高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

帽儿山地区典型地表可燃物含水率动态变化及预测模型

满子源 胡海清 张运林 刘方策 李远

满子源, 胡海清, 张运林, 刘方策, 李远. 帽儿山地区典型地表可燃物含水率动态变化及预测模型[J]. 北京林业大学学报, 2019, 41(3): 49-57. doi: 10.13332/j.1000-1522.20180326
引用本文: 满子源, 胡海清, 张运林, 刘方策, 李远. 帽儿山地区典型地表可燃物含水率动态变化及预测模型[J]. 北京林业大学学报, 2019, 41(3): 49-57. doi: 10.13332/j.1000-1522.20180326
Man Ziyuan, Hu Haiqing, Zhang Yunlin, Liu Fangce, Li Yuan. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 49-57. doi: 10.13332/j.1000-1522.20180326
Citation: Man Ziyuan, Hu Haiqing, Zhang Yunlin, Liu Fangce, Li Yuan. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 49-57. doi: 10.13332/j.1000-1522.20180326

帽儿山地区典型地表可燃物含水率动态变化及预测模型

doi: 10.13332/j.1000-1522.20180326
基金项目: 林业公益性行业科研专项(201404402)
详细信息
    作者简介:

    满子源,博士生。主要研究方向:林火生态与管理。 Email:manziyuan3721@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号 东北林业大学林学院

    责任作者:

    胡海清,教授,博士生导师。主要研究方向:林火生态与管理。Email:huhq-cf@nefu.edn.cn 地址:同上

  • 中图分类号: S762.2

Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China

  • 摘要: 目的可燃物含水率预测是林火预报研究的重要内容,其中地表细小可燃物、半腐殖质和腐殖质含水率在一定程度影响了林火垂直蔓延的持续性及地下火发生的可能性,含水率变化主要是受天气状态和地形特征的影响,而我国关于半腐殖质和腐殖质含水率动态变化及其预测模型的研究较少,分析红松蒙古栎针阔混交林下的地表细小可燃物、半腐殖质和腐殖质3层可燃物含水率的动态变化,对建立我国林火预报系统有指导作用。方法本研究对帽儿山地区红松蒙古栎典型针阔混交林下的地表细小可燃物、半腐殖质和腐殖质含水率进行每日监测,同步监测林分内气象数据,统计分析气象要素和3层可燃物含水率的相关性,选择气象要素回归法建立3层可燃物类型的含水率预测模型。结果在整个监测期内,地表细小可燃物含水率波动最大,最小值为10.99%,最大值为253.30%;半腐殖质次之,最小值为19.21%,最大值为238.07%;腐殖质含水率最稳定,最小值为48.45%,最大值为193.83%,波动最小。地表可燃物含水率变化对气象因子的响应最敏感,多与当日或前一日气象因子相关,半腐殖质次之,腐殖质含水率仅与空气温度相关;建立3种可燃物含水率气象要素回归预测模型,其中地表细小可燃物、半腐殖质和腐殖质的含水率预测模型平均绝对误差和平均相对误差分别为22.2%、23.5%、17.1%和7.1%、14.8%和23.4%,以MRE为15%为界限,细小可燃物和半腐殖质含水率预测模型精度均能达到林火预报精度,腐殖质含水率预测模型精度较差。结论综合分析可得,3层可燃物在防火期内有被引燃,进而发展为森林火灾的可能,在今后的林火预报工作中,还应该注意地下可燃物,包括半腐殖质和腐殖质含水率的预报。

     

  • 图  1  监测期间温湿度动态变化

    Figure  1.  Dynamic of air temperature and relative humidity during the monitoring periods

    图  2  监测期间地表可燃物含水率动态变化

    Figure  2.  Dynamic of surface fuel moisture content during the monitoring period

    图  3  实测值和预测值1:1对比图

    Figure  3.  Comparison of measured value and predicted value through 1:1 line

    表  1  单因素方差分析

    Table  1.   Results of ANONA analysis

    项目 Item平方和 Sum of squares自由度 Degree of freedom平均值平方 Mean squareFP
    组间 Among groups13.67826.83927.2440.000
    组内 Within group44.4321770.251
    总计 Total58.110179
    下载: 导出CSV

    表  2  地表可燃物含水率统计特征

    Table  2.   Statistical characteristics of moisture content of surface fuel %

    可燃物类型
    Fuel type
    最小值
    Minimum value
    最大值
    Maximum value
    平均值
    Average value
    单日最大变幅
    Maximum value of daily range
    单日最小变幅
    Minimum value of daily range
    细小可燃物 Fine fuel10.99253.3068.40173.570.26
    半腐殖质 Semi-humus19.21238.07132.47107.801.08
    腐殖质 Humus48.45193.83 81.97 84.100.59
    下载: 导出CSV

    表  3  可燃物含水率与影响因子相关系数

    Table  3.   Correlation coefficients between moisture content of fuels and impact factors

    影响因子
    Impact factor
    细小可燃物
    Fine fuel
    半腐殖质
    Semi-humus
    腐殖质
    Humus
    影响因子
    Impact factor
    细小可燃物
    Fine fuel
    半腐殖质
    Semi-humus
    腐殖质
    Humus
    Tmax − 0.435** − 0.381** − 0.378** Wmax − 0.068 0.237 0.141
    Tmin 0.173 − 0.174 − 0.348** Wmin − 0.079 0.054 0.019
    T − 0.218 − 0.305 − 0.403** W − 0.073 0.203 0.051
    T5 0.144 − 0.070 − 0.237 W5 − 0.138 − 0.146 − 0.095
    T4 0.081 − 0.190 − 0.275* W4 − 0.273* − 0.082 − 0.100
    T3 0.068 − 0.252 − 0.366** W3 − 0.290* − 0.219 − 0.087
    T2 0.061 − 0.245 − 0.389** W2 − 0.238 0.007 − 0.109
    T1 − 0.045 − 0.302* − 0.410** W1 − 0.148 0.165 0.008
    Hmax 0.477* 0.310* 0.112 Rmax 0.484** 0.228 0.035
    Hmin 0.823** 0.417** 0.103 Rmin
    H 0.800** 0.385** 0.104 R 0.714** 0.433* 0.150
    H5 0.133 0.004 0.022 R5 0.119 0.059 0.001
    H4 0.011 0.149 0.016 R4 0.002 0.261* 0.064
    H3 0.004 0.253 0.006 R3 0.076 0.295* 0.024
    H2 0.178 0.317* 0.073 R2 0.162 0.317* 0.111
    H1 0.606* 0.513** 0.171 R1 0.647** 0.618** 0.243
    注:TmaxTminT分别表示当日最高温度、最低温度和14:00的温度,Tn表示n天前的平均温度;HmaxHminH分别表示当日最高相对湿度、最低相对湿度和14:00的相对湿度,Hn表示n天前的平均相对湿度;WmaxWminW分别表示当日最大风速、最小风速和14:00的风速,Wn表示n天前的平均风速;RmaxRminR分别表示当日最大降雨量、最小降雨量和14:00的降雨量,Rn表示n天前的累积降雨量。Notes: Tmax, Tmin and T represent the highest, lowest and 14:00 temperature of the day, respectively, and Tn represents the average temperature before n days. Hmax, Hmin and H represent the highest, lowest and 14:00 relative humidity of the day, respectively, and Hn represents the average relative humidity before n days. Wmax, Wmin and W represent the highest, lowest and 14:00 wind speed of the day, respectively, and Wn represents the average wind speed before n days. Rmax, Rmin and R represent the highest, lowest and 14:00 rainfall of the day, respectively, and Rn represents the average rainfall before n days.
    下载: 导出CSV

    表  4  可燃物含水率预测模型参数及误差

    Table  4.   Parameters of prediction model of fuel moisture content and errors

    可燃物类型 Fuel type预测模型 Prediction modelFPR2MAE/%MRE/%
    细小可燃物 Fine fuelY = − 24.605 + 1.670Hmin + 774.016R1 + 28.634Rmax65.740.0000.80522.2 7.1
    半腐殖质 Semi-humusY = 138.057 + 605.625R1 + 363.571R + 388.547R4 − 2.77T117.510.0000.58423.514.8
    腐殖质 HumusY = 102.551 − 1.966T6.9870.0110.11317.123.4
    下载: 导出CSV
  • [1] 白尚斌, 张晓丽. 林火预测预报研究综述[J]. 森林防火, 2008(2):22−25. doi: 10.3969/j.issn.1002-2511.2008.02.011

    Bai S B, Zhang X L. Forest fire forecast research[J]. Forest Fire Prevention, 2008(2): 22−25. doi: 10.3969/j.issn.1002-2511.2008.02.011
    [2] 舒立福, 田晓瑞, 寇晓军. 林火研究综述(I): 研究热点与进展[J]. 世界林业研究, 2003, 16(3):37−40. doi: 10.3969/j.issn.1001-4241.2003.03.008

    Shu L F, Tian X R, Kou X J. The focus and progress on forest fire research[J]. World Forestry Research, 2003, 16(3): 37−40. doi: 10.3969/j.issn.1001-4241.2003.03.008
    [3] 王刚, 毕湘虹, 骆介禹, 等. 大兴安岭几种主要可燃物化学组成与燃烧性[J]. 森林防火, 1996(1):22−24.

    Wang G, Bi X H, Luo J Y, et al. The chemical composition and combustibility of typical fuels in Daxing’an Mountain[J]. Forest Fire Prevention, 1996(1): 22−24.
    [4] 张运林, 张恒, 金森. 基于Logistic回归的烟头点燃红松松针概率研究[J]. 中南林业科技大学学报, 2015, 35(9):45−51.

    Zhang Y L, Zhang H, Jin S. Study on probability of Pinus koraiensis needles fire lighted by burning cigarette end based on Logistic regression[J]. Journal of Central South University of Forestry & Technology, 2015, 35(9): 45−51.
    [5] 郑焕能, 居恩德. 林火管理[M]. 哈尔滨: 东北林业大学出版社, 1988: 15−18.

    Zheng H N, Ju E D. Forest fire management [M]. Harbin: Northeast Forestry University Press, 1988: 15−18.
    [6] 周涧青. 大兴安岭南部主要森林类型可燃物负荷量及其潜在地表火行为研究[D]. 北京: 北京林业大学, 2014.

    Zhou J Q. Research on forest fuel loadings and potential surface fire behavior of major forest types in southern Daxing ’an Mountains[D]. Beijing: Beijing Forestry University, 2014.
    [7] 牛树奎, 王叁, 贺庆棠, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物垂直连续性与树冠火发生[J]. 北京林业大学学报, 2012, 34(3):1−7.

    Niu S K, Wang S, He Q T, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
    [8] 吴志伟, 贺红士, 梁宇, 等. 丰林自然保护区森林可燃物模型的建立[J]. 应用生态学报, 2012, 23(6):1503−1510.

    Wu Z W, He H S, Liang Y, et al. Establishment of standard forest fuel models for Fenglin Natural Reserve, Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1503−1510.
    [9] 王舜娆, 金森. 基于热重分析的南昌地区8种可燃物的热解动力学及燃烧性排序[J]. 中南林业科技大学学报, 2015, 35(11):94−98.

    Wang S R, Jin S. Study on pyrolysis kinetics and combustibility ordering of 8 kinds of fuels in Nanchang area based on Thermogravimetric analysis[J]. Journal of Central South University of Forestry & Technology, 2015, 35(11): 94−98.
    [10] 高国平, 王忠友. 森林可燃物研究综述[J]. 辽宁林业科技, 1998(4):34−37.

    Gao G P, Wang Z Y. Study on forest fuel[J]. Journal of Liaoning Forestry Science & Technology, 1998(4): 34−37.
    [11] 刘曦, 金森. 湿度对可燃物时滞和平衡含水率的影响[J]. 东北林业大学学报, 2007, 35(5):44−46. doi: 10.3969/j.issn.1000-5382.2007.05.014

    Liu X, Jin S. Effect of humidity on timelag and equilibrium moisture content of forest fuels[J]. Journal of Northeast Forestry University, 2007, 35(5): 44−46. doi: 10.3969/j.issn.1000-5382.2007.05.014
    [12] Byram G M, Jemison G M. Solar radiation and forest fuel moisture[J]. Journal of Agricultural Research, 1943, 67(4): 149−176.
    [13] Catchpole E A, Catchpole W R, Viney N R, et al. Estimating fuel response time and predicting fuel moisture content from field data[J]. International Journal of Wildland Fire, 2001, 10(2): 215−222. doi: 10.1071/WF01011
    [14] Toomey M, Vierling L A. Multispectral remote sensing of landscape level foliar moisture: techn[J]. Revue Canadienne De Recherche Forestière, 2005, 35(5): 1087−1097. doi: 10.1139/x05-043
    [15] 张恒, 金森, 邸雪颖. 基于FWI湿度码的塔河林业局地表凋落物含水率预测[J]. 应用生态学报, 2014, 25(7):2049−2055.

    Zhang H, Jin S, Di X Y. Prediction of litter moisture content in Tahe Forestry Bureau of Northeast China based on FWI moisture codes[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2049−2055.
    [16] 刘昕, 邸雪颖. 三种方法对森林地表可燃物含水率的预测评价[J]. 森林工程, 2013, 29(2):8−13. doi: 10.3969/j.issn.1001-005X.2013.02.002

    Liu X, Di X Y. Evaluation of three prediction methods on forest surface fuel moisture[J]. Forest Engineering, 2013, 29(2): 8−13. doi: 10.3969/j.issn.1001-005X.2013.02.002
    [17] 高开通, 刘鹏举, 唐小明. 森林资源小班火险天气等级预报方法研究[J]. 北京林业大学学报, 2013, 35(4):61−66.

    Gao K T, Liu P J, Tang X M. Forecasting forest fire risk grade of forest subcompartment[J]. Journal of Beijing Forestry University, 2013, 35(4): 61−66.
    [18] 宋雨, 胡海清, 孙龙, 等. 大兴安岭不同坡位地表可燃物含水率的动态变化与建模[J]. 森林工程, 2017, 33(5):1−7.

    Song Y, Hu H Q, Sun L, et al. Dynamic change and modeling of moisture content of surface fuel in different slope positions of Daxing’anling[J]. Forest Engineering, 2017, 33(5): 1−7.
    [19] 李海洋, 胡海清, 孙龙. 我国森林死可燃物含水率与气象和土壤因子关系模型研究[J]. 森林工程, 2016, 32(3):1−6. doi: 10.3969/j.issn.1001-005X.2016.03.001

    Li H Y, Hu H Q, Sun L. Research on relational models of moisture content of dead forest fuel with meteorological factors and soil factors in China[J]. Forest Engineering, 2016, 32(3): 1−6. doi: 10.3969/j.issn.1001-005X.2016.03.001
    [20] Simard A. The moisture content of forest fuels-I: a review of the basis concepts[R]. Ottawa: CDFRD Forest Fire Research Institute Information Report FF-X-14, 1968.
    [21] Nelson R M J. Prediction of diurnal change in 10-h fuel stick moisture content[J]. Canadian Journal of Forest Research, 2000, 30(7): 1071−1087. doi: 10.1139/x00-032
    [22] 者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.

    Zhe X. Expermental study on the influence of particle size, moisture content on the spreading rate of peat smoldering[D]. Hefei: University of Science and Technology of China, 2015.
    [23] Chuvieco E, Cocero D, David Riaño, et al. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating[J]. Remote Sensing of Environment, 2004, 92(3): 322−331. doi: 10.1016/j.rse.2004.01.019
    [24] Bowyer P, Danson F M. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level[J]. Remote Sensing of Environment, 2004, 92(3): 297−308. doi: 10.1016/j.rse.2004.05.020
    [25] Matthews S. Effect of drying temperature on fuel moisture content measurements[J]. International Journal of Wildland Fire, 2010, 19(6): 800. doi: 10.1071/WF08188
    [26] Kreye J K, Kobziar L N, Zipperer W C. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels[J]. International Journal of Wildland Fire, 2013, 22(4): 440−445. doi: 10.1071/WF12147
    [27] 胡海清, 牛树奎, 金森, 等. 林火生态与管理[M]. 北京: 中国林业出版社, 2005: 31−37.

    Hu H Q, Niu S K, Jin S, et al. Fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005: 31−37.
    [28] 张运林, 孙萍, 胡海清, 等. 风速对不同结构红松针叶床层失水系数影响的室内模拟研究[J]. 中南林业科技大学学报, 2018, 38(3):57−64.

    Zhang Y L, Sun P, Hu H Q, et al. Laboratory study of the effects of wind speed on drying coefficient of fuelbeds composed of Korean pine needles with varied structure[J]. Journal of Central South University of Forestry & Technology, 2018, 38(3): 57−64.
    [29] 张运林, 孙萍, 胡海清, 等. 风速对蒙古栎阔叶床层两个重要失水时间的影响[J]. 中南林业科技大学学报, 2018, 38(4):65−71.

    Zhang Y L, Sun P, Hu H Q, et al. Effects of wind speed on two key drying times of fuelbeds composed of Mongolian oak leaves[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 65−71.
    [30] 周勇. 昆明典型可燃物含水率预测模型研究[D]. 哈尔滨: 东北林业大学, 2014.

    Zhou Y. Study on fuel moisture content prediction of fuels in typical stands, Kunming[D]. Harbin: Northeast Forestry University, 2014.
    [31] 张恒. 大兴安岭地表死可燃物含水率预测的影响因素[D]. 哈尔滨: 东北林业大学, 2014.

    Zhang H. Influencing factors of dead surface fuel moisture prediction in Great Xing ’an region [D]. Harbin: Northeast Forestry University, 2014.
    [32] 金森, 陈鹏宇. 樟子松针叶床层结构对失水过程中含水率参数的影响[J]. 林业科学, 2011, 47(4):114−120.

    Jin S, Chen P Y. Effects of structure features of fuelbed composed of scots pine needles on equilibrium moisture content parameters during desorption process[J]. Scientia Silvae Sinicae, 2011, 47(4): 114−120.
    [33] 马壮, 李亮, 金森. 直接估计法在帽儿山林场白桦林可燃物含水率的适用性分析[J]. 中南林业科技大学学报, 2016, 36(11):54−58.

    Ma Z, Li L, Jin S. Applicability analysis method in water Mao’ershan Birch forest fuel rate estimated directly[J]. Journal of Central South University of Forestry & Technology, 2016, 36(11): 54−58.
    [34] 于宏洲, 金森, 邸雪颖. 以时为步长的塔河林业局白桦林地表死可燃物含水率预测方法[J]. 林业科学, 2013, 49(12):108−113.

    Yu H Z, Jin S, Di X Y. Models for predicting the hourly fuel moisture content on the forest floor of Birch stands in Tahe Forestry Bureau[J]. Scientia Silvae Sinicae, 2013, 49(12): 108−113.
    [35] Anderson H E. Moisture diffusivity and response time in fine forest fuels[J]. Canadian Journal of Forest Research, 1990, 20(3): 315−325. doi: 10.1139/x90-046
    [36] Jolly W M, Hadlow A M. A comparison of two methods for estimating conifer live foliar moisture content[J]. International Journal of Wildland Fire, 2011, 21(2): 180−185.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  409
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-06
  • 修回日期:  2019-01-10
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回