高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胡杨幼苗生长相关性状QTL上位性分析

王平 王东洋 王晶 姜立波 邬荣领

王平, 王东洋, 王晶, 姜立波, 邬荣领. 胡杨幼苗生长相关性状QTL上位性分析[J]. 北京林业大学学报, 2018, 40(12): 49-59. doi: 10.13332/j.1000-1522.20180332
引用本文: 王平, 王东洋, 王晶, 姜立波, 邬荣领. 胡杨幼苗生长相关性状QTL上位性分析[J]. 北京林业大学学报, 2018, 40(12): 49-59. doi: 10.13332/j.1000-1522.20180332
Wang Ping, Wang Dongyang, Wang Jing, Jiang Libo, Wu Rongling. QTL epistasis effect analysis of seedling growth-related traits in Populus euphratica[J]. Journal of Beijing Forestry University, 2018, 40(12): 49-59. doi: 10.13332/j.1000-1522.20180332
Citation: Wang Ping, Wang Dongyang, Wang Jing, Jiang Libo, Wu Rongling. QTL epistasis effect analysis of seedling growth-related traits in Populus euphratica[J]. Journal of Beijing Forestry University, 2018, 40(12): 49-59. doi: 10.13332/j.1000-1522.20180332

胡杨幼苗生长相关性状QTL上位性分析

doi: 10.13332/j.1000-1522.20180332
基金项目: 

国家林业公益性行业科研专项 201404102

国家自然科学基金项目 31700576

详细信息
    作者简介:

    王平。主要研究方向:林木数量遗传学。Email: wangping21@163.com   地址:100083   北京市海淀区清华东路35号

    责任作者:

    姜立波,博士,讲师。主要研究方向:林木数量遗传学。Email:libojiang@bjfu.edu.cn   地址:同上

  • 中图分类号: S722

QTL epistasis effect analysis of seedling growth-related traits in Populus euphratica

  • 摘要: 目的幼苗期是植物生长发育的重要阶段,幼苗生长相关性状的研究对改善农作物以及林木的生产以及提高抗逆性具有重要意义。目前尚无研究对胡杨幼苗生长阶段相关表型的上位互作机制进行解析。方法本研究以包含408个单株的胡杨×胡杨杂交的F1代群体为实验材料,获取茎高、主根长、总侧根长和侧根数量4种表型动态生长数据;基于该群体所构建的高密度连锁图谱,通过功能作图和2HIGWAS对基因之间的上位互作进行定位。结果共侦测出QTL-QTL互作83对,包含83个SNPs。其中主根长、茎高、侧根总长、侧根数量分别检验出24对、20对、24对、15对显著QTL互作;主根长、茎高以及侧根总长较大比例的上位互作分别集中分布于连锁群1、19和17。另外对4个表型显著上位互作的QTLs进行功能注释,19个QTLs注释到候选基因。结论影响侧根总长的显著互作具有较高的遗传力,在连锁群17集中分布,可能是重要的候选基因区域,能够为胡杨以及林木分子标记辅助育种提供重要的借鉴。

     

  • 图  1  两种模型对4种表型性状生长曲线的拟合

    A.主根长;B.茎高;C.侧根总长;D.侧根数量;M1.模型1(公式1);M2.模型2(公式2)。

    Figure  1.  Fitting of growth curves of the four traits by two models

    A, taproot length; B, stem height; C, total lateral root length; D, number of lateral roots; M1, model 1 (equation 1);M2, model 2 (equation 2).

    图  2  4种性状选取的最佳模型的残差图

    A.主根长;B.茎高;C, 侧根总长;D.侧根数量。

    Figure  2.  Residual plot of the best model for four traits

    A, taproot length; B, stem height; C, total lateral root length; D, number of lateral roots.

    图  3  4个性状中显著QTL-QTL互作在胡杨连锁群的分布

    红色代表主根长;绿色代表茎高;蓝色代表侧根总长;紫色代表侧根数量。

    Figure  3.  Distribution of significant QTL-QTL interactions for four traits along 19 linkage groups of Populus euphratica

    Red represents the taproot length; green represents the stem height; blue represents total lateral root length; purple represents the number of lateral roots.

    图  4  4个性状显著QTL-QTL互作遗传力的时序模式

    A.主根长;B.茎高;C.侧根总长;D.侧根数量,黑色线条表示每个性状所有显著QTL-QTL互作的总遗传力。

    Figure  4.  Temporal pattern of heritability of significant QTL-QTL interactions for four traits

    A, taproot length; B, stem height; C, total lateral root length; D, number of lateral roots, the black lines indicate the total heritability of all significant QTL-QTL interactions for each trait.

    表  1  4个性状显著QTL-QTL互作的详细信息

    Table  1.   Detailed information of significant QTL-QTL interactions for four traits

    表型
    Phenotype
    配对数
    Pair
    标记1 ID
    SNP1
    标记2 ID
    SNP2
    连锁群LG位置Position标记类型Marker type互作类型
    Interaction
    type
    标记1
    SNP1
    标记2
    SNP2
    标记1
    SNP1
    标记2
    SNP2
    标记1
    SNP1
    标记2
    SNP2
    主根长Taproot length0hk_hk_526lm_ll_9726LG1LG2393.97134.6IntercrossTestcrossAA
    1hk_hk_1541lm_ll_9903LG1LG3363.76303.2IntercrossTestcrossAA
    2lm_ll_11751nn_np_10334LG12LG1192.69399.54TestcrossTestcrossAA
    3lm_ll_6889nn_np_4797LG3LG1297.11404.42TestcrossTestcrossAA
    4lm_ll_9726nn_np_10334LG2LG1134.6399.54TestcrossTestcrossAA
    5hk_hk_2726lm_ll_9726LG1LG2400.46134.6IntercrossTestcrossAA
    6nn_np_6494lm_ll_4106LG1LG8366.1782.77TestcrossTestcrossAA
    7lm_ll_11751nn_np_7270LG12LG1192.69382.18TestcrossTestcrossAA
    8hk_hk_2120hk_hk_2116LG2LG7383.58149.35IntercrossIntercrossAD
    9hk_hk_526hk_hk_2116LG1LG7393.97149.35IntercrossIntercrossAD
    10nn_np_11925lm_ll_3383LG1LG3367.62215.49TestcrossTestcrossAA
    11hk_hk_1541lm_ll_9726LG1LG2363.76134.6IntercrossTestcrossAA
    12lm_ll_5873lm_ll_9726LG12LG2192.7134.6TestcrossTestcrossAA
    13lm_ll_8943nn_np_4797LG3LG1297.11404.42TestcrossTestcrossAA
    14lm_ll_8943nn_np_4582LG3LG19297.1172.68TestcrossTestcrossAA
    15lm_ll_4106nn_np_3087LG8LG182.77361.76TestcrossTestcrossAA
    16lm_ll_5853lm_ll_9726LG3LG2307.06134.6TestcrossTestcrossAA
    17nn_np_6494lm_ll_6889LG1LG3366.17297.11TestcrossTestcrossAA
    18lm_ll_9726hk_hk_2116LG2LG7134.6149.35TestcrossIntercrossAD
    19lm_ll_9903lm_ll_9726LG3LG2303.2134.6TestcrossTestcrossAA
    20nn_np_6494lm_ll_3383LG1LG3366.17215.49TestcrossTestcrossAA
    21nn_np_11925lm_ll_4106LG1LG8367.6282.77TestcrossTestcrossAA
    22hk_hk_2726lm_ll_9903LG1LG3400.46303.2IntercrossTestcrossAA
    23lm_ll_9726lm_ll_9874LG2LG3134.6222TestcrossTestcrossAA
    茎高Stem height24lm_ll_3248hk_hk_1984LG2LG1955.8175.2TestcrossIntercrossAD
    25hk_hk_861hk_hk_1984LG19LG1984.2275.2IntercrossIntercrossDD
    26nn_np_8378hk_hk_861LG5LG19122.4884.22TestcrossIntercrossAD
    27hk_hk_2692hk_hk_2705LG19LG3118.5561.26IntercrossIntercrossAD
    29hk_hk_1984hk_hk_861LG19LG1975.284.22IntercrossIntercrossAD
    30hk_hk_2765hk_hk_861LG19LG1975.3284.22IntercrossIntercrossAD
    31hk_hk_1984hk_hk_1556LG19LG675.218.94IntercrossIntercrossDD
    32nn_np_4006hk_hk_861LG11LG19106.584.22TestcrossIntercrossAD
    33hk_hk_2025hk_hk_1556LG15LG649.6718.94IntercrossIntercrossDD
    34hk_hk_1984hk_hk_2234LG19LG1975.284.22IntercrossIntercrossDD
    35hk_hk_1365hk_hk_2705LG19LG3109.5261.26IntercrossIntercrossAD
    36hk_hk_2155hk_hk_861LG19LG1974.6684.22IntercrossIntercrossAD
    37hk_hk_1984hk_hk_1342LG19LG1975.275.32IntercrossIntercrossDD
    38hk_hk_861hk_hk_1342LG19LG1984.2275.32IntercrossIntercrossDD
    39lm_ll_3248nn_np_11732LG2LG1055.8123.14TestcrossTestcrossAA
    40lm_ll_3248hk_hk_2779LG2LG1355.81218.9TestcrossIntercrossAD
    41hk_hk_1984hk_hk_3206LG19LG1975.286.38IntercrossIntercrossDD
    42hk_hk_1984hk_hk_1206LG19LG675.25.36IntercrossIntercrossDD
    43hk_hk_2765hk_hk_3138LG19LG675.3221.69IntercrossIntercrossAA
    44hk_hk_1960hk_hk_1206LG19LG6118.555.36IntercrossIntercrossAD
    总侧根长Total lateral
    root length
    45hk_hk_3074hk_hk_2288LG8LG2102.6995.12IntercrossIntercrossDD
    46lm_ll_3911hk_hk_3074LG3LG8234.43102.69TestcrossIntercrossAD
    47lm_ll_7977hk_hk_2288LG2LG243.0895.12TestcrossIntercrossAD
    48nn_np_8297lm_ll_3153LG17LG3115.47214.01TestcrossTestcrossAA
    49nn_np_8297lm_ll_11743LG17LG3115.47236.62TestcrossTestcrossAA
    50lm_ll_7977nn_np_11395LG2LG1043.0844.49TestcrossTestcrossAA
    51hk_hk_3038lm_ll_3153LG3LG321.18214.01IntercrossTestcrossAA
    52nn_np_8297lm_ll_8924LG17LG3115.47224.85TestcrossTestcrossAA
    53nn_np_8297lm_ll_11684LG17LG3115.47226.02TestcrossTestcrossAA
    54hk_hk_829hk_hk_861LG15LG1982.884.22IntercrossIntercrossDD
    55nn_np_8297lm_ll_11020LG17LG3115.47224.85TestcrossTestcrossAA
    56nn_np_8297lm_ll_11345LG17LG3115.47236.62TestcrossTestcrossAA
    57nn_np_7192hk_hk_3074LG19LG897.44102.69TestcrossIntercrossAD
    58nn_np_8297lm_ll_11873LG17LG3115.47224.82TestcrossTestcrossAA
    59nn_np_8297lm_ll_2229LG17LG3115.47224.85TestcrossTestcrossAA
    60hk_hk_3038lm_ll_11873LG3LG321.18224.82IntercrossTestcrossAA
    61lm_ll_7977hk_hk_1848LG2LG443.0891.98TestcrossIntercrossAD
    62lm_ll_13112hk_hk_2288LG3LG2235.5895.12TestcrossIntercrossAD
    63hk_hk_3038hk_hk_2485LG3LG821.1893.95IntercrossIntercrossAD
    64hk_hk_3209hk_hk_861LG8LG1960.2884.22IntercrossIntercrossDD
    65hk_hk_1848hk_hk_1589LG4LG1291.9879.45IntercrossIntercrossDD
    66lm_ll_13112lm_ll_7977LG3LG2235.5843.08TestcrossTestcrossAA
    67lm_ll_12414hk_hk_2288LG3LG2229.5695.12TestcrossIntercrossAD
    68lm_ll_11873hk_hk_3209LG3LG8224.8260.28TestcrossIntercrossAD
    侧根数量Number of
    lateral roots
    69hk_hk_3237nn_np_6825LG17LG1179.51144.23IntercrossTestcrossAA
    70lm_ll_10262nn_np_9993LG10LG1143.3164.17TestcrossTestcrossAA
    71lm_ll_10262lm_ll_6938LG10LG443.378.08TestcrossTestcrossAA
    72lm_ll_7471nn_np_11905LG4LG1764.661.54TestcrossTestcrossAA
    73lm_ll_4501nn_np_3662LG5LG11170.17148.06TestcrossTestcrossAA
    74lm_ll_579hk_hk_1675LG4LG121712.47TestcrossIntercrossAD
    75lm_ll_6938lm_ll_10741LG4LG578.08121.28TestcrossTestcrossAA
    76nn_np_9993lm_ll_10152LG1LG10164.1779.6TestcrossTestcrossAA
    77nn_np_12080nn_np_9993LG5LG1188164.17TestcrossTestcrossAA
    78lm_ll_7471nn_np_8146LG4LG464.6203.23TestcrossTestcrossAA
    79hk_hk_3237nn_np_9993LG17LG1179.51164.17IntercrossTestcrossAA
    80lm_ll_4374lm_ll_10741LG4LG575.03121.28TestcrossTestcrossAA
    81nn_np_12080lm_ll_6938LG5LG418878.08TestcrossTestcrossAA
    82lm_ll_924lm_ll_579LG2LG415.0117TestcrossTestcrossAA
    83nn_np_12080nn_np_2539LG5LG18188184.27TestcrossTestcrossAA
    注:A表示加性效应,D表示显性效应。Notes:A represents additive effect, D represents dominant effect.
    下载: 导出CSV

    表  2  2HIGWAS筛选出的上位效应位点注释信息

    Table  2.   Annotation information of loci with epistatic effect filtered by 2HIGWAS

    性状
    Trait
    标记
    Marker
    GO号
    GO ID
    分类
    Classification
    注释信息
    Annotataion
    主根长Taproot lengthnn_np_3087GO:0043231CPentatricopeptide repeat-containing protein At1g52620
    nn_np_6494GO:0016226Pprotein AE7-like
    hk_hk_2726GO:0051260PBTB/POZ domain-containing protein At5g41330-like
    hk_hk_2120GO:0045552Fvestitone reductase
    nn_np_4582GO:0005634Ccytokinin riboside 5′-monophosphate phosphoribohydrolase LOG7
    茎高Stem heighthk_hk_1206GO:0003723Fserine/arginine-rich splicing factor SC35-like isoform X1
    hk_hk_1556GO:0005768Cras-related protein RABA2a
    hk_hk_2155GO:0003676Fintegrase-like protein
    hk_hk_3206GO:0090575Ctranscription factor bHLH162
    lm_ll_3153GO:0003676Fintegrase
    侧根总长Total lateral
    root length
    lm_ll_11873GO:0003676FDNA-directed DNA polymerase
    lm_ll_11020GO:0008445FRetrovirus-related Pol polyprotein from transposon 17.6
    lm_ll_11345GO:0016021Cglutamate receptor 3.4-like
    hk_hk_3209GO:0009533Cprotease Do-like 2, chloroplastic
    lm_ll_3153GO:0003676Fintegrase
    侧根数量Number of
    lateral roots
    lm_ll_3153GO:0003676Fintegrase
    lm_ll_11873GO:0003676FDNA-directed DNA polymerase
    lm_ll_11020GO:0008445FRetrovirus-related Pol polyprotein from transposon 17.6
    lm_ll_11345GO:0016021Cglutamate receptor 3.4-like
    hk_hk_3209GO:0009533Cprotease Do-like 2, chloroplastic
    注:P表示生物学过程、C表示细胞组分、F表示分子功能。Notes:P denotes the biological process, C denotes the cellular component, F denotes the molecular function.
    下载: 导出CSV
  • [1] Silva A T, Ligterink W, Hilhorst H W M. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana[J]. Plant Molecular Biology, 2017, 95(4):481-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=349541da36d214837b0dd468180dcbb3
    [2] Leishman M R, Hughes L, French K, et al. Seed and seedling biology in relation to modelling vegetation dynamics under global climate change[J]. Australian Journal of Botany, 1992, 40(5):599-613. doi: 10.1071/BT9920599
    [3] Zhang M, Bo W, Xu F, et al. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica[J]. The Plant Journal, 2017, 90(5): 918-928. doi: 10.1111/tpj.2017.90.issue-5
    [4] Osunkjoya O O, Ash J E, Hopkins M S, et al. Factors affecting survival of tree seedlings in North Queensland rainforests[J]. Oecologia, 1992, 91(4): 569-578. doi: 10.1007/BF00650333
    [5] Koger C H, Reddy K N, Poston D H. Factors affecting seed germination, seedling emergence, and survival of texasweed (Caperonia palustris)[J]. Weed Science, 2004, 52(6): 989-995. doi: 10.1614/WS-03-139R2
    [6] Von Liebig J F. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie[M]. Braunschweig:Friedrich Vieweg und Sohn Publ. Co, 1842.
    [7] Kaspari M, Garcia M N, Harms K E, et al. Multiple nutrients limit litterfall and decomposition in a tropical forest[J]. Ecology Letters, 2008, 11(1): 35-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1461-0248.2007.01124.x
    [8] Clouse S D. Integration of light and brassinosteroid signals in etiolated seedling growth[J]. Trends in Plant Science, 2001, 6(10): 443-445. doi: 10.1016/S1360-1385(01)02102-1
    [9] Nelson D C, Flematti G R, Ghisalberti E L, et al. Regulation of seed germination and seedling growth by chemical signals from burning vegetation[J]. Annual Review of Plant Biology, 2012, 63: 107-130. doi: 10.1146/annurev-arplant-042811-105545
    [10] Stanga J P, Morffy N, Nelson D C. Functional redundancy in the control of seedling growth by the karrikin signaling pathway[J]. Planta, 2016, 243(6): 1397-1406. doi: 10.1007/s00425-015-2458-2
    [11] Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk[J]. Planta, 2017, 245(3): 467-489. doi: 10.1007/s00425-017-2651-6
    [12] Li J, Fu J, Chen Y, et al. The U6 biogenesis-like1 plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA[J]. Molecular Plant, 2017, 10(3): 470-482. doi: 10.1016/j.molp.2016.10.016
    [13] Stewart J L, Maloof J N, Nemhauser J L. PIF genes mediate the effect of sucrose on seedling growth dynamics[J/OL]. PLoS one, 2011, 6(5): e19894[2018-09-27]. https://doi.org/10.1371/journal.pone.0019894
    [14] Hwang J E, Hong J K, Je J H, et al. Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6[J]. Plant Cell Reports, 2009, 28(11): 1623-1632. doi: 10.1007/s00299-009-0762-7
    [15] Liang H, Yu Y, Yang H, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theoretical and Applied Genetics, 2014, 127(10): 2127-2137. doi: 10.1007/s00122-014-2366-z
    [16] Li P, Chen F, Cai H, et al. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis[J]. Journal of Experimental Botany, 2015, 66(11): 3175-3188. doi: 10.1093/jxb/erv127
    [17] Li G, Xu X, Bai G, et al. Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat[J]. The Plant Genome, 2016, 9(3): 1-12. https://www.ncbi.nlm.nih.gov/pubmed/27902805
    [18] Genc Y, Oldach K, Verbyla A P, et al. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress[J]. Theoretical and Applied Genetics, 2010, 121(5): 877-894. doi: 10.1007/s00122-010-1357-y
    [19] Bai C, Liang Y, Hawkesford M J. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat[J]. Journal of Experimental Botany, 2013, 64(6): 1745-1753. doi: 10.1093/jxb/ert041
    [20] Takagi H, Uemura A, Yaegashi H, et al. MutMap-Gap: whole-genome resequencing of mutant F 2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii[J]. New Phytologist, 2013, 200(1): 276-283. doi: 10.1111/nph.12369
    [21] Eichler E E, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease[J]. Nature Reviews Genetics, 2010, 11(6): 446-450. doi: 10.1038/nrg2809
    [22] Bloom J S, Ehrenreich I M, Loo W T, et al. Finding the sources of missing heritability in a yeast cross[J]. Nature, 2013, 494: 234. doi: 10.1038/nature11867
    [23] Ma T, Wang J, Zhou G, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nature Communications, 2013, 4: 2797. doi: 10.1038/ncomms3797
    [24] Janz D, Lautner S, Wildhagen H, et al. Salt stress induces the formation of a novel type of 'pressure wood'in two Populus species[J]. New Phytologist, 2012, 194(1): 129-141. doi: 10.1111/j.1469-8137.2011.03975.x
    [25] Hohenlohe P A, Bassham S, Etter P D, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags[J/OL]. PLoS Genetics, 2010, 6(2): e1000862[2018-09-24]. https://doi.org/10.1371/journal.pgen.1000862.
    [26] Topp C N, Iyer-Pascuzzi A S, Anderson J T, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture[J]. Proceedings of the National Academy of Sciences, 2013, 110(18): E1695-E1704. doi: 10.1073/pnas.1304354110
    [27] West G B, Brown J H, Enquist B J. A general model for ontogenetic growth[J]. Nature, 2001, 413: 628. doi: 10.1038/35098076
    [28] Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions[J]. Psychometrika, 1987, 52(3): 345-370. doi: 10.1007/BF02294361
    [29] Ma C X, Casella G, Wu R. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework[J]. Genetics, 2002, 161(4): 1751-1762. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1462199
    [30] Wang Z, Wang N, Wu R, et al. fGWAS: an R package for genome-wide association analysis with longitudinal phenotypes[J]. Journal of Genetics and Genomics, 2018, 45(7): 411. doi: 10.1016/j.jgg.2018.06.006
    [31] Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18): 3674-3676. doi: 10.1093/bioinformatics/bti610
    [32] Wang L, Zhao C, Li J, et al. Root plasticity of Populus euphratica seedlings in response to different water table depths and contrasting sediment types[J/OL]. PLoS One, 2015, 10(3): e0118691[2018-09-27]. https://doi.org/10.1371/journal.pone.0118691.
    [33] Mackay T F C. Epistasis and quantitative traits: using model organisms to study gene-gene interactions[J]. Nature Reviews Genetics, 2014, 15(1): 22. doi: 10.1038/nrg3627
    [34] Jiang L, Liu J, Zhu X, et al. 2HiGWAS: a unifying high-dimensional platform to infer the global genetic architecture of trait development[J]. Briefings in Bioinformatics, 2015, 16(6): 905-911. doi: 10.1093/bib/bbv002
    [35] Donohue K. The epigenetics of adaptation: focusing on epigenetic stability as an evolving trait[J]. Evolution, 2014, 68(3): 617-619. doi: 10.1111/evo.12347
    [36] Lachowiec J, Shen X, Queitsch C, et al. A genome-wide association analysis reveals epistatic cancellation of additive genetic variance for root length in Arabidopsis thaliana[J/OL]. PLoS Genetics, 2015, 11(9): e1005541[2018-09-27]. https://doi.org/10.1371/journal.pgen.1005541.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  192
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2018-11-07
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回