高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京妙峰山林场地表潜在火行为及燃烧性分析

李连强 牛树奎 陈锋 陶长森 陈羚 张鹏

李连强, 牛树奎, 陈锋, 陶长森, 陈羚, 张鹏. 北京妙峰山林场地表潜在火行为及燃烧性分析[J]. 北京林业大学学报, 2019, 41(3): 58-67. doi: 10.13332/j.1000-1522.20180361
引用本文: 李连强, 牛树奎, 陈锋, 陶长森, 陈羚, 张鹏. 北京妙峰山林场地表潜在火行为及燃烧性分析[J]. 北京林业大学学报, 2019, 41(3): 58-67. doi: 10.13332/j.1000-1522.20180361
Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. doi: 10.13332/j.1000-1522.20180361
Citation: Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. doi: 10.13332/j.1000-1522.20180361

北京妙峰山林场地表潜在火行为及燃烧性分析

doi: 10.13332/j.1000-1522.20180361
基金项目: 国家林业局林业科技推广项目(2015-04)
详细信息
    作者简介:

    李连强。主要研究方向:生态规划与管理。Email:1164629835@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    牛树奎,教授,博士生导师。主要研究方向:生态规划与管理。Email:niushukui@163.com 地址:同上

  • 中图分类号: S762.1

Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing

  • 摘要: 目的森林燃烧性是森林被引燃的难易程度和着火后的火行为特征,分析可燃物火行为及燃烧性为妙峰山林场地表可燃物管理、火险区划及森林防火提供依据。方法利用林场内12种主要森林类型调查数据和二类清查资料,选择地表潜在火行为、火环境、可燃物理化性质及床层结构4大类指标,采用主成分分析和聚类分析法计算104个小班地表可燃物燃烧性并对地表可燃物燃烧性指数CI进行了排序。结果(1)无风条件下104个小班中,各优势树种小班地表潜在火行为有以下规律:针叶林普遍较大且地表火强度达到2 000 kW/m以上、蔓延速度3 m/min以上、火焰高度1.5 m以上,灌木林次之地表火强度700 ~ 2 000 kW/m、蔓延速度1.5 ~ 3 m/min、火焰高度1 ~ 1.5 m,阔叶林较小地表火强度700 kW/m以下、蔓延速度1.5 m/min以下、火焰高度1 m以下。(2)主成分分析表明,地表可燃物燃烧性与火行为指数正相关,与海拔因素负相关,与含水率负相关,与有效负荷量和床层高度正相关。(3)聚类分析表明,小班地表可燃物燃烧性指数CI分为5个等级:高燃烧性(Ⅰ)、较高燃烧性(Ⅱ)、可燃烧性(Ⅲ)、较低燃烧性(Ⅳ)、低燃烧性(Ⅴ)。各燃烧性等级的小班优势树种分别为:油松、落叶松、侧柏等针叶林,位于林场东南、西北部;油松、落叶松、侧柏与栓皮栎、五角枫等针阔混交林,主要位于林场西北部;栓皮栎、黄波罗、五角枫等阔叶纯林,集中于林场东南、西北部;山桃、荆条等灌木林及少数栓皮栎林、黄波罗等阔叶混交林,分布在林场东北部;荆条、山杏、鼠李、绣线菊等灌木,主要位于林场西南和中部。结论以油松、落叶松等针叶林为主的小班地表潜在火行为普遍较大,极易形成高强度地表火,易发生树冠火;燃烧性受到火环境、火行为和可燃物的影响,特别是可燃物有效负荷量、床层高度、海拔和含水率因子;高燃烧性和较高燃烧性小班多数位于林场北部、西北部,要注重对不同燃烧等级小班分类管理、科学巡护。

     

  • 图  1  北京妙峰山林场小班地表潜在火行为指标

    侧柏、黄波罗、落叶松、栓皮栎、油松、五角枫、荆条、胡枝子、鼠李、绣线菊、山桃、山杏。Platycladus orientalis, Phellodendron amurense, Larix gmelinii, Quercus variabilis, Pinus tabuliformis, Acer mono, Vitex negundo var. heterophylla, Lespedeza bicolor, Rhamnus davurica, Spiraea salicifolia, Prunus davidiana, Armeniaca sibirica.

    Figure  1.  Potential fire behavior index of small class in Beijing of the Miaofeng Mountain

    图  2  北京妙峰山林场小班地表可燃物燃烧性等级

    侧柏、落叶松、栓皮栎、油松、五角枫、荆条、胡枝子、鼠李、绣线菊、山桃、山杏。Platycladus orientalis, Phellodendron amurense, Larix gmelinii, Quercus variabilis, Pinus tabuliformis, Acer mono, Vitex negundo var. heterophylla, Lespedeza bicolor, Rhamnus davurica, Spiraea salicifolia, Prunus davidiana, Armeniaca sibirica.

    Figure  2.  Small class surface fuel combustibility rating in the Miaofeng Mountain Forest Farm

    表  1  可燃物种类划分标准

    Table  1.   Classification criteria for fuel

    类别 Category灌木层 Shrub layer草本层 Herbal layer枯枝落叶层 Litter layer规格 Specification
    活可燃物 Living combustible叶 Leaf鲜草 Fresh grass
    小枝 Small branch直径 Diameter < 1 cm
    大枝 Big branch直径 Diameter ≥ 1 cm
    枯死可燃物 Dead combustible枯草 Withered grass
    1 h 滞枯枝 Dead branch 1 hour直径 Diameter < 0.6 cm
    10 h 滞枯枝 Dead branch 10 hour0.6 ~ 2.5 cm
    100 h 滞枯枝 Dead branch 100 hour2.5 ~ 7.5 cm
    枯叶 Withered leaf落叶层 Leaf litter layer
    下载: 导出CSV

    表  2  小班内12种主要森林类型地表可燃物理化性质和床层性质

    Table  2.   Properties of surface combustible beds and physicochemical in 12 major forest types in small classes

    林分类型
    Stand type
    地表可燃物理化性质
    Physicochemical property
    地表可燃物燃烧床结构
    Surface combustible burning bed
    灰分
    Ash/%
    热值
    Heat/(kJ·kg− 1)
    含水率
    Moisture content (M)/%
    负荷量
    Fuel load (Wn)/(kg·m− 2)
    床层高度
    Fuel bed
    depth (h)/m
    紧密度
    Mean packing ratio (β)
    比表面积
    Surface area to
    volume ratio (σ)/m− 1
    侧柏 Platycladus orientalis0.09818 321.1195.6650.1280.9650.000 13291.732
    黄波罗 Phellodendron amurense0.10217 806.84133.4160.1890.8230.000 12418.788
    落叶松 Larix gmelinii0.09617 993.72106.9690.2120.9550.000 16418.947
    栓皮栎 Quercus variabilis0.10117 877.27121.0310.1900.9180.000 11245.519
    油松 Pinus tabuliformis0.09718 296.42110.7550.1340.7870.000 05426.940
    五角枫 Acer mono0.09817 786.94119.2210.0370.9280.000 03310.798
    荆条 Vitex negundo var. heterophylla0.10117 606.78112.7410.8330.9350.001 44394.634
    胡枝子 Lespedeza bicolor0.10217 603.93113.9200.6570.5700.000 57399.899
    小叶鼠李 Rhamnus davurica0.10117 604.19112.9040.5010.6280.000 59399.418
    绣线菊 Spiraea salicifolia0.10117 604.11112.9090.5790.5400.000 51399.566
    山桃 Prunus davidiana0.10317 703.69112.8720.4090.9900.000 36398.486
    山杏 Armeniaca sibirica0.10217 704.70112.8610.6300.5500.000 55398.468
    注:地表可燃物包括灌木、鲜草等活可燃物,枯枝、落叶、枯草等死可燃物;比表面积为表面积与体积比。Notes: surface combustibles include live combustibles such as shrubs and fresh grasses, litter, dead grass and other dead combustibles. The specific surface area is the surface area to volume ratio.
    下载: 导出CSV

    表  3  小班地表可燃物燃烧性指数的主成分分析

    Table  3.   Principal component analysis of combustible combustion index in small classes

    指标项目
    Index item
    第1主成分
    Component 1
    第2主成分
    Component 2
    第3主成分
    Component 3
    第4主成分
    Component 4
    第5主成分
    Component 5
    载荷矩阵
    Load matrix
    火行为指标
    Fire behavior indicator
    C− 0.1150.6920.218− 0.101
    R0.13− 0.463− 0.194
    I0.161− 0.429− 0.251
    L0.205− 0.437− 0.107
    IR− 0.3960.184
    火环境指标
    Fire environment indicator
    CD− 0.354− 0.1420.228
    Slop0.139− 0.316− 0.2140.326
    E0.159− 0.2480.4890.241− 0.118
    理化性质指标
    Physical and chemical properties
    S0.3350.240.149
    H− 0.3− 0.220.12− 0.129
    M0.6590.529
    床层结构指标
    Bed structure index
    Wn− 0.3980.173
    h− 0.172− 0.2110.332− 0.682
    β0.3650.159− 0.345
    σ0.25− 0.1780.241− 0.446
    贡献率
    Contribution rate
    主成分的方差开方
    Variance square of PC standard deviation
    2.3241.9231.2511.1311.020
    方差贡献率
    Contribution rate of variance
    0.3600.2460.1040.0850.069
    累积方差贡献率
    Cumulative contribution rate of variance
    0.3600.6060.7110.7960.865
    注:C为常数;R为蔓延速度、I为火强度、L为火焰高度、IR为反应强度;CD为郁闭度、Slop为坡度、E为海拔;S为灰分含量、H为热值、M为含水率;Wn为负荷量、h为床层高度、β为紧密度、σ为比表面积。Notes: C, constant; R, spread speed; I, fire intensity; L, flame height; IR, reaction intensity; CD, canopy closure; Slop, slope degree; E, elevation; S, ash content; H, calorific value; M, moisture content; Wn, effective load; h, bed height; β, tightness; σ, specific surface area.
    下载: 导出CSV

    表  4  妙峰山林场小班森林燃烧性等级

    Table  4.   Combustion grade of the small class in Miaofeng Mountain Forest Farm

    燃烧性指数
    Combustion index (CI)
    分布
    Distribution
    植被类型
    Forest type
    聚类结果
    Clustering result
    燃烧性等级
    Combustion rating
    < − 1东南、西北部
    Southeast, northwest
    油松、落叶松、侧柏等针叶林
    Coniferous forests such as Pinus tabuliformis, Larix gmelinii, Platycladus orientalis, etc.
      − 2.111 ~ − 1.002高燃烧性
    (Ⅰ)High combustible
    − 1 ~ − 0.5西北部
    Northwest
    油松、侧柏与栓皮栎、五角枫等针阔混交林
    Coniferous and broadleaved mixed forests such as Pinus tabuliformis, Platycladus orientalis, Quercus variabilis, Acer mono, etc.
      − 0.818 ~ − 0.509较高燃烧性
    (Ⅱ)Higher combustible
    − 0.5 ~ 0东南、西北角
    Southeast, northwest corner
    栓皮栎、黄波罗、五角枫等阔叶林
    Broadleaved forests such as Quercus variabilis, Phellodendron amurense, and Acer mono, etc.
      − 0.435 ~ − 0.041可燃烧性
    (Ⅲ)Combustible
    0 ~ 1东北部
    Northeast
    山桃、荆条等灌木林及少数阔叶混交林
    Shrubs such as Prunus davidiana and Vitex negundo and a few broadleaved mixed forests, etc.
      0.065 ~ 0.880较低燃烧性
    (Ⅳ)Lower combustible
    > 1西南部和中部
    Southwest, central part
    荆条、山杏、鼠李、绣线菊等灌木林
    Shrubs such as Vitex negundo var. heterophylla, Armeniaca sibirica, Rhamuns davurica, and Spiraea salicifolia, etc.
      1.255 ~ 2.356低燃烧性
    (Ⅴ)Low combustible
    下载: 导出CSV
  • [1] 单延龙, 张敏, 于永波. 森林可燃物研究现状及发展趋势[J]. 北华大学学报(自然科学版), 2004, 5(3):264−369.

    Shan Y L, Zhang M, Yu Y B. Current situation and developing trend of the study on forest fuel[J]. Journal of Beihua University (Natural Science), 2004, 5(3): 264−369.
    [2] Gill A M, Zylstra P. Flammability of Australian forests[J]. Australian Forestry, 2005, 68(2): 87−93. doi: 10.1080/00049158.2005.10674951
    [3] 胡乙山, 张立, 唐贺统. 森林可燃物及其燃烧特性研究[J]. 防护林科技, 2005(3):26−27. doi: 10.3969/j.issn.1005-5215.2005.03.011

    Hu Y S, Zhang L, Tang H T. Study on forest fuel and its combustibility[J]. Protection Forest Science & Technology, 2005(3): 26−27. doi: 10.3969/j.issn.1005-5215.2005.03.011
    [4] 王秋华, 肖慧娟, 徐盛基, 等. 滇中安宁“3•29”重大森林火灾火烧迹地灌木林的燃烧性研究[J]. 安全与环境学报, 2016, 16(1):138−141.

    Wang Q H, Xiao H J, Xu S J, et al. Retrogressive study and analysis of the burning features of the shrubs in the fire taking place on 29 March, 2006, in Anning, Yunnan[J]. Journal of Safety & Environment, 2016, 16(1): 138−141.
    [5] 解国磊, 丁新景, 马风云, 等. 鲁中山区主要森林类型易燃可燃物垂直分布及其燃烧性[J]. 西北林学院学报, 2016, 31(1):158−163. doi: 10.3969/j.issn.1001-7461.2016.01.28

    Xie G L, Ding X J, Ma F Y, et al. Vertical distribution of the forest flammable fuel loads and combustion of the main forest types in mountainous area of Shandong[J]. Journal of Northwest Forestry University, 2016, 31(1): 158−163. doi: 10.3969/j.issn.1001-7461.2016.01.28
    [6] Zylstra P J. Flammability dynamics in the Australian Alps[J]. Austral Ecology, 2018, 43(5): 579−591.
    [7] 舒立福, 张小罗, 戴兴安, 等. 林火研究综述(Ⅱ): 林火预测预报[J]. 世界林业研究, 2003, 16(4):34−37. doi: 10.3969/j.issn.1001-4241.2003.04.007

    Shu L F, Zhang X L, Dai X A, et al. Forest fire research(Ⅱ) : fire forecast[J]. World Forestry Research, 2003, 16(4): 34−37. doi: 10.3969/j.issn.1001-4241.2003.04.007
    [8] 杨璐嘉, 王成武, 唐章英, 等. 基于GIS的普达措国家森林公园火险区划分析[J]. 企业技术开发, 2015, 34(28):25−28.

    Yang L J, Wang C W, Tang Z Y, et al. Analysis of Pudacuo National Forest Park fire zoning based on GIS[J]. Technological Development of Enterprise, 2015, 34(28): 25−28.
    [9] 黄宝华, 张华, 孙治军. 基于层次分析(AHP)的山东林火风险区划研究[J]. 火灾科学, 2014, 23(4):225−232. doi: 10.3969/j.issn.1004-5309.2014.04.06

    Huang B H, Zhang H, Sun Z J. Shandong forest fire danger division research based on analytic hierarchy process(AHP)[J]. Fire Safety Science, 2014, 23(4): 225−232. doi: 10.3969/j.issn.1004-5309.2014.04.06
    [10] 李小川, 李兴伟, 王振师, 等. 广东森林火灾的火源特点分析[J]. 中南林业科技大学学报, 2008, 28(1):89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025

    Li X C, Li X W, Wang Z S, et al. Analysis of fire source characteristics of Guangdong forest fires[J]. Journal of Central South University of Forestry & Technology, 2008, 28(1): 89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025
    [11] 张尚印, 祝昌汉, 陈正洪. 森林火灾气象环境要素和重大林火研究[J]. 自然灾害学报, 2000, 9(2):111−117. doi: 10.3969/j.issn.1004-4574.2000.02.018

    Zhang S Y, Zhu C H, Chen Z H. Research on forest fire meteorological environmental elements and large forest fires[J]. Journal of Natural Disasters, 2000, 9(2): 111−117. doi: 10.3969/j.issn.1004-4574.2000.02.018
    [12] 覃先林, 张子辉, 易浩若, 等. 一种预测森林可燃物含水率的方法[J]. 火灾科学, 2001, 10(3):159−162. doi: 10.3969/j.issn.1004-5309.2001.03.007

    Qin X L, Zhang Z H, Yi H R, et al. A methodology to predict the moisture of forest fuels[J]. Fire Safety Science, 2001, 10(3): 159−162. doi: 10.3969/j.issn.1004-5309.2001.03.007
    [13] 李旭, 王秋华, 张雨瑶. 滇中火灾高发区15种木本植物燃烧性研究[J]. 林业调查规划, 2016, 41(2):62−68. doi: 10.3969/j.issn.1671-3168.2016.02.013

    Li X, Wang Q H, Zhang Y Y. Studies on combustibility of 15 woody plants in the high fire risk area of central Yunnan[J]. Forest Inventory & Planning, 2016, 41(2): 62−68. doi: 10.3969/j.issn.1671-3168.2016.02.013
    [14] 王月, 高国平, 周绍砚, 等. 辽宁西北部地区森林地被可燃物及其燃烧性的研究[J]. 沈阳农业大学学报, 2006, 37(5):716−719. doi: 10.3969/j.issn.1000-1700.2006.05.010

    Wang Y, Gao G P, Zhou S Y, et al. Combustible ground cover and combustibility of forest in Northwest Liaoning Province[J]. Journal of Shenyang Agricultural University, 2006, 37(5): 716−719. doi: 10.3969/j.issn.1000-1700.2006.05.010
    [15] 李艳芹, 胡海清. 帽儿山主要树种燃烧性分析与排序[J]. 东北林业大学学报, 2010, 38(5):34−36. doi: 10.3969/j.issn.1000-5382.2010.05.009

    Li Y Q, Hu H Q. Sequence of combustibility of principal tree species in Maoershan Mountain Area, Heilongjiang Province[J]. Journal of Northeast Forestry University, 2010, 38(5): 34−36. doi: 10.3969/j.issn.1000-5382.2010.05.009
    [16] Fréjaville T, Curt T, Carcaillet C. Tree cover and seasonal precipitation drive understorey flammability in alpine mountain forests[J]. Journal of Biogeography, 2016, 43(9): 1869−1880. doi: 10.1111/jbi.12745
    [17] 苏文静, 张思玉, 何诚, 等. 昆明地区9种藤本植物活叶片的燃烧性[J]. 林业资源管理, 2017(6):120−123.

    Su W J, Zhang S Y, He C, et al. Combustion characteristics of live leaves of 9 lianas species in Kunming, Yunnan Province[J]. Forest Resources Management, 2017(6): 120−123.
    [18] 梁瀛, 李吉玫, 赵凤君, 等. 天山中部天山云杉林地表可燃物载量及其影响因素[J]. 林业科学, 2017, 53(12):153−160. doi: 10.11707/j.1001-7488.20171218

    Liang Y, Li J M, Zhao F J, et al. Surface fuel loads of Tianshan Spruce forests in the central Tianshan Mountains and the impact factors[J]. Scientia Silvae Sinicae, 2017, 53(12): 153−160. doi: 10.11707/j.1001-7488.20171218
    [19] 牛树奎. 北京山区主要森林类型火行为与可燃物空间连续性研究[D]. 北京: 北京林业大学, 2012.

    Niu S K, Fire behavior and fuel spatial continuity of major forest types in the Mountainous Area, Beijing[M]. Beijing: Beijing Forestry University, 2012.
    [20] 牛树奎, 贺庆棠, 陈锋, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物水平连续性与树冠火蔓延[J]. 北京林业大学学报, 2012, 34(3):1−7.

    Niu S K, He Q T, Chen F, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
    [21] Wagner C E V. Conditions for the start and spread of crown fire[J]. Revue Canadienne De Recherche Forestière, 1977, 7(1): 23−34. doi: 10.1139/x77-004
    [22] Rothermel R C. A mathematical model for predicting fire spread in wildland fuels.[M]. Ogden: Usda Forest Service General Technical Report, 1972.
    [23] 单延龙, 舒立福, 王洪伟, 等. Rothermel火蔓延模型特征参数的解析[J]. 森林防火, 2003(1):22−25. doi: 10.3969/j.issn.1002-2511.2003.01.012

    Shan Y L, Shu L F, Wang H W, et al. Analysis of characteristic parameters of Rothermel ’s fire spread model[J]. Forest Fire Prevention, 2003(1): 22−25. doi: 10.3969/j.issn.1002-2511.2003.01.012
    [24] Byram G M.Combustion of forest fuels [C]//Davis K P. Forest fire: control and use. New York: McGraw-Hill Book Company, 1959: 77−84.
    [25] 夏智武. 森林地表可燃物燃烧性评价研究[D]. 北京: 中国林业科学研究院, 2016.

    Xia Z W. Study on evaluation of forest surface fuel flammability [D]. Beijing: Chinese Academy of Forestry, 2016.
    [26] 宋叙言, 沈江. 基于主成分分析和集对分析的生态工业园区生态绩效评价研究: 以山东省生态工业园区为例[J]. 资源科学, 2015, 37(3):546−554.

    Song X Y, Shen J. The ecological performance of eco-industrial parks in Shandong based on principal component analysis and set pair analysis[J]. Resources Science, 2015, 37(3): 546−554.
    [27] 祝必琴, 黄淑娥, 田俊, 等. 亚热带季风区不同林型可燃物理化性质及燃烧性研究[J]. 江西农业大学学报, 2011, 33(6):1149−1154. doi: 10.3969/j.issn.1000-2286.2011.06.022

    Zhu B Q, Huang S E, Tian J, et al. A study on the physical-chemical properties and flammability of different forest types in semi-tropical monsoon area[J]. Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(6): 1149−1154. doi: 10.3969/j.issn.1000-2286.2011.06.022
    [28] Hoffman C M, Morgan P, Mell W, et al. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle caused tree mortality[J]. Forest Science, 2013, 59(4): 390−399. doi: 10.5849/forsci.11-114
    [29] 王晓丽. 北京山区森林燃烧性研究[D]. 北京: 北京林业大学, 2010.

    Wang X L. Study on combustibility of forests in Beijing Mountain Area[D]. Beijing: Beijing Forestry University, 2010.
    [30] 王晓丽, 牛树奎, 阚振国. 北京地区主要树种理化性质研究及易燃性初步分析[J]. 林业资源管理, 2008(4):83−88. doi: 10.3969/j.issn.1002-6622.2008.04.020

    Wang X L, Niu S K, Kan Z G. The preliminary analysis of the characteristics and flammability of main tree species in Beijing Area[J]. Forest Resources Management, 2008(4): 83−88. doi: 10.3969/j.issn.1002-6622.2008.04.020
    [31] 刘艳红, 马炜. 长白落叶松人工林可燃物碳储量分布及燃烧性[J]. 北京林业大学学报, 2013, 35(3):32−38.

    Liu Y H, Ma W. Carbon distribution and combustibility of fuels in Larix olgensis plantations[J]. Journal of Beijing Forestry University, 2013, 35(3): 32−38.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  367
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 修回日期:  2018-12-22
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回