,雨水通过溢水口排入市政雨水管网A rain retention barrel is installed at the lower level of the exogenous rainwater area to receive rainwater from the roof of the building and all surface runoff. According to the calculation based on the design objective, the total capacity of rain retention barrel in the exogenous rainwater area was 4 189 m3, which can reach the goal of absorbing 24-hour rainfall in the 3-year recurrence period of Beijing. Rainwater in the rain retention barrel is used for plant irrigation in the west 10 plot, and there is an overflow outlet. When the rainfall intensity exceeds the capacity of LID facilities inside the block, rainwater was discharged into the municipal rainwater pipe network through the overflow outlet
    下载: 导出CSV

    表  2  西十地块用地面积及用地比例表

    Table  2.   Table of West 10 Plot of land area and land use ratio

    用地类型Type of land use 项目类型Item type 面积Area/m2 总面积Total area/m2 子项比例Subitem proportion/% 比例Proportion/%
    绿化用地Green space 普通绿地Common green space 15 737.9 18 371.8 37.1 43.4
    植草沟Vegetative swale 425.4 1.1
    生物滞留池Bio-retention cell 1 035.8 2.4
    下沉式绿地Rain garden 1 172.7 2.8
    建筑占地Building space 屋顶花园绿地Green space of roof garden 4 871.3 14 987.3 11.5 35.7
    屋顶花园铺装Impermeable pavement of roof garden 1 623.8 3.8
    不上人硬质屋顶Hard roof of no people 8 492.2 20.4
    园路及铺装场地用地Path and square 透水铺装Permeable pavement 6 647.8 8 954.4 15.6 20.8
    不透水铺装Impermeable pavement 2 306.6 5.2
    水体Water space 景观水体(不具备调蓄功能) Landscape water space (no regulating function) 52.3 52.3 0.1 0.1
    合计Total 42 365.8 100
    下载: 导出CSV

    表  3  外源雨水地块用地面积及用地比例表

    Table  3.   Table of exogenous site of land area and land use ratio

    用地类型Type of land use 项目类型Item type 面积Area/m2 总面积Total area/m2 子项比例Subitem proportion/% 比例Proportion/%
    绿化用地Green space 普通绿地Common green space 15 967.6 16 410.7 27.5 28.3
    植草沟Vegetative swale 443.1 0.8
    建筑占地Building space 不上人硬质屋顶Hard roof of no people 16 865.1 16 865.1 29.1 29.1
    园路及铺装场地用地Path and square 透水铺装Permeable pavement 7 422.0 24 740.1 12.8 42.6
    不透水铺装Impermeable pavement 17 318.1 29.8
    雨水调蓄池(地下) Rain retention barrel 雨水调蓄池(地下) Rain retention barrel (underground) 4 189 4 189
    合计Total 58 015.9 100
    下载: 导出CSV

    表  4  传统开发模式用地面积及用地比例表

    Table  4.   Table of land area and land use ratio in traditional development model

    项目类型Item type 面积Area/m2 比例Proportion/%
    绿化用地Green space 34 782.5 34.7
    建筑占地Building space 31 852.4 31.7
    园路及铺装场地用地Path and square 33 694.5 33.5
    水体Water space 52.3 0.1
    雨水调蓄池(地下) Rain retention barrel (underground) 4 189
    合计Total 100 381.7 100
    下载: 导出CSV

    表  5  西十地块不同降雨强度下的出水口径流量模拟结果

    Table  5.   Simulated results of West 10 Plot of the runoff under different rainfall intensities

    模拟项目Simulation item 1年一遇(45 mm)24 h 1-year-once(45 mm)24 hour 2年一遇(81 mm)24 h 2-year-once(81 mm)24 hour 3年一遇(108mm)24 h 3-year-once(108 mm)24 hour 5年一遇(141 mm)24 h 5-year-once(141 mm)24 hour 10年一遇(209 mm)24 h 10-year-once(209 mm)24 hour 20年一遇(270 mm)24 h 20-year-once(270 mm)24 hour
    低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference
    径流总量Total runoff/m3 0 1 189 1 189 0 2 411 2 411 0 3 490 3 490 1 028 4 846 3 818 3 818 7 699 3 881 6 712 10 284 3 572
    峰值流量Peak flow/(m3·s-1) 0 0.027 0.027 0 0.065 0.065 0 0.092 0.092 0.037 0.124 0.087 0.128 0.192 0.064 0.203 0.252 0.049
    峰现时间Time of peak flow occurrence 消失Disappea- rance 09:01 消失Disappea- rance 09:00 消失Disappea- rance 09:00 15:15 09:00 375 min 14:10 09:00 310 min 13:00 09:00 240 min
    下载: 导出CSV

    表  6  外源雨水地块不同降雨强度下的出水口径流量模拟结果

    Table  6.   Simulated results of exogenous site of the runoff under different rainfall intensities

    模拟项目Simulation item 1年一遇(45 mm)24 h 1-year-once(45 mm)24 hour 2年一遇(81 mm)24 h 2-year-once(81 mm)24 hour 3年一遇(108 mm)24 h 3-year-once(108 mm)24 hour 5年一遇(141 mm)24 h 5-year-once(141 mm)24 hour 10年一遇(209 mm)24 h 10-year-once(209 mm)24 hour 20年一遇(270 mm)24 h 20-year-once(270 mm)24 hour
    低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference
    径流总量Total runoff/m3 800 1 806 1 006 2 633 3 599 966 4 189 5 156 967 6 145 7 108 963 10 249 11 205 956 13 970 14 912 942
    峰值流量Peak flow/(m3·s-1) 0.026 0.040 0.014 0.079 0.093 0.014 0.116 0.132 0.016 0.162 0.179 0.017 0.256 0.275 0.019 0.341 0.362 0.021
    峰现时间Time of peak flow occurrence 12:20 09:01 119 min 10:45 09:00 105 min 10:15 09:00 75 min 10:10 09:00 70 min 10:00 09:00 60 min 09:55 08:58 57 min
    下载: 导出CSV

    表  7  各类园林植物园林系数相关指标及面积

    Table  7.   Relevant indicators and area of KL for all kinds of garden plants

    植被类型Vegetation type 种类系数Coefficient of species(Ks) 密度因子Density factor(Kd) 小气候因子Microclimatic factor(Kmc) 面积Area/m2
    乔木Tree 0.9 0.5 0.2 1.3 1.0 0.5 1.4 1.0 0.5
    灌木Shrub 0.7 0.5 0.2 1.1 1.0 0.5 1.3 1.0 0.5
    地被植物Ground plant 0.9 0.5 0.2 1.1 1.0 0.5 1.2 1.0 0.5 12 400.5
    树木、灌木、地被植物混合Mixed trees, shrubs and ground plants 0.9 0.5 0.2 1.3 1.0 0.6 1.4 1.0 0.5
    冷季型草Cold season type grass 0.8 1.0 1.0 0.6 1.2 1.0 0.8 5 971.3
    合计Total 18 371.8
    下载: 导出CSV

    表  8  2017年每月植物需水量

    Table  8.   Monthly plant water requirement in 2017

    时间Time 1月Jan. 2月Feb. 3月Mar. 4月Apr. 5月May. 6月Jun. 7月Jul. 8月Aug. 9月Sep. 10月Oct. 11月Nov. 12月Dec.
    ETO/(mm·d-1) 0.72 1.20 2.17 3.38 4.26 4.72 4.21 3.74 3.02 2.00 1.19 0.72
    PWR/(mm·d-1) 0.43 0.72 1.30 2.02 2.55 2.82 2.52 2.24 1.81 1.20 0.71 0.43
    下载: 导出CSV
  • [1] 柳笛.城市化对雨洪径流的影响:以武汉市为例[J].科技创业月刊, 2009, 22(1):66-67, 71. doi: 10.3969/j.issn.1672-2272.2009.01.031

    Liu D. The impact of urbanization on rainwater runoff[J]. Pioneering with Science & Technology Monthly, 2009, 22(1):66-67, 71. doi: 10.3969/j.issn.1672-2272.2009.01.031
    [2] 彭攀.基于海绵城市理念的市政道路滞留带研究[D].南京: 东南大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10286-1018003853.htm

    Peng P. The research of road retention band based on sponge city concept[D].Nanjing: Southeast University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10286-1018003853.htm
    [3] 席璐, 石丽忠, 周庆芳.基于SWMM模型的海绵城市小区建设雨洪过程模拟:咸阳市某小区为例[J].沈阳大学学报(自然科学版), 2018, 30(3):244-249. http://d.old.wanfangdata.com.cn/Periodical/shenydxxb201803015

    Xi L, Shi L Z, Zhou Q F. Simulation of rainwater process of residential district in spongy city based on SWMM model: taking a residential district in Xianyang as an example[J].Journal of Shenyang University(Natural Science), 2018, 30(3):244-249. http://d.old.wanfangdata.com.cn/Periodical/shenydxxb201803015
    [4] 张译心, 于富鑫, 黄晨霞, 等.基于SWMM模型的小区低影响开发措施组合模式的效果模拟评估[J].科技创新与应用, 2018(13):50-52. http://d.old.wanfangdata.com.cn/Periodical/qgsj201813020

    Zhang Y X, Yu F X, Huang C X, et al. Effect simulation evaluation of the combined model of small development measures with low impact based on SWMM model[J].Technology Innovation and Application, 2018(13):50-52. http://d.old.wanfangdata.com.cn/Periodical/qgsj201813020
    [5] 贾博, 许荷.基于SWMM的多情景海绵城市设施组合效用研究:以北京大兴某公园为例[J].建设科技, 2018(3):56-57. doi: 10.3969/j.issn.1005-6637.2018.03.018

    Jia B, Xu H. A study on the combined utility of multi-scenario sponge city facilities based on SWMM: taking a park in daxing, Beijing as an example[J]. Construction Science and Technology, 2018(3):56-57. doi: 10.3969/j.issn.1005-6637.2018.03.018
    [6] 林辰松, 邵明, 葛韵宇, 等.基于SWMM情境模拟的外源雨水型公园绿地雨洪调控效果研究[J].北京林业大学学报, 2016, 38(12):92-103. doi: 10.13332/j.1000-1522.20160260

    Lin C S, Shao M, Ge Y Y, et al.Research of storm flood regulation efficiency of the low impact development of exogenous-rainwater park based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2016, 38(12): 92-103. doi: 10.13332/j.1000-1522.20160260
    [7] 时薏, 李运远, 戈晓宇, 等.华北地区城市浅山区海绵绿道设计方法研究:以石家庄鹿泉区山前大道为例[J].北京林业大学学报, 2017, 39(11):82-91. doi: 10.13332/j.1000-1522.20170289

    Shi Y, Li Y Y, Ge X Y, et al. Design methods of sponge greenway in urban shallow mountainous area in northern China: taking the greenway of Luquan District in Shijiazhuang as an example[J].Journal of Beijing Forestry University, 2017, 39(11):82-91. doi: 10.13332/j.1000-1522.20170289
    [8] 宋晓猛, 张建云, 孔凡哲, 等.北京地区降水极值时空演变特征[J].水科学进展, 2017, 28(2):161-173. http://d.old.wanfangdata.com.cn/Periodical/skxjz201702001

    Song X M, Zhang J Y, Kong F Z, et al. Spatio-temporarl variation characteristics of precipitation extremes in Beijing[J]. Advances in Water Science, 2017, 28(2):161-173. http://d.old.wanfangdata.com.cn/Periodical/skxjz201702001
    [9] 刘强, 康晓鹍, 翟立晓, 等.北京市《雨水控制与利用工程设计规范》规划指标解读[J].给水排水, 2014, 50(10):84-88. doi: 10.3969/j.issn.1002-8471.2014.10.025

    Liu Q, Kang X K, Zhai L X, et al.Interpretation of standard planning indexes of rainwater control and utilization engineering in Beijing[J]. Water & Wastewater Engineering, 2014, 50(10):84-88. doi: 10.3969/j.issn.1002-8471.2014.10.025
    [10] 仇保兴.海绵城市(LID)的内涵、途径与展望[J].给水排水, 2015, 51(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/jskj201501005

    Qiu B X. The connotation, pathway and expectation of LID[J]. Water & Wastewater Engineering, 2015, 51(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/jskj201501005
    [11] 王文亮, 李俊奇, 宫永伟, 等.基于SWMM模型的低影响开发雨洪控制效果模拟[J].中国给水排水, 2012, 28(21):42-44. doi: 10.3969/j.issn.1000-4602.2012.21.012

    Wang W L, Li J Q, Gong Y W, et al. LID stormwater control effect simulation based on SWMM[J].China Water & Wastewater, 2012, 28(21):42-44. doi: 10.3969/j.issn.1000-4602.2012.21.012
    [12] Rossman L A. Storm water management model user's manual version 5.0[M]. Washington D C: United States Environmental Protection Agency, 2010.
    [13] 吴晓瑜, 黄维, 周密.基于SWMM的某工业园区LID方案及模拟评估[J].中国给水排水, 2017, 33(11):139-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjsps201711028

    Wu X Y, Huang W, Zhou M. Low impact development planning and evaluation in an industrial park based on SWMM simulation[J].China Water & Wastewater, 2017, 33(11):139-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjsps201711028
    [14] 邱振存, 管健.园林绿化植物灌溉需水量估算[J].节水灌溉, 2011(4):48-50, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsgg201104014

    Qiu Z C, Guan J.Estimation of water demand for landscaping plants[J].Water Saving Irrigation, 2011(4): 48-50, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsgg201104014
    [15] 刘伯英.城市污染工业用地的生态修复[C]//第三届国际智能、绿色建筑与建筑节能大会智能与绿色建筑文集.北京: 清华大学, 2007: 684-691.

    Liu B Y.The bio-remediation of urban polluted industry district[C]//The 3rd International Conference on Intelligent Green and Energy Efficient Building. Beijing: Tsinghua University, 2007: 684-691.
    [16] 冷俊杰.北京房山节水灌溉区作物需水量(ET)的计算与研究[D].乌鲁木齐: 新疆大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10755-2004118373.htm

    Leng J J. Evaluation and research of crop water requirements(ET) in the water-saving irrigation area of Beijing Fangshan[D]. Urumqi: Xinjiang University, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10755-2004118373.htm
  • 加载中
图(20) / 表(8)
计量
  • 文章访问数:  844
  • HTML全文浏览量:  177
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2018-11-21
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回