高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吉林北部山区长白落叶松林径向生长对气候干暖化的响应

陈彬杭 温晓示 张树斌 柴世品 孙晗 王襄平

陈彬杭, 温晓示, 张树斌, 柴世品, 孙晗, 王襄平. 吉林北部山区长白落叶松林径向生长对气候干暖化的响应[J]. 北京林业大学学报, 2018, 40(12): 18-26. doi: 10.13332/j.1000-1522.20180333
引用本文: 陈彬杭, 温晓示, 张树斌, 柴世品, 孙晗, 王襄平. 吉林北部山区长白落叶松林径向生长对气候干暖化的响应[J]. 北京林业大学学报, 2018, 40(12): 18-26. doi: 10.13332/j.1000-1522.20180333
Chen Binhang, Wen Xiaoshi, Zhang Shubin, Chai Shipin, Sun Han, Wang Xiangping. Growth responses of Larix olgensis forests to climatic drying-warming trend in the northern mountainous region of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 18-26. doi: 10.13332/j.1000-1522.20180333
Citation: Chen Binhang, Wen Xiaoshi, Zhang Shubin, Chai Shipin, Sun Han, Wang Xiangping. Growth responses of Larix olgensis forests to climatic drying-warming trend in the northern mountainous region of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 18-26. doi: 10.13332/j.1000-1522.20180333

吉林北部山区长白落叶松林径向生长对气候干暖化的响应

doi: 10.13332/j.1000-1522.20180333
基金项目: 

国家自然科学基金项目 31870430

科技部科技基础性工作专项 2015FY210200-8

国家重点研发计划课题 2017YFC0503901

详细信息
    作者简介:

    陈彬杭。主要研究方向:森林生态。Email: 229731286@qq.com  地址:100083  北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    王襄平,教授,博士生导师。主要研究方向:森林生态。Email: wangxiangping@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.51+2; S791.22

Growth responses of Larix olgensis forests to climatic drying-warming trend in the northern mountainous region of Jilin Province, northeastern China

  • 摘要: 目的中国东北地区的气候干暖化对长白落叶松林构成了严重威胁,有待进一步探究林分因子(如林龄、密度、蓄积量等)如何与气候条件共同作用、影响树木径向生长对气候变化响应的相关机制。方法本研究基于吉林长白山北部余脉至老爷岭间的长白落叶松林的树轮宽度标准年表,分析了气候条件及林分因子对长白落叶松林的年轮—气候关系中的相对作用大小,以研究长白落叶松在气候变化下的响应机制。结果近30年来,研究区气候干暖化趋势显著,长白落叶松的生长明显受到气候变化的影响,气候条件和林分因子共同作用于年轮—气候关系,但前者的影响要大于后者。Palmer干旱指数对主成分第1轴的解释力为50.27%,表明水分条件的影响更为重要;林分因子中的林龄有显著作用,林龄大的林分更易受到温度升高的限制作用,其余林分因子则在本研究中没有表现出显著影响。结论在未来气候干暖化情境下,林龄较小的长白落叶松的生长会得到一定促进,但若林龄过大则会受到温度上升导致水分亏缺的限制作用,所以有必要采取经营措施以减小升温对林分的不利影响,以保证林分的持续发展。

     

  • 图  1  研究地1986—2015年气候变化趋势

    Figure  1.  Climatic changing trend of research area from 1986 to 2015

    图  2  年轮—气候关系与林龄的关系

    Figure  2.  Relationship between growth-climate and stand age

    图  3  轮宽指数与季节气候指标相关系数的主成分分析

    Figure  3.  Principal components analysis of ring width index and seasonal climatic factors

    表  1  样地基本信息表

    Table  1.   Basic information of each sample plot

    样地号
    Sample plot
    纬度
    Latitude
    经度
    Longitude
    林龄
    Stand age/a
    立地条件
    Site
    condition
    林分密度/(株·hm-2)
    Stand density/
    (tree·ha-1)
    蓄积量/(m3·hm-2)
    Volume/
    (m3·ha-1)
    平均树高
    Mean tree
    height/m
    平均胸径
    Mean DBH/
    cm
    DPC142°51′N128°04′E31中Medium1 150238.5617.9716.93
    DPC242°51′N128°05′E41中Medium1 580379.5621.5516.19
    DPC342°50′N128°01′E24中Medium1 140204.7118.6915.35
    DPC442°50′N128°00′E22好Good1 960197.5914.6812.75
    DPC542°52′N128°01′E37中Medium820248.5419.3120.01
    JC0143°19′N130°34′E59差Bad340182.7120.2626.39
    JC0243°19′N130°34′E53差Bad430184.0219.5924.12
    JC0343°19′N130°33′E58差Bad1 820160.3012.1612.20
    JC0443°22′N130°35′E56中Medium1 480369.7116.4218.47
    LD0143°26′N130°50′E53好Good810427.9520.8726.04
    LD0243°26′N130°50′E57好Good1 600309.2815.5416.44
    LD0343°28′N130°39′E56好Good1 480172.9511.7114.26
    LD0443°28′N130°40′E72中Medium1 500231.6612.3215.63
    LD0543°31′N130°41′E29中Medium1 040285.3519.3319.27
    LD0643°31′N130°41′E28差Bad990223.4617.4818.06
    LD0743°31′N130°41′E28好Good1 090223.9716.9817.71
    LD0843°31′N130°41′E28差Bad1 020248.1618.3018.59
    注: DPC代表大蒲柴河; JC代表金苍; LD代表六道。下同。Notes: DPC is for Dapuchaihe; JC is for Jincang; LD is for Liudao. The same below.
    下载: 导出CSV

    表  2  样地标准年表统计参数

    Table  2.   Summary statistics for standard chronology of each plot

    样地
    Sample plot
    共同年区间
    Common
    interval time
    span of year
    平均敏
    感度
    Mean
    sensitivity
    标准差
    Standard
    deviation
    R1样本间平
    均相关系数
    Mean
    correlations
    among all
    radii
    R2不同树木
    之间平均相关系数
    Mean
    correlations
    between trees
    R3同一树木不同样
    本之间平均相关系数
    Mean correlations
    between trees and
    within trees
    信噪比
    Signal-to-noise
    ratio
    总体代表性
    Express
    population
    signal
    第1特征
    向量解释量
    PCA1/%
    DPC11990—20160.2030.2180.4470.6550.42221.1950.9550.408
    DPC21984—20160.2120.1880.3750.6390.36845.3420.9780.384
    DPC31997—20160.2150.1850.5120.5500.50621.6070.9560.449
    DPC42000—20160.2200.2180.3690.5720.3659.8840.9080.270
    DPC51992—20160.2480.2600.4490.6510.44627.5390.9650.388
    JC011969—20160.1780.2030.1800.5730.1727.1550.8770.511
    JC021974—20160.1810.2080.4440.5990.44015.9760.9410.487
    JC031969—20160.1830.1840.3670.6110.36326.0760.9630.548
    JC041979—20160.1900.1990.5050.7600.50112.7330.9270.288
    LD011979—20160.1030.1570.2170.5050.21327.8370.9650.395
    LD021966—20160.1350.2810.5010.7210.49413.5160.9310.429
    LD031968—20160.1360.1610.2980.4590.29516.9850.9440.419
    LD041961—20160.1500.1590.3400.6180.3376.4750.8660.527
    LD051994—20160.1550.1490.3260.5120.32243.1990.9770.491
    LD061993—20160.1560.2010.3510.5940.34352.4780.9810.520
    LD071993—20160.1620.3280.4430.5240.43555.6520.9820.531
    LD081993—20160.1690.1660.4930.6960.49056.1350.9820.528
    下载: 导出CSV

    表  3  PCA第1、2轴载荷

    Table  3.   Loading of seasonal climatic factors on PCA 1 and PCA 2

    季节气候指标
    Seasonal climatic factor
    PCA 1PCA 2
    P_Spr_T0.369
    P_Aut_T0.287-0.358
    P_Win_T-0.472
    C_Spr_T0.2720.216
    C_Sum_T0.275
    C_Aut _T-0.161-0.326
    P_Aut_T-0.375
    P_Spr_PDSI-0.165-0.331
    P_Sum_PDSI-0.364
    P_Aut_PDSI-0.356
    P_Win_PDSI-0.2290.241
    C_Spr_PDSI-0.382-0.106
    C_Sum_PDSI-0.381
    C_Aut_PDSI-0.3050.152
    注:P表示上年; C表示当年。Spr、Sum、Aut、Win分别表示春、夏、秋、冬季。下同。“—”表示系数绝对值过小。Notes: P means last year; C means current year. Spr, Sum, Aut, Win represent spring, summer, autumn, winter, respectively. The same below. “—” means absolute value of coefficients is too small.
    下载: 导出CSV

    表  4  样地气候条件及林分因子对PCA前两轴得分的解释力(R2)

    Table  4.   Explanatory power of climatic factors and stand conditions for the scores of PCA 1 and 2 axis (R2)

    变量VariablePCA 1PCA 2
    PDSI Palmer drought severity index-0.503**-0.006
    潜在蒸发量Potential evapotranspiration0.301*-0.024
    林龄Stand age-0.0650.163
    林分密度Stand density0.0080.004
    蓄积量Volume0.0140.164
    立地条件Stand factor0.1050.167
    注:*相关性较显著(P<0.05),**表示相关性显著(P<0.01),***表示相关性极显著(P<0.01)。下同。Notes: - means negative correlation. * represents significant correlation at P<0.05 level, ** represents significant correlation at P<0.01 level, *** represents significant correlation at P<0.001 level. The same below.
    下载: 导出CSV

    表  5  气候指标及林分条件对PCA前两轴得分的逐步回归分析方差分析

    Table  5.   Stepwise regression analysis of the scores of PCA 1 and PCA 2 with climatic factors and stand conditions

    项目ItemdfSS/%Sum SqMean SqFPr(>F)
    PCA 1
    PDSI Palmerdrought severity index150.2752.6352.6315.570.00***
    潜在蒸发量Potential evapotranspiration15.365.615.611.870.19
    林分密度Stand density17.187.517.512.510.14
    残差Residuals1337.1938.943.00
    PCA 2
    PDSI Palmerdrought severity index10.560.250.250.120.74
    林龄Stand age126.4812.0712.075.670.03*
    蓄积量Volume112.225.575.572.610.13
    残差Residual1360.7427.702.13
    下载: 导出CSV

    表  6  变量顺序不同的方差分析

    Table  6.   Appendix 1 variance analysis of variables in different order

    项目ItemdfSS/%Sum SqMean SqFPr(>F)
    PCA 1
    潜在蒸发量Potential evapotranspiration130.0531.4631.4610.500.01*
    PDSI Palmer drought severity index125.5826.7826.788.940.01*
    林分密度Stand density17.187.517.512.510.14
    残差Residual1337.1938.943.00
    PCA 2
    PDSI Palmer drought severity index10.560.250.250.120.74
    蓄积量Volume116.347.457.453.500.08
    林龄Stand density122.3610.1910.194.780.05
    残差Residual1360.7427.702.13
    下载: 导出CSV
  • [1] Hu F, Lee B, Kaufman D, et al. Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation[J]. Global Change Biology, 2002, 8(11):1156 -1163. doi: 10.1046/j.1365-2486.2002.00550.x
    [2] Serreze M, Walsh J, Chapin Iii F, et al.Observational evidence of recent change in the northern high-latitude environment[J]. Climatic Change, 2000, 46(1-2): 159-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c0002f91192c93402544895933796d8
    [3] Kirschbaum M U F. Climate change impacts on forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50):19697-19702. doi: 10.1073/pnas.0701424104
    [4] 孙凤华, 任国玉, 赵春雨, 等.中国东北地区及不同典型下垫面的气温异常变化分析[J].地理科学, 2005, 25(2):167-171. doi: 10.3969/j.issn.1000-0690.2005.02.006

    Sun F H, Ren G Y, Zhao C Y, et al. An analysis of temperature abnormal change in northeast China and type underlying surface[J]. Scientia Geographica Sinica, 2005, 25(2):167-171. doi: 10.3969/j.issn.1000-0690.2005.02.006
    [5] 赵俊芳, 延晓冬, 贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应[J].生态学报, 2008, 28(1):92-102. doi: 10.3321/j.issn:1000-0933.2008.01.011

    Zhao J F, Yan X D, Jia G S, et al. Simulating the responses of forest net primary productivity and carbon budget to climate change in Northeast China[J]. Acta Ecologica Sinica, 2008, 28(1):92-102. doi: 10.3321/j.issn:1000-0933.2008.01.011
    [6] 王宗明, 国志兴, 宋开山, 等.中国东北地区植被NDVI对气候变化的响应[J].生态学杂志, 2009, 28(6):1041-1048. http://d.old.wanfangdata.com.cn/Periodical/stxzz200906007

    Wang Z M, Guo Z X, Song K S, et al. Responses of vegetation NDVI in northeast China to climate change[J]. Chinese Journal of Ecology, 2009, 28(6):1041-1048. http://d.old.wanfangdata.com.cn/Periodical/stxzz200906007
    [7] 李腾, 何兴元, 陈振举.东北南部蒙古栎径向生长对气候变化的响应:以千山为例[J].应用生态学报, 2014, 25(7):1841-1848. http://d.old.wanfangdata.com.cn/Periodical/yystxb201407001

    Li T, He X Y, Chen Z J, et al. Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern Northeast: a case study in Qianshan Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1841-1848. http://d.old.wanfangdata.com.cn/Periodical/yystxb201407001
    [8] 常永兴, 陈振举, 张先亮, 等.气候变暖下大兴安岭落叶松径向生长对温度的响应[J].植物生态学报, 2017, 41(3):279-289. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201703001

    Chang Y X, Chen Z J, Zhang X L, et al. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming[J]. Acta Phytoecologica Sinica, 2017, 41(3):279-289. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201703001
    [9] Andreu L, Gutierrez E, Macias M, et al. Climate increases regional tree- growth variability in Iberian pine forests[J]. Global Change Biology, 2007, 13:807-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67752066cce37071f93ad3ce5c195f99
    [10] Sano M, Furuta F, Sweda T. Tree-ring-width chronology of Larix gmelinii, as an indicator of changes in early summer temperature in east-central Kamchatka[J]. Journal of Forest Research, 2009, 14(3):147-154. doi: 10.1007/s10310-009-0123-y
    [11] Wu X, Liu H, Guo D, et al. Growth decline linked to warming-induced water limitation in hemi-boreal forests[J/OL]. PLoS One, 2012, 7(8): e42619[2018-10-25]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042619.
    [12] Bryukhanova M, Fonti P, Kirdyanov A, et al. Growth of trees on permafrost: habitat driven response to climate[C]//EGU General Assembly Conference. Vienna: EGU General Assembly Confer-ence Abstracts, 2013: 469-473.
    [13] 于大炮, 王顺忠, 唐立娜, 等.长白山北坡落叶松年轮年表及其与气候变化的关系[J].应用生态学报, 2005, 16(1):14-20. doi: 10.3321/j.issn:1001-9332.2005.01.003

    Yu D P, Wang S Z, Tang L N, et al. Relationship between tree-ring chronology of Larix olgensis in Changbai Mountains and the climate change[J]. Chinese Journal of Applied Ecology, 2005, 16(1):14-20. doi: 10.3321/j.issn:1001-9332.2005.01.003
    [14] 张先亮, 崔明星, 马艳军, 等.大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系[J].应用生态学报, 2010, 21(10):2501-2507. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010008

    Zhang X L, Cui M X, Ma Y J, et al.Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer, Great Xing'an Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(10):2501-2507. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010008
    [15] 孙毓, 王丽丽, 陈津.长白落叶松树轮生长对气候变化的响应以及对夏季气温的重建[J].地球环境学报, 2012, 3(3):889-899. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20122015120800030018

    Sun Y, Wang L L, Chen J. Response of tree growth to climate change and reconstruction of summer temperature based on Korea larch[J]. Journal of Earth Environment, 2012, 3(3):889-899. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20122015120800030018
    [16] 陈力, 尹云鹤, 赵东升, 等.长白山不同海拔树木生长对气候变化的响应差异[J].生态学报, 2014, 34(6):1568-1574. http://d.old.wanfangdata.com.cn/Periodical/stxb201406026

    Chen L, Yin Y H, Zhao D S, et al. Climate response of tree growth along an altitudinal gradient in the Changbai Mountains, Northeast China[J]. Acta Ecologica Sinica, 2014, 34(6):1568-1574. http://d.old.wanfangdata.com.cn/Periodical/stxb201406026
    [17] 于健, 徐倩倩, 刘文慧, 等.长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J].植物生态学报, 2016, 40(1):24-35. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601003

    Yu J, Xu Q Q, Liu W H, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Acta Phytoecologica Sinica, 2016, 40(1):24-35. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601003
    [18] 吴征镒.中国植被[M].北京:科学出版社, 1995.

    Wu Z Y. Vegetation of China[M].Beijing:Science Press, 1995.
    [19] 梁鹏鸿, 王襄平, 吴玉莲, 等.黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系[J].植物生态学报, 2016, 40(5):425-435. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201605001

    Liang P H, Wang X P, Wu Y L, et al. Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China[J]. Acta Phytoecologica Sinica, 2016, 40(5):425-435. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201605001
    [20] 吴正方.东北阔叶红松林分布区生态气候适宜性及全球气候变化影响评价[J].应用生态学报, 2003, 14(5):771-775. doi: 10.3321/j.issn:1001-9332.2003.05.028

    Wu Z F. Assessment of eco-climatic suitability and climate change impacts of/on broad-leaved Korean pine forest in Northeast China[J]. Chinese Journal of Applied Ecology, 2003, 14(5):771-775. doi: 10.3321/j.issn:1001-9332.2003.05.028
    [21] Brooks J R, Flanagan L B, Ehleringer J R. Responses of boreal conifers to climate fluctuations: indications from tree-ring widths and carbon isotope analyses[J]. Revue Canadienne De Recherche Forestière, 1998, 28(4):524-533. doi: 10.1139/x98-018
    [22] 常锦峰, 王襄平, 张新平, 等.大兴安岭北部大白山高山林线动态与气候变化的关系[J].山地学报, 2009, 27(6):703-711. doi: 10.3969/j.issn.1008-2786.2009.06.010

    Chang J F, Wang X P, Zhang X P, et al. Alpine timber line dynamics in relation to climatic variability in the Northern Daxing'an Mountains[J]. Mountain Research, 2009, 27(6):703-711. doi: 10.3969/j.issn.1008-2786.2009.06.010
    [23] Wang X, Zhang Y, Mcrae D J. Spatial and age-dependent tree-ring growth responses of Larix gmelinii, to climate in northeastern China[J]. Trees Structure & Function, 2009, 23(4):875-885. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6a416bc8c67c4f70c8ff2ddc4e2513e
    [24] Hughes M K, Schweingruber F H, Cartwright D, et al. July-August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data[J]. Nature, 1984, 308:341-344. doi: 10.1038/308341a0
    [25] Fritts H C. Reconstructing large-scale climatic patterns from tree-ring data: t diagnostic analysis[J]. University of Arizona Press, 1991, 16(3):245-248.
    [26] 邵雪梅, 吴祥定.华山树木年轮年表的建立[J].地理学报, 1994, 49(2):174-181. doi: 10.3321/j.issn:0375-5444.1994.02.009

    Shao X M, Wu X D. Tree-ring chronologies for Pinus armandi Franch from Huashan, China[J]. Acta Geographica Sinica, 1994, 49(2):174-181. doi: 10.3321/j.issn:0375-5444.1994.02.009
    [27] 吴祥定.树木年轮与气候变化[M].北京:气象出版社, 1990.

    Wu X D. Tree ring and climatic change[M].Beijing:Meteorology Press, 1990.
    [28] 李建东.吉林植被[M].长春:吉林科学技术出版社, 2001.

    Li J D. Vegetation of Jilin[M].Changchun:Jilin Science and Technology Press, 2001.
    [29] Law B E, Sun O J, Campbell J, et al. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine[J]. Global Change Biology, 2010, 9(4):510-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1365-2486.2003.00624.x
    [30] Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bull, 1983, 43(3):69-75.
    [31] Cook E, Holmes R. Users manual for program ARSTAN: laboratory of tree-ring research[M]. Tucson: University of Arizona, 1986.
    [32] 李江风, 袁玉江, 由希尧.树木年轮水文学研究与应用[M].北京:科学出版社, 2000.

    Li J F, Yuan Y J, You X Y. Dendrohydrology research and application[M].Beijing: Science Press, 2000.
    [33] Wang X P, Tang Z Y, Fang J Y. Climatic control on forests and tree species distribution in the forest region of Northeast China[J]. Journal of Integrative Plant Biology, 2006, 48(7):778-789. doi: 10.1111/jipb.2006.48.issue-7
    [34] O'Brien E. Biological relativity to water-energy dynamics[J]. Journal of Biogeography, 2010, 33(11):1868-1888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d214059adb461f71b4242dfd3a32fd94
    [35] Yamaguchi D, Cook E, Kairiukstis L. Methods of dendrochronology. applications in environmental science[J]. Arctic & Alpine Research, 1990, 23(1):120.
    [36] Yu D, Wang G G, Dai L, et al. Dendroclimatic analysis of Betula ermanii, forests at their upper limit of distribution in Changbai Mountain, Northeast China[J]. Forest Ecology & Management, 2007, 240(1-3):105-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=39e7ac05bd44d8ad307bdff1f7128897
    [37] 曾令兵, 王襄平, 常锦峰, 等.祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系[J].北京林业大学学报, 2012, 34(5):50-56. http://j.bjfu.edu.cn/article/id/9799

    Zeng L B, Wang X P, Chang J F, et al. Alpine timberline ecotone tree growth in relation to climatic variability for Picea crassifolia forests in the middle Qilian Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2012, 34(5):50-56. http://j.bjfu.edu.cn/article/id/9799
    [38] Allen C D, Breshears D D, Mcdowell N G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene[J]. Ecosphere, 2016, 6(8):1-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1890/ES15-00203.1
    [39] Peterson D W, Peterson D L, Ettl G J. Growth responses of subalpine fir to climatic variability in the Pacific Northwest[J]. Canadian Journal of Forest Research, 2002, 32(9):1503-1517. doi: 10.1139/x02-072
    [40] Carrer M, Urbinati C. Age-dependent tree ring growth responses to climate of Larix decidua and Pinus cembra in the Italian Alps[J]. Ecology, 2004, 85(3):730-740. doi: 10.1890/02-0478
    [41] Martínez-Vilalta J, López B C, Loepfe L, et al. Stand- and tree-level determinants of the drought response of Scots pine radial growth[J]. Oecologia, 2012, 168(3):877-888. doi: 10.1007/s00442-011-2132-8
    [42] Rais A, Kuilen J W G V D, Pretzsch H. Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii, [Mirb.] Franco) under acute drought stress in Southern Germany[J]. European Journal of Forest Research, 2014, 133(6):1043-1056. doi: 10.1007/s10342-014-0821-7
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  1100
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-25
  • 修回日期:  2018-11-27
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回