高级检索
    李鑫, 李昆, 段安安, 崔凯, 高成杰. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371
    引用本文: 李鑫, 李昆, 段安安, 崔凯, 高成杰. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371
    Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371
    Citation: Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371

    不同地理种源云南松幼苗生物量分配及其异速生长

    Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances

    • 摘要:
      目的云南松地理种源间存在着丰富的遗传变异,研究不同种源间云南松子代幼苗生物量及其异速生长,以期深入了解云南松幼苗生物量分配在不同种源间的变异。
      方法通过容器植苗,采用单因素随机区组设计,比较了9个地理种源云南松子代幼苗生物量及其分配的差异及其与种源地理、气候因子的关系,并运用标准化主轴回归分析了云南松幼苗各器官在种源间的异速生长关系。
      结果云南松幼苗生物量及其分配在种源间具有显著差异,其中永仁种源茎和叶以及总生物量最大,但根生物量及其分配比最小,云龙种源各器官生物量和总生物量较小,但具有最大的叶生物量分配比。生物量及其分配受种源地理气候因子不同程度的影响,其中以海拔和年均温影响较大。云南松各器官间的异速生长关系在种源间发生了显著变化,同样的情况在器官生物量与个体大小之间也有发生。
      结论尽管物种相同,云南松幼苗各器官生物量在种源间的分配关系无一致的协同变化规律,体现了云南松子代幼苗因不同种源地理气候因子长期影响而形成生物量分配模式上的遗传变异。

       

      Abstract:
      ObjectiveThere are abundant genetic variations of the Pinus yunnanensis among geographical provenances. However, genetic variation in biomass allocation and allometric relationships among biomass components were rarely addressed in this tree. Biomass allocation and allometry of P. yunnanensis seedlings from different provenances were studied to understand genetic variations in biomass allocation among provenances of P. yunnanensis seedlings.
      MethodP. yunnanensis seedlings in containers from nine geographical provenances were designed by single-factor randomized block and then were selected to compare their biomass allocation and allometric relationships, and the correlations between geo-climatic parameters and biomass allocation were analyzed. Allometric relationships among seedling components were analyzed using standardized major axis regression.
      ResultThere were significant differences in biomass and its allocation among provenances. The highest biomass of stem, leaf, total biomass and the lowest root biomass appeared in Yongren provenance, while Yunlong provenance, Yunnan Province of Southwestern China had the lower total biomass but the highest leaf biomass ratio. Biomass allocation was influenced variously by geographical and climatic factors, of which main influencing factors were altitude and mean annual temperature. The allometric scaling exponents among biomass components varied significantly in different provenances, the similar phenomenon occurred between each organ and plant size.
      ConclusionDespite the same species, there are no collaborative change characteristics in both organs ’ growth rates and biomass partition among provenances of P. yunnanensis, reflecting the genetic variation in the biomass distribution pattern of P. yunnanensis seedlings due to the long-term influence of geographical and climatic factors in each provenance.

       

    /

    返回文章
    返回