高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雌雄异株植物簇毛槭繁殖代价延迟效应研究

赵海艳 宋子龙 徐萌 黄云浩 张新娜 王娟

赵海艳, 宋子龙, 徐萌, 黄云浩, 张新娜, 王娟. 雌雄异株植物簇毛槭繁殖代价延迟效应研究[J]. 北京林业大学学报, 2019, 41(8): 84-93. doi: 10.13332/j.1000-1522.20180360
引用本文: 赵海艳, 宋子龙, 徐萌, 黄云浩, 张新娜, 王娟. 雌雄异株植物簇毛槭繁殖代价延迟效应研究[J]. 北京林业大学学报, 2019, 41(8): 84-93. doi: 10.13332/j.1000-1522.20180360
Zhao Haiyan, Song Zilong, Xu Meng, Huang Yunhao, Zhang Xinna, Wang Juan. Delayed effects of reproductive costs in dioecious species Acer barbinerve[J]. Journal of Beijing Forestry University, 2019, 41(8): 84-93. doi: 10.13332/j.1000-1522.20180360
Citation: Zhao Haiyan, Song Zilong, Xu Meng, Huang Yunhao, Zhang Xinna, Wang Juan. Delayed effects of reproductive costs in dioecious species Acer barbinerve[J]. Journal of Beijing Forestry University, 2019, 41(8): 84-93. doi: 10.13332/j.1000-1522.20180360

雌雄异株植物簇毛槭繁殖代价延迟效应研究

doi: 10.13332/j.1000-1522.20180360
基金项目: 国家自然科学基金(31600480)
详细信息
    作者简介:

    赵海艳。主要研究方向:繁殖生态学。Email:zhaohaiyan_2016@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    王娟,副教授。主要研究方向:繁殖生态学。Email:wangjuan@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.3; Q945.5; S792.35

Delayed effects of reproductive costs in dioecious species Acer barbinerve

  • 摘要: 目的植物将大部分资源用于繁殖活动时必将导致其对生长发育等其他功能的资源投入下降,生活史理论把这种现象称为繁殖代价。植物繁殖代价主要体现为当年繁殖资源投入与当年营养生长资源投入之间的权衡,以及当年繁殖资源投入与未来生长发育资源投入之间的权衡,这意味着植物的繁殖代价可能存在着一定的延迟效应。本文利用雌雄异株植物雌雄功能分离的属性,验证吉林蛟河针阔混交林中簇毛槭是否存在繁殖代价的延迟效应。方法2012年选取簇毛槭雌雄各90株,将不同性别植株分成3个处理组(A为对照组,B为摘除花朵即开花不结实组,C为摘除花蕾组)进行试验操作。2013年和2017年跟踪调查不同处理组中簇毛槭繁殖及生长状况。利用双因素方差分析检验不同处理方式下雌雄植株的1年生枝条长度和叶片生物量的差异显著性。结果2013年花期,在1年生枝条水平和2级侧枝水平上1年生枝条长度顺序为C组 > B组 > A组。其中雌株的B组和C组显著大于A组,雄株的处理组间差异显著。2013年花期,在1年生枝条水平和2级侧枝水平上雌株的叶片生物量顺序为C组 > B组 > A组;其中B组和C组显著大于A组。2017年花期,在1年生枝条水平雄株的叶片生物量顺序为C组 > B组 > A组,其中C组显著大于A组。结论构件水平影响着繁殖代价延迟效应的检测结果;雌雄异株树种簇毛槭的繁殖代价的延迟效应在营养器官上的表现具有性别和养分分配差异;繁殖代价延迟效应持续表现时间也具有性别差异。

     

  • 图  1  1年生枝条水平不同处理方式下簇毛槭1年生枝条长度对比

    实心点为雌性,空心点为雄性。 图中不同字母表示在P < 0.05水平上差异显著。下同。Solid point: female; hollow point: male. Varied letters denote significant differences at P < 0.05 level. Same as below.

    Figure  1.  Comparing the length of 1 year old new shoot under different treatments at shoot level for Acer barbinerve

    图  2  1年生枝条水平不同处理方式下簇毛槭叶片生物量对比

    Figure  2.  Comparing foliage biomass under different treatments at 1 year old new shoot level for Acer barbinerve

    图  3  2级侧枝水平不同处理方式下簇毛槭1年生枝条长度对比

    实心点为雌性,空心点为雄性. 图中不同字母表示在P < 0.05水平上差异。Solid point: female; hollow point: male. Varied letters denote significant differences at P < 0.05 level.

    Figure  3.  Comparing the length of 1 year old new shoot under different treatments at grade 2 lateral branch level for Acer barbinerve

    图  4  2级侧枝水平不同处理方式下簇毛槭叶片生物量对比

    Figure  4.  Comparing foliage biomass under different treatments at grade 2 lateral branch level for Acer barbinerve

    表  1  试验选取的簇毛槭样株情况

    Table  1.   Sample individual conditions of Acer barbinerve

    年份
    Year
    株数
    Tree number
    胸径
    DBH/mm
    树高
    Tree height/m
    冠幅东西
    Crown diameter of east-west/m
    冠幅南北
    Crown diameter of north-south/m
    雌株
    Female
    雄株
    Male
    雌株
    Female
    雄株
    Male
    雌株
    Female
    雄株
    Male
    雌株
    Female
    雄株
    Male
    2013 180 20.367a 19.176a 2.816a 2.543a 2.233a 2.051a 2.098a 2.085a
    2017 145 21.511a 20.282a 2.720a 2.444a 2.553a 2.114b 2.224a 1.920a
    注:不同字母表示在P < 0.05水平上差异显著。Note: different letters indicate significant difference at P < 0.05 level.
    下载: 导出CSV

    表  2  1年生枝条水平簇毛槭1年生枝条长度影响要素分析

    Table  2.   Analysis of influencing factors of the length of 1 year old new shoot at 1 year old shoot level for Acer barbinerve

    变异来源 Variance source 2013年花期
    Flowering season in 2013
    2013年果期
    Fruiting season in 2013
    2017年花期
    Flowering season in 2017
    2017年果期
    Fruiting season in 2017
    F P F P F P F P
    性别 Gender 0.01 0.908 35.81 0.001 1.84 0.175 15.36 0.001
    处理 Treatment 122.68 0.001 0.75 0.475 9.70 0.001 4.25 0.014
    性别 × 处理 Gender × treatment 12.93 0.001 7.62 0.001 17.33 0.001 6.26 0.002
    下载: 导出CSV

    表  3  1年生枝条水平簇毛槭叶片生物量影响要素分析

    Table  3.   Influencing factors of biomass of foliage at 1 year old new shoot level for Acer barbinerve

    变异来源 Variation source 2013年花期
    Flowering season in 2013
    2013年果期
    Fruiting season in 2013
    2017年花期
    Flowering season in 2017
    2017年果期
    Fruiting season in 2017
    F P F P F P F P
    性别 Gender 58.31 0.001 114.9 0.001 6.55 0.011 221.91 0.001
    处理 Treatment 22.82 0.001 107.85 0.001 218.36 0.001 140.45 0.001
    性别 × 处理 Gender × treatment 96.50 0.001 11.54 0.001 88.01 0.001 60.53 0.001
    下载: 导出CSV

    表  4  2级侧枝水平簇毛槭1年生枝条长度影响要素分析

    Table  4.   Influencing factors of the length of 1 year old new shoot at grade 2 lateral branch level for Acer barbinerve

    变异来源 Variation source 2013年花期
    Flowering season in 2013
    2013年果期
    Fruiting season in 2013
    2017年花期
    Flowering season in 2017
    2017年果期
    Fruiting season in 2017
    F P F P F P F P
    性别 Gender 0.81 0.369 25.01 0.001 2.85 0.092 0.20 0.656
    处理 Treatment 13.07 0.001 11.31 0.001 6.40 0.002 0.68 0.507
    性别 × 处理 Gender × treatment 2.85 0.058 3.35 0.036 4.39 0.013 5.04 0.007
    下载: 导出CSV

    表  5  2级侧枝水平簇毛槭叶片生物量影响要素分析

    Table  5.   Influencing factors of the biomass of foliage at grade 2 lateral branch level for Acer barbinerve

    变异来源 Variation source 2013年花期
    Flowering season in 2013
    2013年果期
    Fruiting season in 2013
    2017年花期
    Flowering season in 2017
    2017年果期
    Fruiting season in 2017
    F P F P F P F P
    性别 Gender 15.50 0.001 11.85 0.001 22.31 0.001 3.35 0.068
    处理 Treatment 19.14 0.001 1.94 0.145 17.95 0.001 16.60 0.001
    性别 × 处理 Gender × treatment 23.27 0.001 1.88 0.153 21.93 0.001 7.86 0.001
    下载: 导出CSV
  • [1] Karlsson P S, Andersson M, Svensson B M. Relationships between fruit production and branching in monocarpic shoot modules of Rhododendron lapponicum[J]. Ecoscience, 2006, 13(3): 396−403. doi: 10.2980/i1195-6860-13-3-396.1
    [2] Berger J D, Shrestha D, Ludwig C. Reproductive strategies in Mediterranean Legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus Species collected along aridity gradients [J/OL]. Frontiers in Plant Science, 2017, (2017−04−13)[2018−01−20]. https://doi.org/10.3389/fpls.2017.00548.
    [3] Obeso J R. Costs of reproduction in Ilex aquifolium: effects at tree, branch and leaf levels[J]. Journal of Ecology, 1997, 85(2): 159−166. doi: 10.2307/2960648
    [4] Nicotra A B. Reproductive allocation and the long-term costs of reproduction in Siparuna grandiflora, a dioecious neo-tropical shrub[J]. Journal of Ecology, 1999, 87(1): 138−149. doi: 10.1046/j.1365-2745.1999.00337.x
    [5] Miyazaki Y. Dynamics of internal carbon resources during masting behavior in trees[J]. Ecological Research, 2013, 28(2): 143−150. doi: 10.1007/s11284-011-0892-6
    [6] Thorén L M, Karlsson P S, Tuomi J. Somatic cost of reproduction in three carnivorous Pinguicula species[J]. Oikos, 1996, 76(3): 427−434. doi: 10.2307/3546336
    [7] Newell E A. Direct and delayed costs of reproduction in Aesculus californica[J]. Journal of Ecology, 1991, 79(2): 365−378. doi: 10.2307/2260719
    [8] Ehrlén J, Van Groenendael J. Storage and the delayed costs of reproduction in the understorey perennial Lathyrus vernus[J]. Journal of Ecology, 2001, 89(2): 237−246. doi: 10.1046/j.1365-2745.2001.00546.x
    [9] Horvitz C C, Schemske D W. Demographic cost of reproduction in a neotropical herb: an experimental field study[J]. Ecology, 1988, 69(6): 1741−1745. doi: 10.2307/1941152
    [10] Horibata S, Hasegawa S F, Kudo G. Cost of reproduction in a spring ephemeral species, Adonis ramosa (Ranunculaceae): carbon budget for seed production[J]. Annals of Botany, 2007, 100(3): 565−571. doi: 10.1093/aob/mcm131
    [11] Matsuyama S, Sakimoto M. Sexual dimorphism of reproductive allocation at shoot and tree levels in Zanthoxylum ailanthoides, a pioneer dioecious tree[J]. Botanique, 2010, 88(10): 867−874. doi: 10.1139/B10-058
    [12] Cipollini M L, Whigham D F. Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae)[J]. American Journal of Botany, 1994, 81(1): 65−75. doi: 10.1002/j.1537-2197.1994.tb15410.x
    [13] Bañuelos M J, Obeso J R. Resource allocation in the dioecious shrub Rhamnus alpinus: the hidden costs of reproduction[J]. Evolutionary Ecology Research, 2004, 6(3): 397−413.
    [14] Mge M, Antos J A, Allen G A. Modules of reproduction in females of the dioecious shrub Oemleria cerasiformis[J]. Revue Canadienne De Botanique, 2004, 82(3): 393−400.
    [15] Matsuyama S, Sakimoto M. Allocation to reproduction and relative reproductive costs in two species of dioecious Anacardiaceae with contrasting phenology[J]. Annals of Botany, 2008, 101(9): 1391−1400. doi: 10.1093/aob/mcn048
    [16] Geber M A, Dawson T E, Delph L F. Gender and sexual dimorphism in flowering plants [M]. Berlin: Springer, 1999: 33−60.
    [17] Delph L F, Knapczyk F N, Taylor D R. Among-population variation and correlations in sexually dimorphic traits of Silene latifolia[J]. Journal of Evolutionary Biology, 2010, 15(6): 1011−1020.
    [18] Chen J, Niu Y, Yang Y, et al. Sexual allocation in the gynodioecious species Cyananthus macrocalyx (Campanulaceae) at high elevations in the Sino-Himalaya Mountains[J]. Alpine Botany, 2016, 126(1): 49−57. doi: 10.1007/s00035-015-0154-2
    [19] Huan H, Wang B, Liu G, et al. Sexual differences in morphology and aboveground biomass allocation in relation to branch number in Morus alba saplings[J]. Australian Journal of Botany, 2016, 64(3): 269−275. doi: 10.1071/BT15189
    [20] Fonseca D C, Oliveira M L R, Pereira I M, et al. Phenological strategies of dioecious species in response to the environmental variations of rupestrian grasslands[J]. Cerne, 2018, 23(4): 517−527.
    [21] Juvany M, Munnébosch S. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context[J]. Journal of Experimental Botany, 2015, 66(20): 6083−6092. doi: 10.1093/jxb/erv343
    [22] Chen J, Duan B, Wang M, et al. Intra-and inter-sexual competition of Populus cathayana under different watering regimes[J]. Functional Ecology, 2014, 28(1): 124−136. doi: 10.1111/fec.2014.28.issue-1
    [23] Wang J, Zhang C, Zhao X, et al. Reproductive allocation of two dioecious Rhamnus species in temperate forests of northeast China[J]. Iforest Biogeosciences & Forestry, 2013, 7(1): 25−32.
    [24] Zang R G, Xu H C. Canopy disturbance regimes and gap regeneration in a Korena pine-broadleaved forest in Jiaohe, northeast China[J]. Bulletin of Botanical Research, 1999, 19(2): 112−120.
    [25] 中国科学院中国植物志委员会. 中国植物志: 1卷[M]. 北京: 科学出版社, 2004.

    The Chinese Flora of the Chinese Academy of Sciences. Flora of China: I [M]. Beijing: Science Press, 2004.
    [26] Zajitschek F, Connallon T. Partitioning of resources: the evolutionary genetics of sexual conflict over resource acquisition and allocation[J]. Journal of Evolutionary Biology, 2017, 30(4): 826−838. doi: 10.1111/jeb.2017.30.issue-4
    [27] Tonnabel J, David P, Pannell J R. Sex-specific strategies of resource allocation in response to competition for light in a dioecious plant[J]. Oecologia, 2017, 185(4): 675−686. doi: 10.1007/s00442-017-3966-5
    [28] Sletvold N J Å. Climate-dependent costs of reproduction: survival and fecundity costs decline with length of the growing season and summer temperature[J]. Ecology Letters, 2015, 18(4): 357−364. doi: 10.1111/ele.2015.18.issue-4
    [29] Hossain S M Y, Caspersen J P, Thomas S C. Reproductive costs in Acer saccharum: exploring size-dependent relations between seed production and branch extension[J]. Trees, 2017, 31(4): 1−10.
    [30] Xiao Y A, Dong M, Wang N, et al. Effects of organ removal on trade-offs between sexual and clonal reproduction in the stoloniferous herb Duchesnea indica[J]. Plant Species Biology, 2016, 31(1): 50−54. doi: 10.1111/psbi.2016.31.issue-1
    [31] Torimaru T, Tomaru N. Reproductive investment at stem and genet levels in male and female plants of the clonal dioecious shrub Ilex leucoclada (Aquifoliaceae)[J]. Botanique, 2012, 90(4): 301−310. doi: 10.1139/b2012-004
    [32] Teitel Z, Pickup M, Field D L, et al. The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant[J]. Plant Biology, 2016, 18(1): 98−103. doi: 10.1111/plb.12336
    [33] Leigh A, Cosgrove M, Nicotra A. Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella[J]. Journal of Ecology, 2006, 94(6): 1261−1271. doi: 10.1111/jec.2006.94.issue-6
    [34] Hasegawa S, Takeda H. Functional specialization of current shoots as a reproductive strategy in Japanese alder (Alnus hirsuta var.sibirica)[J]. Canadian Journal of Botany, 2001, 79(1): 38−48.
    [35] Díaz-Barradas M C, Zunzunegui M, Collantes M, et al. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic steppe[J]. Acta Oecologica, 2014, 60(10): 40−48.
    [36] Xiao Y, Zhao H, Yang W, et al. Variations in growth, clonal and sexual reproduction of Spartina alterniflora responding to changes in clonal integration and sand burial[J]. CLEAN − Soil, Air, Water, 2015, 43(7): 1100−1106. doi: 10.1002/clen.v43.7
    [37] Wang H, Matsushita M, Tomaru N, et al. Differences in female reproductive success between female and hermaphrodite individuals in the subdioecious shrub Eurya japonica (Theaceae)[J]. Plant Biology, 2015, 17(1): 194−200. doi: 10.1111/plb.12189
    [38] Midgley J J. Causes of secondary sexual differences in plants : evidence from extreme leaf dimorphism in Leucadendron (Proteaceae)[J]. South African Journal of Botany, 2010, 76(3): 588−592. doi: 10.1016/j.sajb.2010.05.001
    [39] Jaquish L L, Ewers F W. Seasonal conductivity and embolism in the roots and stems of two clonal ring: porous trees, Sassafras albidum (Lauraceae) and Rhus typhina (Anacardiaceae)[J]. American Journal of Botany, 2001, 88(2): 206−212. doi: 10.2307/2657011
    [40] Zunzunegui M, Barradas M C D, Clavijo A, et al. Ecophysiology, growth timing and reproductive effort of three sexual foms of Corema album (Empetraceae)[J]. Plant Ecology, 2006, 183(1): 35−46. doi: 10.1007/s11258-005-9004-4
    [41] Milla R, Castrodíez P, Maestromartínez M, et al. Costs of reproduction as related to the timing of phenological phases in the dioecious shrub Pistacia lentiscus L.[J]. Plant Biology, 2006, 8(1): 103−111. doi: 10.1055/s-2005-872890
    [42] Nicotra A B. Sexually dimorphic growth in the dioecious tropical shrub, Siparuna grandiflora[J]. Functional Ecology, 2010, 13(3): 322−331.
    [43] Sánchez V J, Pannell J R. Sexual dimorphism in resource acquisition and deployment: both size and timing matter[J]. Annals of Botany, 2011, 107(1): 119−126. doi: 10.1093/aob/mcq209
    [44] Tozawa M, Ueno N, Seiwa K. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra[J]. Botany-botanique, 2009, 87(3): 315−323. doi: 10.1139/B08-125
    [45] Álvarez-Cansino L, Zunzunegui M, Barradas M C D, et al. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album[J]. Annals of Botany, 2010, 106(6):989−998.
    [46] Fujii S, Toriyama K. Suppressed expression of retrogrand - regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(23): 9513−9518. doi: 10.1073/pnas.0901860106
    [47] Kumar N, Gupta S, Tripathi A N. Gender-specific responses of Piper betle L. to low temperature stress: changes in chlorophyllase activity[J]. Biologia Plantarum, 2006, 50(4): 705−708. doi: 10.1007/s10535-006-0111-4
    [48] Aschan G, Pfanz H. Non-foliar photosynthesis: a strategy of additional carbon acquisition[J]. Flora, 2003, 198(2): 81−97. doi: 10.1078/0367-2530-00080
    [49] Cai Z Q. Shade delayed flowering and decreased photosynthesis, growth and yield of Sacha Inchi (Plukenetia volubilis) plants[J]. Industrial Crops & Products, 2011, 34(1): 1235−1237.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  1669
  • HTML全文浏览量:  656
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2018-12-31
  • 网络出版日期:  2019-06-15
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回