高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青杄PwPEBP基因及其启动子序列的克隆与表达分析

李兴芬 苗雅慧 孙永江 张孟娟 张凌云

李兴芬, 苗雅慧, 孙永江, 张孟娟, 张凌云. 青杄PwPEBP基因及其启动子序列的克隆与表达分析[J]. 北京林业大学学报, 2019, 41(4): 8-20. doi: 10.13332/j.1000-1522.20180344
引用本文: 李兴芬, 苗雅慧, 孙永江, 张孟娟, 张凌云. 青杄PwPEBP基因及其启动子序列的克隆与表达分析[J]. 北京林业大学学报, 2019, 41(4): 8-20. doi: 10.13332/j.1000-1522.20180344
Li Xingfen, Miao Yahui, Sun Yongjiang, Zhang Mengjuan, Zhang Lingyun. Cloning and expression analysis of PwPEBP gene and promoter sequence in Picea wilsonii[J]. Journal of Beijing Forestry University, 2019, 41(4): 8-20. doi: 10.13332/j.1000-1522.20180344
Citation: Li Xingfen, Miao Yahui, Sun Yongjiang, Zhang Mengjuan, Zhang Lingyun. Cloning and expression analysis of PwPEBP gene and promoter sequence in Picea wilsonii[J]. Journal of Beijing Forestry University, 2019, 41(4): 8-20. doi: 10.13332/j.1000-1522.20180344

青杄PwPEBP基因及其启动子序列的克隆与表达分析

doi: 10.13332/j.1000-1522.20180344
基金项目: 农业部转基因生物新品种培育重大专项(2016ZX08009-003-002)
详细信息
    作者简介:

    李兴芬。主要研究方向:林木抗逆研究。Email:xingfenli1024@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    张凌云,教授。主要研究方向:经济林栽培与利用。Email:lyzhang@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.46

Cloning and expression analysis of PwPEBP gene and promoter sequence in Picea wilsonii

  • 摘要: 目的通过研究青杄中的PwPEBP基因及其启动子的表达特性及生物学功能,探究PEBP基因在植物生长发育过程中响应逆境胁迫的功能及作用机制。方法本研究从青杄转录组测序中获得PwPEBP的cDNA序列,利用TMHMM、GOR4等在线软件对PwPEBP蛋白进行生物信息学分析,以此为基础通过PCR技术克隆得到PwPEBP开放阅读框(ORF)序列;同时对其在不同组织与不同逆境及激素处理中的表达水平进行了RT-qPCR技术分析;采用染色体步移法克隆PwPEBP的启动子序列,并利用在线软件BDGP和PlantCARE对PwPEBP启动子序列进行基础启动子区域、转录起始位点和顺式作用元件的预测;最后通过农杆菌瞬时转化烟草法验证PwPEBP启动子的功能。结果PwPEBP cDNA长度为1 408 bp,开放阅读框共585 bp,编码194个氨基酸。PwPEBP蛋白分子式为C966H1 484N250O299S6,无信号肽和跨膜结构域,为亲水蛋白,含有25个磷酸化位点;进化树分析显示,PwPEBP蛋白与北美云杉的PEBP单独聚成一簇,属于新的PEBP蛋白。组织特异性分析显示,PwPEBP在成熟叶中表达量最高,嫩叶中表达量最低;PwPEBP在各激素及逆境诱导下均有表达,但对盐处理无响应。克隆的PwPEBP启动子序列长度为903 bp,其具有响应GA、ABA、SA、MeJA的顺式作用元件。GUS染色及Luc定量实验显示,PwPEBP启动子均能响应GA、ABA、MeJA和SA外源激素及干旱、高温、低温等逆境胁迫。结论青杄中PwPEBP基因广泛响应干旱、低温、高温等非生物胁迫,其中对干旱胁迫最为敏感,同时还参与了ABA、GA、MeJA和SA激素的信号通路。

     

  • 图  1  PwPEBP核苷酸序列及其编码区的氨基酸序列

    方框内为PwPEBP的起始密码子(ATG)和终止密码子(TAA),下划线表示配体结合的保守位点。The starting codon (ATG) and the stop codon (TAA) of the PwPEBP are showed in the box. The conserved sites of PwPEBP combined with ligand are underlined.

    Figure  1.  Nucleotide sequence of PwPEBP and protein amino acid sequence in coding region

    图  2  PwPEBP理化性质分析

    A. 蛋白疏水性;B. 蛋白磷酸化位点;C. 蛋白信号肽结构域(C-score代表剪切位置分值,S-score代表信号肽分值,Y-score代表综合剪切位置分值);D. 蛋白的跨膜结构域;E. 蛋白的二级结构分析。A, protein hydrophobic analysis; B, protein phosphorylation sites; C, signal peptide domain of protein (C-score means cleavage site score, S-score means signal peptide score, Y-score means combined cleavage site score); D, protein transmembrane domains; E, two level structure analysis of PwPEBP protein.

    Figure  2.  Analysis on PwPEBP physicochemical properties

    图  3  PwPEBP蛋白多序列比对

    方框内为PEBP蛋白所特有的DPDXP基序,下划线为PwPEBP所特有的氨基酸序列。The DPDXP motif of the PEBP protein is showed in the box. The underline is the amino acid sequence peculiar to PwPEBP.

    Figure  3.  Multiple sequence alignment on PwPEBP protein

    图  4  PwPEBP进化树分析

    该进化树是利用MEGA5.0软件构建的,计算方法为邻位相连法,各分支上的数字代表1 000次重复的置信度,*号表示本研究的基因PwPEBP。The evolutionary tree is constructed by MEGA 5.0 software, and the calculation method is neighborhood connection method. The numbers on each branch represent the confidence of 1 000 repetitions. * indicates the gene PwPEBP in this study.

    Figure  4.  Evolutionary tree analysis of PwPEBP

    图  5  PwPEBP基因的903 bp的启动子序列

    下划线为预测的基础启动子区域,黑色加粗字母为预测的转录起始位点。Basal promoter region is double underlined, and black bold text means transcription start sites.

    Figure  5.  Promoter sequence of 903 bp of PwPEBP gene

    图  6  不同激素和逆境处理下PwPEBP启动子在烟草叶片中的GUS染色

    A. 注射了含有CaMV35S::GUS的PBI121空载体农杆菌(阳性对照,清水);B. 注射了烟缓冲液(阴性对照,清水);C~K. 注射了带有PwPEBP promoter::GUS农杆菌,处理分别为清水(C)、ABA(D)、SA(E)、GA(F)、MeJA(G)、PEG(H)、NaCl(I)、4 ℃(J)及42 ℃(K);A, injected with CaMV35S::GUS-containing Agrobacterium pBI121 empty carrier (positive control, water); B, injected with smoke buffer (negative control, water); C-K, injected with PwPEBP promoter GUS Agrobacterium, respectively, with clear water (C), ABA (D), SA (E), GA (F), MeJA (G), PEG (H), NaCl (I), 4 ℃ (J) and 42 ℃ (K).

    Figure  6.  GUS staining of PwPEBP promoter in Nicotiana tabacum leaves under different hormones and stress treatments

    图  7  不同激素和逆境处理下PwPEBP的启动子在烟草叶片中的活性表达

    利用单因素方差分析进行差异显著性分析,多重比较方法为Duncan法,不同小写字母表示差异显著性(P < 0.05)。下同。Single factor analysis of variance is used to analyze the difference, Duncan test is used as the multiple comparison method, and different normal letters indicate significant difference (P < 0.05). The same below.

    Figure  7.  Active expression analysis of PwPEBP promoter in Nicotiana tabacum leaves under different hormones and stress treatments

    图  8  PwPEBP在逆境、激素及各组织中的表达量

    A ~ H中各处理0 h作为对照,I中各组织中根作为对照,表达量为1,基因表达量均为相对表达量。Each treatment in A−H was used as a control for 0 h, and the root of each tissue in I was used as a control, the expression level was 1, and the gene expression amount was relative expression.

    Figure  8.  Gene expression of PwPEBP under stress, hormones and tissues

    表  1  所用引物序列

    Table  1.   Primer sequences

    引物功能 Primer function 引物名称 Primer name 引物序列 Primer sequence (5′−3′)
    pEASY-T1-PwPEBP引物
    Primer for pEASY-T1-PwPEBP
    pEASY-T1-PwPEBP-F
    pEASY-T1-PwPEBP-R
    GAGAGATCAATATGGCGCAGGTAG
    ACGGGCATGTAAGAGTCGC
    RT-qPCR-PwPEBP 引物
    Primer for RT-qPCR-PwPEBP
    RT-PwPEBP-F
    RT-PwPEBP-R
    CCTCCCACACTCAAAGGTCTG
    TCGATGATCCCCAACAGGTG
    染色体步移特异性引物
    Primers for the genome walking
    PwPEBP-SP1
    PwPEBP-SP2
    PwPEBP-SP3
    ACTCTAATGGCGGAGACAAATCTTTC
    TGTCAGCCTGAATACTTGTTCCTGTG
    CAAAATTTTCTACATCTACCTGCGCCAT
    pEASY-T1-PwPEBP promoter引物
    Primers for pEASY-T1-PwPEBP promoter
    pEASY-T1-PwPEBPp-F
    pEASY-T1-PwPEBPp-R
    CCCTTTGTCAGCCTGAATACTTGTTC
    ATTGATCTCTCGTCCACAATTTCAAC
    pBI121-PwPEBP promoter::GUS引物
    Primers for pBI121-PwPEBP promoter::GUS
    pBI121-PwPEBP-F
    pBI121-PwPEBP-R
    AAA$\scriptstyle \underline {{\rm{AGTACT}}} $CCCTTTGTCAGCCTGAATACTTGTTC
    CG$\scriptstyle \underline {{\rm{GGATCC}}} $ATTGATCTCTCGTCCACAATTTCAAC
    RT-qPCR内参引物
    Primer for RT-qPCR reference gene
    PwEF1-α-F
    PwEF1-α-R
    AACTGGAGAAGGAACCCAAG
    AACGACCCAATGGAGGATAC
    P0800-PwPEBP promoter::LUC引物
    Primers for P0800-PwPEBP promoter::LUC
    P0800-PwPEBP-F
    P0800-PwPEBP-R
    GG$\scriptstyle \underline {{\rm{GGTACC}}} $CCCTTTGTCAGCCTGAATACTTGTTC
    CG$\scriptstyle \underline {{\rm{GGATCC}}} $ATTGATCTCTCGTCCACAATTTCAAC
    注:下划线的部分表示酶切位点。Note: the underlined part represents the restriction site.
    下载: 导出CSV

    表  2  PwPEBP启动子序列响应元件分析

    Table  2.   PwPEBP promoter sequence response element analysis

    功能    
    Function    
    顺式作用元件
    Cis-acting element
    核心序列
    Core sequence
    位置
    Postion/bp
    光响应顺式作用元件
    Cis-acting elements for light response
    ATCT-motif
    G-box
    GA-motif
    I-box
    chs-CMA2a
      AATCTAATCC
    CACGTT
    CACGTC
    ATAGATAA
    gGATAAGGTC
    TCACTTGA
    − 378 (+)
    − 453 (−)
    − 193 (−)
    − 465 (+); − 736 (−)
    − 288 (−)
    − 823 (+)
    ABA响应顺式作用元件
    Cis-acting elements for ABA response
    ABRE ACGTG − 194 (+); − 454 (+)
    低温响应顺式作用元件
    Cis-acting elements for low temperature response
    LTR CCGAAA − 265 (+); − 816 (−)
    赤霉素响应顺式作用元件
    Cis-acting elements for gibberellin response
    GARE-motif TCTGTTG − 514 (−)
    茉莉酸响应顺式作用元件
    Cis-acting elements for jasmonic acid response
    CGTCA-motif
    TGACG-motif
    CGTCA
    TGACG
    − 422 (−)
    − 422 (+)
    水杨酸响应顺式作用元件
    Cis-acting elements for salicylic acid response
    TCA-element CCATCTTTT − 91 (+)
    MYB
    Myb
    Myb-binding site
    MYC
    Myc
    CAACAG
    TAACTG
    CAACAG
    CATTTG
    TCTCTTA
    − 514 (+); − 875 (−)
    − 301 (+)
    − 514 (+)
    − 585 (−)
    − 470 (−)
    注:括号内“+”表示正向序列,“−”表示互补序列。Notes: “+” in bracket represents forward sequence; “−” in bracket represents complementary sequence.
    下载: 导出CSV
  • [1] Danilevskaya O N, Meng X, Hou Z L, et al. A genomic and expression compendium of the expanded PEBP gene family from Maize[J]. Plant Physiology, 2008, 146(1): 250−264.
    [2] Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution, 2005, 61(5): 579−590. doi: 10.1007/s00239-004-0179-4
    [3] Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proc Natl Acad Sci, 2005, 102(21): 7748−7753. doi: 10.1073/pnas.0500932102
    [4] Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP[J]. Nature, 1999, 401: 173−177. doi: 10.1038/43686
    [5] Yu G, Zhong N, Chen G, et al. Downregulation of PEBP4, a target of miR-34a, sensitizes drug-resistant lung cancer cells[J]. Tumour Biology, 2014, 35(10): 10341−10349. doi: 10.1007/s13277-014-2284-3
    [6] Zhang D, Dai Y, Cai Y, et al. PEBP4 promoted the growth and migration of cancer cells in pancreatic ductal adenocarcinoma[J]. Tumour Biology, 2016, 37(2): 1699−1705. doi: 10.1007/s13277-015-3906-0
    [7] Yu G, Huang B, Chen G, et al. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/AKT/mTOR axis[J]. Journal of Thoracic Disease, 2015, 7(10): 1806−1816.
    [8] 虞桂平, 黄斌, 陈国强. PEBP4基因对非小细胞肺癌细胞体外生物学行为的影响[J]. 江苏医药, 2016, 42(21):2305−2307.

    Yu G P, Huang B, Chen G Q. Effect of PEBP4 gene on biological behavior of non-small cell lung cancer cells in vitro[J]. Jiangsu Medicine Journal, 2016, 42(21): 2305−2307.
    [9] 曹学全, 胡金蒙, 杨朝晖, 等. 宫颈癌组织中PEBP4、mTOR mRNA和蛋白的表达及临床意义[J]. 浙江医学, 2018, 40(17):1904−1908. doi: 10.12056/j.issn.1006-2785.2018.40.17.2017-1917

    Cao X Q, Hu J M, Yang C H, et al. Expression of PEBP4 and mTOR protein and mRNA in cervical carcinoma and its clinical significance[J]. Zhejiang Medical Journal, 2018, 40(17): 1904−1908. doi: 10.12056/j.issn.1006-2785.2018.40.17.2017-1917
    [10] Bradley D, Carpenter R, Copsey L, et al. Control of inflorescence architecture in Antirrhinum[J]. Nature, 1996, 379: 791−797. doi: 10.1038/379791a0
    [11] Kardailsky I, Shukla V K, Ahn J H, et al. Activation tagging of the floral inducer FT[J]. Science, 1999, 286: 1962−1965. doi: 10.1126/science.286.5446.1962
    [12] Kobayashi Y, Kaya H, Goto K, et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science, 1999, 286: 1960−1962. doi: 10.1126/science.286.5446.1960
    [13] Yamaguchi A, Kobayashi Y, Goto K, et al. Twin sister of FT (TSF) acts as a floral pathway integrator redundantly with FT[J]. Plant Cell, 2005, 46(8): 1175−1189. doi: 10.1093/pcp/pci151
    [14] Bradley D, Ratcliffe O, Vincent C, et al. Inflorescence commitment and architecture in Arabidopsis[J]. Science, 1997, 275: 80−83. doi: 10.1126/science.275.5296.80
    [15] Xi W, Liu C, Hou X, et al. Mother of FT and TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis[J]. Plant Cell, 2010, 22(6): 1733−1748. doi: 10.1105/tpc.109.073072
    [16] Nakamura S, Abe F, Kawahigashi H, et al. A wheat homolog of Mother of FT and TFL1 acts in the regulation of germination[J]. Plant Cell, 2011, 23(9): 3215−3229. doi: 10.1105/tpc.111.088492
    [17] Carmona M J, Calonje M, Martinez-Zapater J M. The FT/TFL1 gene family in grapevine[J]. Plant Molecular Biology, 2007, 63(5): 637−650. doi: 10.1007/s11103-006-9113-z
    [18] Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions[J]. Plant and Cell Physiol, 2002, 43(10): 1096−1105. doi: 10.1093/pcp/pcf156
    [19] 张礼凤, 徐冉, 张彦威, 等. 大豆PEBP基因家族的初步分析[J]. 植物遗传资源学报, 2015, 16(1):151−157.

    Zhang L F, Xu R, Zhang Y W, et al. Preliminary analysis of the PEBP gene family in soybean (Glycine max)[J]. Journal of Plant Genetic Resources, 2015, 16(1): 151−157.
    [20] Faure S, Higgins J, Turner A, et al. The flowering locus T-like gene family in barley (Hordeum vulgare)[J]. Genetics, 2007, 176(1): 599−609. doi: 10.1534/genetics.106.069500
    [21] Igasaki T, Watanabe Y, Nishiguchi M, et al. The FLOWERING LOCUS T/THERMINAL FLOWER 1 family in Lombardy poplar[J]. Plant and Cell Physiol, 2008, 49(3): 291−300. doi: 10.1093/pcp/pcn010
    [22] 刘丹, 罗睿, 陈海丽, 等. 转录组和表达谱分析揭示PEBP基因家族成员参与调节滴水珠的珠芽发育[J]. 贵州大学学报(自然科学版), 2018, 35(2):48−53.

    Liu D, Luo R, Chen H L, et al. Transcriptome and expression profiling revealed that PEBP gene family members were involved in regulating bead development in Pinellia cordata[J]. Journal of Guizhou University(Natural Sciences), 2018, 35(2): 48−53.
    [23] 张晓红. 陆地棉开花相关基因的功能研究及调控分析[D]. 杨凌: 西北农林科技大学, 2016.

    Zhang X H. Functional analysis and regulation mechanism of flowering related genes in Gossypium hirsutum[D]. Yangling: Northwest A & F University, 2016.
    [24] 冯璐, 王业, 何利明, 等. 水曲柳花发育相关FmFT基因克隆\表达及生物信息学分析[J]. 分子植物育种, 2018, 16(5):1454−1460.

    Feng L, Wang Y, He L M, et al. Cloning, expression, and bioinformatics analysis of FmFT gene in Fraxinus mandshurica related to flower development[J]. Molecular Plant Breeding, 2018, 16(5): 1454−1460.
    [25] Karlgren A, Gyllenstrand N, Kallman T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution[J]. Plant Physiol, 2011, 156(4): 1967−1977. doi: 10.1104/pp.111.176206
    [26] 朱岩, 彭振英, 张斌, 等. PEBP家族基因在植物中功能的研究进展[J]. 山东农业科学, 2013, 45(2):139−145. doi: 10.3969/j.issn.1001-4942.2013.02.044

    Zhu Y, Peng Z Y, Zhang B, et al. Advances in function research of PEBP family genes in plants[J]. Shandong Agricultural Sciences, 2013, 45(2): 139−145. doi: 10.3969/j.issn.1001-4942.2013.02.044
    [27] 周小云, 马盾, 危小薇, 等. 新疆陆地棉转雪莲PEBP基因抗寒性研究[J]. 棉花学报, 2009, 21(1):64−66. doi: 10.3969/j.issn.1002-7807.2009.01.011

    Zhou X Y, Ma D, Wei X W, et al. The responses of the Xinjiang upland cotton transformed with SiPEBP gene to low temperature[J]. Cotton Science, 2009, 21(1): 64−66. doi: 10.3969/j.issn.1002-7807.2009.01.011
    [28] 中国科学院中国植物志编辑委员会.中国植物志[M].北京: 科学出版社, 2004.

    Editorial board of Chinese flora of the Chinese Academy of Sciences. Flora reipublicae popularis sinicae[M]. Beijing: Science Press, 2004.
    [29] 周燕妮, 李艳芳, 张通, 等. 青杄PwUSP2基因的克隆和表达分析[J]. 植物生理学报, 2015, 51(8):1307−1314.

    Zhou Y N, Li Y F, Zhang T, et al. Cloning and expression analysis of PwUSP2 from Picea wilsonii[J]. Plant Physiology Journal, 2015, 51(8): 1307−1314.
    [30] 吕东梅.苹果HMGR 基因家族启动子的克隆及功能分析[D].泰安: 山东农业大学, 2015.

    Lü D M. Isolation and functional analysis of the Malus domestica HMGR gene family promoters[D]. Taian: Shandong Agricultural University, 2015.
    [31] 余曦瑶, 李疆, 姚正培, 等. 新疆野扁桃CBF基因启动子克隆及瞬时表达分析[J]. 分子植物育种, 2015, 13(6):1214−1222.

    Yu X Y, Li J, Yao Z P, et al. Cloning and transient expressing the promoter of AlsCBF gene Amygdalus ledebouriana schleche in Xinjiang[J]. Molecular Plant Breeding, 2015, 13(6): 1214−1222.
    [32] Hellens R P, Allan A C, Friel E N, et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants[J/OL]. Plant Methods, 2005 [2018−10−14]. http://doi.org/10.1186/1746-4811-1-13.
    [33] Qi T, Wang J, Huang H, et al. Regulation of Jasmonate-induced leaf senescence by antagonism between bHLH subgroup Ⅲe and Ⅲd factors in Arabidopsis[J]. Plant Cell, 2015, 27(6): 1634−1649. doi: 10.1105/tpc.15.00110
    [34] Yu Y, Li Y, Huang G, et al. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii[J]. Journal of Experimental Botany, 2011, 62(14): 4805−4817. doi: 10.1093/jxb/err120
    [35] 赵洁, 任苏伟, 刘宁, 等. 棉铃虫磷脂酰乙醇胺结合蛋白的克隆及表达分析[J]. 中国农业科学, 2018, 51(8):1493−1503.

    Zhao J, Ren S W, Liu N, et al. Cloning and expression of phosphatidylethanolamine binding protein in Helicoverpa armigera[J]. Scientia Agricultura Sinica, 2018, 51(8): 1493−1503.
    [36] Corbit K C, Trakul N, Eves E M, et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein[J]. Journal of Biological Chemistry, 2003, 278(15): 13061−13068. doi: 10.1074/jbc.M210015200
    [37] Mohamed R, Wang C T, Ma C, et al. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus[J]. Plant Journal, 2010, 62(4): 674−688. doi: 10.1111/tpj.2010.62.issue-4
    [38] 韩晓伟, 严玉平, 贾河田, 等. 外源ABA对北柴胡抗旱性的影响[J]. 中药材, 2018, 41(3):524−530.

    Han X W, Yan Y P, Jia H T, et al. Effects of exogenous ABA on drought resistance of Bupleurum chinense[J]. Journal of Chinese Medicinal Materials, 2018, 41(3): 524−530.
    [39] Negin B, Moshelion M. The evolution of the role of ABA in the regulation of wate r-use efficiency: from biochemical mechanisms to stomatal conductance[J]. Plant Science, 2016, 251: 82−89. doi: 10.1016/j.plantsci.2016.05.007
    [40] 许兴, 何军, 李树华. Ca-GA合剂浸种对水稻萌发及幼苗期抗旱性的影响[J]. 西北植物学报, 2002, 23(1):44−48.

    Xu X, He J, Li S H. Effect of calcium and gibberellin mixture on drought resistance of soaked rice seed during germination and young seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 23(1): 44−48.
    [41] 高晓宁, 梁雯, 赵冰. 外源水杨酸对2个杜鹃花品种抗旱性的影响[J]. 西北林学院学报, 2018, 33(3):131−136. doi: 10.3969/j.issn.1001-7461.2018.03.20

    Gao X N, Liang W, Zhao B. Effects of exogenous salicylic acid on drought resistance of two Rhododendron cultivars[J]. Journal of Northwest Forestry College, 2018, 33(3): 131−136. doi: 10.3969/j.issn.1001-7461.2018.03.20
    [42] 刘艳, 潘秋红, 战吉嵗. 豌豆叶片内源水杨酸和茉莉酸类物质对机械伤害的响应[J]. 中国农业科学, 2008, 41(3):808−815. doi: 10.3864/j.issn.0578-1752.2008.03.024

    Liu Y, Pan Q H, Zhao J W. Response of endogenous salicylic acid and jasmonates to mechanical injury in pea leaves[J]. Scientia Agricultura Sinica, 2008, 41(3): 808−815. doi: 10.3864/j.issn.0578-1752.2008.03.024
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2297
  • HTML全文浏览量:  2156
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-25
  • 修回日期:  2018-12-13
  • 网络出版日期:  2019-04-02
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回