高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

震区生态治理初期植物、土壤的养分含量及叶片化学计量特征

吴建召 崔羽 贺静雯 刘颖 李键 林勇明 王道杰 吴承祯

吴建召, 崔羽, 贺静雯, 刘颖, 李键, 林勇明, 王道杰, 吴承祯. 震区生态治理初期植物、土壤的养分含量及叶片化学计量特征[J]. 北京林业大学学报, 2019, 41(2): 41-52. doi: 10.13332/j.1000-1522.20180329
引用本文: 吴建召, 崔羽, 贺静雯, 刘颖, 李键, 林勇明, 王道杰, 吴承祯. 震区生态治理初期植物、土壤的养分含量及叶片化学计量特征[J]. 北京林业大学学报, 2019, 41(2): 41-52. doi: 10.13332/j.1000-1522.20180329
Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. doi: 10.13332/j.1000-1522.20180329
Citation: Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. doi: 10.13332/j.1000-1522.20180329

震区生态治理初期植物、土壤的养分含量及叶片化学计量特征

doi: 10.13332/j.1000-1522.20180329
基金项目: 

国家自然科学基金项目 41790434

福建农林大学科技创新专项基金项目 CXZX2017111

福建农林大学杰出青年科研人才计划项目 xjq2017016

福建农林大学科技创新专项基金项目 CXZX2017283

详细信息
    作者简介:

    吴建召。主要研究方向:自然资源管理。Email:wjzhao168@163.com  地址:350002  福建省福州市仓山区上下店路15号福建农林大学林学院

    责任作者:

    林勇明,博士,教授。主要研究方向:区域资源优化、生态学。Email:monkey1422@163.com  地址:同上

  • 中图分类号: S718.51+2;Q948.11;Q946.91

Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area

  • 摘要: 目的在我国西南强地震影响区生态恢复重建的背景下,探明植被覆盖率、植物群落物种多样性、生物量变化与6种主要矿物质元素含量和植物C、N、P化学计量特征,有助于深入认识地震灾区植被恢复的动态过程。方法以汶川地震重灾区典型区汶川县威州镇(干旱河谷气候)和绵竹市汉旺镇(亚热带季风性气候)的受损治理样地与未受损样地为研究对象,分析两种气候区受损治理区(Destroyed and treated area,DTA)和未受损区(Undestroyed area,UA)的植被恢复特征和植物不同器官主要元素含量及其化学计量特征。结果(1) 亚热带季风性气候区的植被恢复率(65.74%)高于干旱河谷气候区(50.68%),其中干旱河谷气候区和亚热带季风性气候区DTA的变异系数分别40.44%和23.06%,高于未受损区的14.49%和8.62%;(2)植物不同器官生物量仅茎在两个气候区DTA和UA间表现显著差异(P < 0.05),不同器官碳含量仅叶在干旱河谷气候区表现为DTA显著大于UA(P < 0.05);(3)植物不同器官中元素的含量大小主要为N>K>Ca>Mg>P>Na;(4)通过叶片氮磷比(N:P)发现,干旱河谷气候DTA和UA主要受P限制,而亚热带季风性气候DTA和UA主要受N限制。结论通过上述研究说明,气候可能是影响植被恢复的主导因子,应充分考虑影响植被和土壤恢复的限制养分因子。研究结果可为我国西南地震灾区的生态功能恢复与重建提供科学依据。

     

  • 图  1  不同气候区受损治理区和未受损区植物叶片C、N和P化学计量比

    箱图上下边界分别表示数据分布的75%、25%,中间横线表示中位数;最高点为最大值,最低点为最小值,三角形表示平均值。不同小写字母表示差异显著(P < 0.05)。

    Figure  1.  Plant leaf C:N:P stoichiometric ratio of DTA and UA in different climate regions

    The upper and lower boundaries of the box plots represent the75th and 25th percentiles, respectively, and the middle line of the box plots indicate the median; the highest point is the maximum value, the lowest point is the minimum value, and the triangles represent the mean. Different lowercase letters indicate significant differences (P < 0.05).

    表  1  两种气候区受损治理区和未受损区样地概况

    Table  1.   Sample plot survey of DTA and UA in two climatic regions

    气候类型
    Climate type
    样地类型
    Sample plot type
    经度
    Longitude
    纬度
    Latitude
    海拔
    Elevation/m
    坡度
    Slope degree/(°)
    盖度
    Coverage/%
    优势物种
    Dominant species
    干旱河谷气候区
    Arid-valley climate region(V)
    受损治理区
    Destroyed and treated area (DTA)
    103°34′22″E 31°28′21″N 1 371 22 55 狗尾草Setaria viridis、刺槐Robinia pseudoacacia、岷江柏Cupressus chengiana
    未受损区
    Undestroyed area (UA)
    103°28′13″E 31°19′16″N 1 260 32 75 白刺花Sophora davidii、狗牙根Cynodon dactylon、刺果蔷薇Rosa acicularis
    亚热带季风性气候区
    Subtropical monsoon climate region(M)
    受损治理区
    Destroyed and treated area (DTA)
    104°09′31″E 31°27′46″N 722 34 65 飞生蓬Conyza canadensis、川滇盘果菊Prenanthes henryi、竹柳Salix fragilis
    未受损区
    Undestroyed area (UA)
    104°09′38″E 31°27′41″N 729 39 80 莎草Cyperus rotundus、刺槐Robinia pseudoacacia、扁桃Amygdalus communis
    下载: 导出CSV

    表  2  两种气候类型受损治理区与未受损区不同土层的土壤养分含量

    Table  2.   Soil nutrient content in different soil layers of DTA and UA in two climatic regions

    土壤养分
    Soil nutrient
    土层
    Soil layer/cm
    干旱河谷气候区V 亚热带季风性气候区M
    DTA/(g·kg-1) UA/(g·kg-1) F DTA/(g·kg-1) UA/(g·kg-1) F
    有机碳Soil organic carbon(SOC) 0~5 12.41±2.39a 33.23±4.24α 18.317*** 10.13±1.04a 29.64±1.88α 82.439***
    5~10 10.69±1.93a 30.35±3.91α 20.326*** 10.27±1.55a 25.50±1.75α 42.563***
    10~20 10.75±2.39a 29.59±3.71α 18.237*** 10.01±1.86a 26.29±1.89α 37.833***
    总氮Total nitrogen(TN) 0~5 0.83±0.14a 2.89±0.39α 24.276*** 1.21±0.09a 2.55±0.31α 17.301***
    5~10 0.87±0.16a 2.80±0.42α 18.614*** 1.16±0.16a 2.24±0.24α 14.229**
    10~20 0.82±0.17a 2.74±0.41α 18.949*** 1.22±0.23a 2.19±0.23α 8.958**
    总磷Total phosphorus(TP) 0~5 0.41±0.05a 1.17±0.18α 16.344*** 0.49±0.06a 1.00±0.11α 15.773***
    5~10 0.44±0.07a 1.04±0.16α 12.155** 0.58±0.05a 1.10±0.12α 16.531***
    10~20 0.45±0.06a 1.06±0.18α 10.158** 0.55±0.04a 1.19±0.17α 14.184**
    注:*表示P < 0.05,**表示P < 0.01,***表示P < 0.001。同列不同小写英文字母表示一种元素含量在受损治理区不同土层差异显著(P < 0.05);同列不同小写希腊字母表示一种元素含量在未受损区不同土层差异显著(P < 0.05)。下同。Notes: * means P < 0.05, ** means P < 0.01, *** means P < 0.001. Different lowercase English letters in the same column indicate that the content of one element between different soil layers is significantly different in DTA(P < 0.05); different lowercase Greek letters in the same column indicate that the content of one element between different soil layers is significantly different in UA(P < 0.05). The same below.
    下载: 导出CSV

    表  3  两种气候类型受损治理区与未受损区植被覆盖度及其变异系数

    Table  3.   Vegetation coverage and its coefficient of variation of DTA and UA in two climatic regions

    %
    气候类型
    Climate type
    样地类型
    Sample plot type
    植被覆盖度
    Vegetation coverage
    变异系数
    Coefficient of variation
    植被恢复率
    Vegetation recovery rate
    干旱河谷气候区
    Arid-valley climate region
    受损治理区DTA 41.0±4.1b 40.44 50.68
    未受损区UA 80.9±5.9a 14.49
    亚热带季风性气候区
    Subtropical monsoon climate region
    受损治理区DTA 52.2±4.3b 23.06 65.74
    未受损区UA 79.4±2.4a 8.62
    注:相同气候区不同小写字母表示差异性显著(P < 0.05)。Note: different lowercase letters in the same climate region mean significant difference (P < 0.05).
    下载: 导出CSV

    表  4  两种气候类型受损治理区和未受损区物种丰富度与多样性

    Table  4.   Species richness and diversity of DTA and UA in two climatic regions

    植被类型
    Plant type
    指数Index 干旱河谷气候区V 亚热带季风性气候区M
    DTA UA DTA UA
    灌木Shrub Species richness(S) 3.00a 3.00a 1.67
    Shannon-Wiener(H) 0.81a 0.76a 0.79
    Simpson(D) 0.46a 0.56a 0.49
    Pielou(J) 0.40a 0.35a 0.43
    草本Herb Species richness(S) 5.50a 4.17a 4.67b 9.00a
    Shannon-Wiener(H) 0.94a 1.08a 1.13b 1.77a
    Simpson(D) 0.47a 0.63a 0.55b 0.76a
    Pielou(J) 0.27a 0.33a 0.36a 0.44a
    注:相同气候区同行不同小写字母表示差异显著(P < 0.05)。Note: different lowercase letters in the same climate region and the same row mean significant difference (P < 0.05).
    下载: 导出CSV

    表  5  两种气候类型受损治理区与未受损区生物量

    Table  5.   Biomass and carbon reserve of DTA and UA in two climatic regions

    部位Part 干旱河谷气候区V 亚热带季风性气候区M
    DTA/(g·m-2) UA/(g·m-2) F DTA/(g·m-2) UA/(g·m-2) F
    根Root 51.38±6.16 53.29±6.95 0.042 42.84±5.53 42.40±6.90 0.003
    茎Stem 92.31±9.90 135.96±12.67 7.368* 101.69±5.87 128.13±9.36 5.727*
    叶Leaf 67.33±7.02 78.00±10.32 0.731 49.47±6.66 70.58±7.54 4.401
    总Total 211.02±14.31 267.24±19.62 5.358* 194.00±14.65 241.11±14.93 5.073*
    下载: 导出CSV

    表  6  两种气候类型受损治理区与未受损区植物不同器官碳含量

    Table  6.   Carbon content of different organs of plant of DTA and UA in two climatic regions

    部位Part 干旱河谷气候区V 亚热带季风性气候区M
    DTA/(g·kg-1) UA/(g·kg-1) F DTA/(g·kg-1) UA/(g·kg-1) F
    根Root 393.54±25.72 354.97±8.19 2.043 342.90±12.20 351.04±6.85 0.338
    茎Stem 411.46±22.86 371.15±6.16 2.900 379.23±11.46 373.08±12.51 0.131
    叶Leaf 418.91±26.80 320.62±8.37 12.253** 338.52±10.58 338.79±7.41 0.000
    平均Mean 407.97±14.12 348.91±5.92 14.875*** 353.55±7.28 354.30±5.85 0.006
    下载: 导出CSV

    表  7  两种气候类型受损治理区与未受损区植物6种矿物质元素含量及其差异性

    Table  7.   Six kinds of mineral element content of DTA and UA and their significant difference in two climate type regions

    元素
    Element
    部位
    Part
    干旱河谷气候区V 亚热带季风性气候区M
    DTA/(g·kg-1) UA/(g·kg-1) F DTA/(g·kg-1) UA/(g·kg-1) F
    N 根Root 10.35±0.85b 11.31±1.03β 0.508 12.40±0.93b 14.19±1.45β 1.078
    茎Stem 10.90±0.70b 8.84±0.56γ 5.324* 10.42±0.74b 13.60±1.12β 5.606*
    叶Leaf 17.98±0.50a 20.67±0.65α 10.825** 22.65±1.28a 23.83±1.81α 0.286
    P 根Root 0.51±0.04b 0.96±0.16α 7.319* 1.04±0.12b 1.14±0.13β 0.316
    茎Stem 0.44±0.03b 0.84±0.15α 6.469* 1.02±0.09b 1.06±0.09β 0.107
    叶Leaf 0.73±0.04a 1.14±0.13α 8.573* 1.55±0.07a 2.07±0.22α 4.982*
    K 根Root 9.00±0.79a 9.48±1.36α 0.093 13.50±1.12b 13.46±1.00β 0.010
    茎Stem 8.08±0.73a 8.25±0.54α 0.034 15.43±0.87b 13.28±0.80β 3.313
    叶Leaf 8.30±0.55a 9.91±1.18α 1.530 18.02±0.57a 16.79±1.12α 0.963
    Ca 根Root 7.91±1.10b 8.50±1.36β 0.113 6.19±0.96b 10.27±2.10β 3.101
    茎Stem 9.70±0.99b 7.72±1.46β 1.251 9.77±1.03b 4.80±0.33β 21.222***
    叶Leaf 14.73±1.34a 25.28±3.65α 7.379* 15.84±2.41a 28.37±3.25α 9.600**
    Na 根Root 0.36±0.05a 0.54±0.07α 4.168 0.25±0.03a 0.33±0.02αβ 4.572*
    茎Stem 0.24±0.03a 0.41±0.05α 7.755* 0.20±0.03a 0.27±0.03β 4.139
    叶Leaf 0.28±0.04a 0.41±0.06α 3.048 0.24±0.04a 0.39±0.04α 7.136*
    Mg 根Root 3.50±0.14ab 2.41±0.20β 20.571*** 1.53±0.18b 1.74±0.21β 0.633
    茎Stem 3.10±0.16b 1.97±0.19β 21.039*** 1.80±0.07b 1.14±0.09γ 32.587***
    叶Leaf 3.91±0.15a 4.11±0.22α 0.566 2.66±0.17a 2.73±0.15α 0.089
    注:同列不同小写英文字母表示一种元素含量在受损治理区植物不同部位差异显著(P < 0.05);同列不同小写希腊字母表示一种元素含量在未受损区植物不同部位差异显著(P < 0.05)。Notes: different lowercase English letters in the same column indicate that the content of one element is significantly different in different plant parts. Different lowercase Greek letters in the same column indicate that the content of one element is significantly different in varied parts of the plant in UA(P < 0.05).
    下载: 导出CSV

    表  8  两种气候类型受损治理区与未受损区的植物恢复特征和植被、土壤养分含量相关性

    Table  8.   Correlations between plant nutrient content and soil nutrient content of DTA and UA in two climatic regions

    项目Item VC SR BM C N P K Ca Na Mg C:N C:P N:P SOC TN TP
    VC 1
    SR 0.402* 1
    BM 0.266 0.525** 1
    C -0.403* -0.250 -0.138 1
    N 0.119 -0.224 -0.268 -0.390* 1
    P 0.382* -0.032 -0.013 -0.288 0.433** 1
    K 0.108 -0.114 -0.195 -0.217 0.334* 0.557** 1
    Ca 0.596** 0.198 0.070 -0.305 0.109 0.240 0.076 1
    Na 0.408* 0.245 0.376* -0.279 -0.020 -0.085 -0.427** 0.114 1
    Mg -0.262 -0.091 -0.044 0.437** -0.428** -0.647** -0.586** 0.108 0.096 1
    C:N -0.312 0.048 0.137 0.798** -0.841** -0.456** -0.372* -0.289 -0.116 0.500** 1
    C:P -0.469** -0.089 0.045 0.639** -0.471** -0.860** -0.588** -0.316 0.013 0.689** 0.683** 1
    N:P -0.409* -0.114 -0.020 0.236 -0.118 -0.879** -0.553** -0.223 0.133 0.605** 0.228 0.853** 1
    SOC 0.673** 0.572** 0.574** -0.358* 0.001 0.206 -0.041 0.405 0.512** -0.119 -0.169 -0.239 -0.204 1
    TN 0.661** 0.590** 0.581** -0.360* 0.002 0.280 0.025 0.319 0.515** -0.206 -0.162 -0.303 -0.308 0.897** 1
    TP 0.501** 0.293 0.323 -0.444** 0.293 0.406* -0.012 0.377* 0.297 -0.283 -0.444** -0.499** -0.382* 0.392* 0.296 1
    注:VC、SR、BM、C、N、P、K、Ca、Na、Mg、C:N、C:P、N:P、SOC、TN和TP分别代表植被覆盖度、物种丰富度、生物量、植物C、植物N、植物P、植物K、植物Ca、植物Na、植物Mg、植物C:N、植物C:P、植物N:P、土壤有机碳、土壤总氮和土壤总磷。Notes:VC, SR, BM, C, N, P, K, Ca, Na, Mg, C:N, C:P, N:P, SOC, TN and TP mean vegetation coverage, species richness, biomass, plant carbon, plant nitrogen, plant phosphorus, plant potassium, plant calcium, plant sodium, plant magnesium, plant C:N, plant C:P, plant N:P, soil organic carbon, soil total nitrogen, soil total phosphorus, respectively.
    下载: 导出CSV
  • [1] 王峰, 周立江, 刘波, 等.汶川地震四川重灾区森林景观变迁及间接损失研究[J].水土保持学报, 2009, 23(5): 67-71. doi: 10.3321/j.issn:1009-2242.2009.05.014

    Wang F, Zhou L J, Liu B, et al. Study on variation of forest landscape and indirect loss in Sichuan seriously disaster area by Wenchuan earthquake[J]. Journal of Soil and Water Conservation. 2009, 23(5): 67-71. doi: 10.3321/j.issn:1009-2242.2009.05.014
    [2] 崔鹏, 庄建琦, 陈兴长, 等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版), 2010, 42(5): 10-19. http://d.old.wanfangdata.com.cn/Conference/7681080

    Cui P, Zhuang J Q, Chen X C, et al. Characteristics and countermeasures of debris flow in Wenchuan Area after the earthquake[J].Journal of Sichuan University (Engineering Science Edition), 2010, 42(5): 10-19. http://d.old.wanfangdata.com.cn/Conference/7681080
    [3] 许冲, 戴福初, 徐锡伟.汶川地震滑坡灾害研究综述[J].地质论评, 2010, 56(6): 860-874. http://d.old.wanfangdata.com.cn/Periodical/dzlp201006013

    Xu C, Dai F C, Xu X W. Wenchuan earthquake-induced landslides: an overview[J]. Geological Review, 2010, 56(6): 860-874. http://d.old.wanfangdata.com.cn/Periodical/dzlp201006013
    [4] 包维楷.汶川地震重灾区生态退化及其恢复重建对策[J].中国科学院院刊, 2008, 23(4): 324-329. doi: 10.3969/j.issn.1000-3045.2008.04.009

    Bao W K. Ecological degradation and restoration and reconstruction countermeasures for severe calamity regions in Wenchuan earthquake in Sichuan[J]. Bulletin of Chinese Academy of Sciences, 2008, 23(4): 324-329. doi: 10.3969/j.issn.1000-3045.2008.04.009
    [5] Wang Z Y, Shi W J, Liu D D. Continual erosion of bare rocks after the Wenchuan earthquake and control strategies[J]. Journal of Asian Earth Sciences, 2011, 40(4): 915-925. doi: 10.1016/j.jseaes.2010.07.004
    [6] Zhang J D, Hull V, Xu W H, et al. Impact of the 2008 Wenchuan earthquake on biodiversity and giant panda habitat in Wolong Nature Reserve, China[J]. Ecological Research, 2011, 26(3): 523-531. doi: 10.1007/s11284-011-0809-4
    [7] Wang Z Y, Cui P, Wang R Y. Mass movements triggered by the Wenchuan earthquake and management strategies of quake lakes[J]. International Journal of River Basin Management, 2009, 7(4): 391-402. doi: 10.1080/15715124.2009.9635397
    [8] Cui P, Zhu Y Y, Han Y S, et al. The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation[J]. Landslides, 2009, 6(3): 209-223. doi: 10.1007/s10346-009-0160-9
    [9] 刘彬, 吴福忠, 张健, 等.岷江干旱河谷-山地森林交错带震后生态恢复的关键科学技术问题[J].生态学报, 2008, 28(12): 5892-5898. doi: 10.3321/j.issn:1000-0933.2008.12.015

    Liu B, Wu F Z, Zhang J, et al. Key issues in restoration on earthquake-damaged ecosystem at the ecotone between dry valley and mont ane forest of the Minjiang River[J]. Acta Ecologica Sinica, 2008, 28(12): 5892-5898. doi: 10.3321/j.issn:1000-0933.2008.12.015
    [10] 张晶晶, 王蕾, 许冬梅.荒漠草原自然恢复中植物群落组成及物种多样性[J].草业科学, 2011(6): 1091-1094. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201106042

    Zhang J J, Wang L, Xu D M. Composition and plant species diversity of plant community in the process of natural restoration of desert steppe[J]. Pratacultural Science, 2011(6): 1091-1094. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201106042
    [11] Inouye R S, Huntly N J, Tilman D, et al. Old-field succession on a Minnesota Sand Plain[J]. Ecology, 1987, 68(1): 12-26. doi: 10.2307/1938801
    [12] Nagaraja B C, Somashekar R K, Raj M B. Tree species diversity and composition in logged and unlogged rainforest of Kudremukh National Park, South India[J]. Journal of Environmental Biology, 2005, 26(4): 627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d6cb7d312a88da2d1ca1b3048a8ab46
    [13] 吴祥云, 卢慧, 王晓娇.固沙林采伐迹地撂荒后自然恢复的植物多样性、生物量与土壤养分含量的变化[J].生态学杂志, 2007, 26(7): 978-982. doi: 10.3321/j.issn:1000-4890.2007.07.003

    Wu X Y, Lu H, Wang X J. Changes of plant diversity, biomass, and soil nutrients in cutting slash of artificial sand fixation forest after fallowing and natural restoration[J]. Chinese Journal of Ecology, 2007, 26(7): 978-982. doi: 10.3321/j.issn:1000-4890.2007.07.003
    [14] 漆良华, 彭镇华, 张旭东, 等.退化土地植被恢复群落物种多样性与生物量分配格局[J].生态学杂志, 2007, 26(11): 1697-1702. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711001

    Qi L H, Peng Z H, Zhang X D, et al. Species diversity and biomass allocation of vegetation restoration communities on degraded lands[J]. Chinese Journal of Ecology, 2007, 26(11): 1697-1702. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711001
    [15] 马志勇, 沈涛, 张军海, 等.基于植被覆盖度的植被变化分析[J].测绘通报, 2007(3): 45-48. doi: 10.3969/j.issn.0494-0911.2007.03.014

    Ma Z Y, Shen T, Zhang J H, et al. Vegetation changes analysis based on vegetation coverage[J]. Bulletin of Surveying and Mapping, 2007(3): 45-48. doi: 10.3969/j.issn.0494-0911.2007.03.014
    [16] 张光富.浙江天童山区灌丛群落的物种多样性及其与演替的关系[J].生物多样性, 2000, 8(3): 271-276. doi: 10.3321/j.issn:1005-0094.2000.03.006

    Zhang G F. Species diversity of a shrub community in Tiantong Region, Zhejiang Province and its implication for succession[J]. Biodiversity Science, 2000, 8(3): 271-276. doi: 10.3321/j.issn:1005-0094.2000.03.006
    [17] 杨利民, 周广胜, 李建东.松嫩平原草地群落物种多样性与生产力关系的研究[J].植物生态学报, 2002, 26(5): 589-593. doi: 10.3321/j.issn:1005-264X.2002.05.011

    Yang L M, Zhou G S, Li J D. Relationship between productivity and plant species diversity of grassland communities in Songnen Plain of Northeast China[J]. Chinese Journal of Plant Ecology, 2002, 26(5): 589-593. doi: 10.3321/j.issn:1005-264X.2002.05.011
    [18] Viña A, Chen X, Mcconnell W J, et al. Effects of natural disasters on conservation policies: the case of the 2008 Wenchuan earthquake, China[J]. Ambio, 2011, 40(3): 274. doi: 10.1007/s13280-010-0098-0
    [19] 黄光忠, 刘向东, 何飞.岷江上游地震灾后受损植被状况及其恢复重建对策[J].四川林业科技, 2009, 30(3): 95-99. doi: 10.3969/j.issn.1003-5508.2009.03.017

    Huang G Z, Liu X D, He F. Damaged vegetation situation after the earthquake in the upper reaches of Minjiang River and its restoration and reconstruction measures[J]. Journal of Sichuan Forestry Science and Technology, 2009, 30(3): 95-99. doi: 10.3969/j.issn.1003-5508.2009.03.017
    [20] 刘守江, 张斌, 杨清伟, 等.汶川地震非规范滑坡体上植被的自然恢复能力研究:以彭州银厂沟谢家店子滑坡体为例[J].山地学报, 2010, 28(3): 373-378. doi: 10.3969/j.issn.1008-2786.2010.03.016

    Liu S J, Zhang B, Yang Q W, et al. Research on the natural recovery of vegetation on the non-normative landslide mass in Wenchuan earthquake: take landslide mass in Xie Jia Dian of Ying Chang Gou in Pengzhou as an example[J]. Mountain Research, 2010, 28(3): 373-378. doi: 10.3969/j.issn.1008-2786.2010.03.016
    [21] Iii F S C, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. London:Springer, 2014: 369-397.
    [22] Aerts R, Chapin F S I. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 2000, 30(8): 1-67. http://cn.bing.com/academic/profile?id=af06fcec85bcf01ba4c40febda7f7fd2&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Cleland E E. Nutrient co-limitation of primary producer communities.[J]. Ecology Letters, 2011, 14(9): 852-862. doi: 10.1111/j.1461-0248.2011.01651.x
    [24] Koerselman W. Thevegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi: 10.2307/2404783
    [25] 郭宝华, 刘广路, 范少辉, 等.不同生产力水平毛竹林碳氮磷的分布格局和计量特征[J].林业科学, 2014, 50(6): 1-9. http://d.old.wanfangdata.com.cn/Periodical/lykx201406001

    Guo B H, Liu G L, Fan S H, et al. Distribution patterns and stoichiometry characteristics of C, N, P in Phyllostachys edulis forests of different productivity levels[J]. Scientia Silvae Sinicae, 2014, 50(6): 1-9. http://d.old.wanfangdata.com.cn/Periodical/lykx201406001
    [26] Ågren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology Evolution & Systematics, 2008, 39(39): 153-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad7d33b156bb550bd0dbb9239a9919b5
    [27] 刘超, 王洋, 王楠, 等.陆地生态系统植被氮磷化学计量研究进展[J].植物生态学报, 2012, 36(11): 1205-1216. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201211009

    Liu C, Wang Y, Wang N, et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205-1216. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201211009
    [28] 宾振钧, 王静静, 张文鹏, 等.氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J].植物生态学报, 2014, 38(3): 231-237. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201403002

    Bin Z J, Wang J J, Zhang W P, et al. Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 231-237. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201403002
    [29] 刘兴诏, 周国逸, 张德强, 等.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J].植物生态学报, 2010, 34(1): 64-71. doi: 10.3773/j.issn.1005-264x.2010.01.010

    Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. doi: 10.3773/j.issn.1005-264x.2010.01.010
    [30] Yu Q, Chen Q S, Elser J, et al. Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability[J]. Ecology Letters, 2010, 13(11): 1390. doi: 10.1111/j.1461-0248.2010.01532.x
    [31] Venterink H O, Wassen M J, Verkroost A W M, et al.Species richness-productivity patterns differ between N-, P-, and K-limited wetlands[J]. Ecology, 2003, 84(8): 2191-2199. doi: 10.1890/01-0639
    [32] Makkonen M, Berg M P, Handa I T, et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[J]. Ecology Letters, 2012, 15(9): 1033-1041. doi: 10.1111/j.1461-0248.2012.01826.x
    [33] 闫帮国, 纪中华, 何光熊, 等.金沙江干热河谷植物叶片元素含量在地表凋落物周转中的作用[J].生态学报, 2013, 33(18): 5668-5674. http://d.old.wanfangdata.com.cn/Periodical/stxb201318029

    Yan B G, Ji Z H, He G X, et al. The effects of leaf stoichiochemistric characters on litter turnover in an arid-hot valley of Jinsha River, China[J]. Acta Ecologica Sinica, 2013, 33(18): 5668-5674. http://d.old.wanfangdata.com.cn/Periodical/stxb201318029
    [34] Reich P B, Oleksyn J, Modrzynski J, et al. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species[J]. Ecology Letters, 2005, 8(8): 811-818. doi: 10.1111/ele.2005.8.issue-8
    [35] Song Z L, Liu H Y, Zhao F J, et al. Ecological stoichiometry of N:P:Si in China's grasslands[J]. Plant & Soil, 2014, 380(1-2): 165-179. http://d.old.wanfangdata.com.cn/Periodical/trq-e201803015
    [36] 安卓, 牛得草, 文海燕, 等.氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J].植物生态学报, 2011, 35(8): 801-807. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201108002

    An Z, Niu D C, Wen H Y, et al. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China[J]. Chinese Journal of Plant Ecology, 2011, 35(8): 801-807. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201108002
    [37] Zhang Z S, Song X L, Lu X G, et al. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls[J]. Journal of Soils & Sediments Protection Risk Assessment & Rem, 2013, 13(6): 1043-1051. http://cn.bing.com/academic/profile?id=fd4835b477dfb7cb73eb94836693cd93&encoded=0&v=paper_preview&mkt=zh-cn
    [38] Qu F Z, Yu J B, Du S Y, et al. Influences of anthropogenic cultivation on C, N and P stoichiometry of reed-dominated coastal wetlands in the Yellow River Delta[J]. Geoderma, 2014, 235-236(4): 227-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c7dda57e52d992c20ceb972af49ecbf
    [39] 李征, 韩琳, 刘玉虹, 等.滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征[J].植物生态学报, 2012, 36(10): 1054-1061. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201210005

    Li Z, Han L, Liu Y H, et al. C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China[J].Chinese Journal of Plant Ecology, 2012, 36(10): 1054-1061. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201210005
    [40] Huang W J, Zhou G Y, Liu J X, et al. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest[J]. Environmental Pollution, 2012, 168(5): 113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9fc1cbceb7435e6bd4040ef7e36decb6
    [41] Moore T R, Trofymow J A, Prescott C E, et al. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests[J]. Plant & Soil, 2011, 339(1-2): 163-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6af84a50c5a2320fcc6912e4c786489
    [42] Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788-796. doi: 10.1111/ele.2011.14.issue-8
    [43] Xia C X, Yu D, Wang Z, et al. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecological Engineering, 2014, 70(5): 406-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ebd97799c9d8ccc4eae379db1678c7a
    [44] 马露莎, 陈亚南, 张向茹, 等.黄土高原刺槐叶片生态化学计量学特征[J].水土保持研究, 2014, 21(3): 57-61. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201403012

    Ma L S, Chen Y N, Zhang X R, et al. Characteristics of leaf ecological stoichiometry of Robinia pseudoacacia in Loess Plateau[J]. Research of Soil and Water Conservation, 2014, 21(3): 57-61. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201403012
    [45] 王春明, 包维楷, 陈建中, 等.岷江上游干旱河谷区褐土不同亚类剖面及养分特征[J].应用与环境生物学报, 2003, 9(3): 11-15. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200303003

    Wang C M, Bao W K, Chen J Z, et al. Profile characteristics and nutrients of dry cinnamon soils in dry valley of the upper Minjiang River[J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(3): 11-15. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200303003
    [46] Lin Y M, Cui P, Ge Y G, et al. The succession characteristics of soil erosion during different vegetation succession stages in dry-hot river valley of Jinsha River, upper reaches of Yangtze River[J]. Ecological Engineering, 2014, 62(1): 13-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4acffa66d46099d0e7328b0ba30da9e6
    [47] Arbelo Rodríguez A C D, Rodríguez A R, Garcia J A G, et al. Soil quality and plant succession in forest andosols[C]//Lian X W, De Y W, Xiao N T, et al. Proceedings of 12th ISCO conference. sustainable utilization of global soil and water resources. Beijing: Tsinghua University Press, 2002: 452-458. http://www.tucson.ars.ag.gov/isco/isco12/VolumeIII/SoilQualityandPlantSuccession.pdf
    [48] 林勇明, 吴承祯, 洪伟, 等.汶川地震灾区典型区不同植被类型土壤种子库特征:以北川县苏保河、魏家沟流域为例[J].中国生态农业学报, 2012, 20(1): 99-104. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201201018

    Lin Y M, Wu C Z, Hong W, et al. Soil seed bank characteristics of different vegetations in typically affected regions of Wenchuan earthquake: a case study in Subaohe and Weijiagou Basins[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 99-104. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201201018
    [49] 罗清虎, 孙凡, 吴建召, 等.汶川地震对两种气候区植被恢复群落特征的影响[J].森林与环境学报, 2018, 38(1): 50-56. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201801009

    Luo Q H, Sun F, Wu J Z, et al. Community characteristics of vegetation restoration in 2 different climate areas of Wenchuan earthquake affected region[J]. Journal of Forest and Environment. 2018, 38(1): 50-56. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201801009
    [50] 严代碧.岷江上游干旱河谷区退化植被特征及其恢复重建的研究[D].北京: 北京林业大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007015460.htm

    Yan D B. Research on degraded vegetation characters, restoration and reconstruction at the arid valley in the upper reaches of the Minjiang River[D]. Beijing: Beijing Forestry University, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007015460.htm
    [51] Lin Y M, Deng H J, Du K, et al. Soil quality assessment in different climate zones of China's Wenchuan earthquake affected region[J]. Soil & Tillage Research, 2017, 165: 315-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacdcc4aa0508e9944d480af9bd97360
    [52] Wardle D A, Walker L R, Bardgett R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004, 305: 509-513. doi: 10.1126/science.1098778
    [53] Vitousek P. Nutrient cycling and nutrient use efficiency:litter production, nutrient use, forests.[J]. American Naturalist, 1982, 119(4): 553-572. doi: 10.1086/283931
    [54] Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals: growth rate and resource dependence of bacterial C:N:P stoichiometry[J]. Functional Ecology, 2003, 17(1): 121-130. doi: 10.1046/j.1365-2435.2003.00712.x
    [55] Elser J J, Dobberfuhl D R, Mackay N A, et al. Organism size, life history, and N:P stoichiometry[J]. Bioscience, 1996, 46(9): 674-684. doi: 10.2307/1312897
    [56] Koerselman W. Thevegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi: 10.2307/2404783
    [57] Xu X L, Ma K M, Fu B J, et al. Relationships between vegetation and soil and topography in a dry warm river valley, SW China[J]. Catena, 2008, 75(2): 138-145. doi: 10.1016/j.catena.2008.04.016
    [58] Arbelo C D, Rodríguez-Rodríguez A, Guerra J A, et al. Soil degradation processes and plant colonization in abandoned terraced fields overlying pumice tuffs[J]. Land Degradation & Development, 2010, 17(6): 571-588. http://cn.bing.com/academic/profile?id=cda50e860fd1305e8a0881fd9854e541&encoded=0&v=paper_preview&mkt=zh-cn
    [59] 何俊杰, 陈小梅, 冯思红, 等.城郊梯度上南亚热带季风常绿阔叶林土壤C、N、P化学计量特征[J].生态学杂志, 2016, 35(3): 591-596. http://d.old.wanfangdata.com.cn/Periodical/stxzz201603005

    He J J, Chen X M, Feng S H, et al. Stoichiometric characteristics of soil C, N and P in subtropical forests along an urban-to-suburb gradient[J]. Chinese Journal of Ecology, 2016, 35(3): 591-596. http://d.old.wanfangdata.com.cn/Periodical/stxzz201603005
  • 加载中
图(1) / 表(8)
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  281
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-14
  • 修回日期:  2018-12-14
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回