高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同地理种源云南松幼苗生物量分配及其异速生长

李鑫 李昆 段安安 崔凯 高成杰

李鑫, 李昆, 段安安, 崔凯, 高成杰. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4): 41-50. doi: 10.13332/j.1000-1522.20180371
引用本文: 李鑫, 李昆, 段安安, 崔凯, 高成杰. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4): 41-50. doi: 10.13332/j.1000-1522.20180371
Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. doi: 10.13332/j.1000-1522.20180371
Citation: Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. doi: 10.13332/j.1000-1522.20180371

不同地理种源云南松幼苗生物量分配及其异速生长

doi: 10.13332/j.1000-1522.20180371
基金项目: 中国林业科学研究院基本科研业务专项(CAFYBB2017SY030),“十二五”农村领域国家科技计划(2015BAD07B0404)
详细信息
    作者简介:

    李鑫。主要研究方向:林木遗传育种。Email:li1545194196@163.com 地址:650224 云南省昆明市盘龙区白龙寺

    责任作者:

    高成杰,助理研究员。主要研究方向:森林培育。Email:gcj1986113@163.com 地址:同上

  • 中图分类号: S791.257

Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances

  • 摘要: 目的云南松地理种源间存在着丰富的遗传变异,研究不同种源间云南松子代幼苗生物量及其异速生长,以期深入了解云南松幼苗生物量分配在不同种源间的变异。方法通过容器植苗,采用单因素随机区组设计,比较了9个地理种源云南松子代幼苗生物量及其分配的差异及其与种源地理、气候因子的关系,并运用标准化主轴回归分析了云南松幼苗各器官在种源间的异速生长关系。结果云南松幼苗生物量及其分配在种源间具有显著差异,其中永仁种源茎和叶以及总生物量最大,但根生物量及其分配比最小,云龙种源各器官生物量和总生物量较小,但具有最大的叶生物量分配比。生物量及其分配受种源地理气候因子不同程度的影响,其中以海拔和年均温影响较大。云南松各器官间的异速生长关系在种源间发生了显著变化,同样的情况在器官生物量与个体大小之间也有发生。结论尽管物种相同,云南松幼苗各器官生物量在种源间的分配关系无一致的协同变化规律,体现了云南松子代幼苗因不同种源地理气候因子长期影响而形成生物量分配模式上的遗传变异。

     

  • 图  1  不同地理种源云南松苗期生物量分配比

    不同字母代表差异显著(P < 0.05)。下同。Different letters indicate significant difference (P < 0.05). The same below.

    Figure  1.  Biomass allocation ratio of Pinus yunnanensis seedlings from different geographical provenances

    表  1  云南松9个种源地理位置及气温和降水量

    Table  1.   Geographical location, air temperature, and precipitation of the sites for the 9 provenances of Pinus yunnanensis

    种源
    Provenance
    海拔
    Elevation/m
    纬度
    Latitude
    经度
    Longitude
    年均温
    Mean annual temperature/℃
    年降雨量
    Annual precipitation/mm
    YR 2 057 26°20′24″N 101°36′00″E 14.8 830.7
    YL 2 512 25°52′12″N 99°17′24″E 13.2 879.5
    XC 2 610 27°52′12″N 102°00′36″E 16.9 937.7
    HZ 2 322 26°00′24″N 103°24′00″E 12.7 817.7
    CY 2 046 28°37′12″N 97°21′00″E 14.9 791.3
    CH 805 24°00′51″N 105°55′48″E 19.2 1 340.7
    XP 1 606 24°04′12″N 102°04′12″E 17.9 869.0
    LF 1 925 25°07′48″N 101°54′00″E 15.9 930.5
    SB 1 663 24°22′12″N 101°39′00″E 15.1 927.0
    注:YR. 云南永仁;YL. 云南云龙;XC. 四川西昌;HZ. 云南会泽;CY. 西藏察隅;CH. 贵州册亨;XP. 云南新平;LF. 云南禄丰;SB. 云南双柏。下同。Notes: YR, Yunnan Yongren; YL, Yunnan Yunlong; XC, Sichuan Xichang; HZ, Yunnan Huize; CY, Xizang Chayu; CH, Guizhou Ceheng; XP, Yunnan Xinping; LF, Yunnan Lufeng; SB, Yunnan Shuangbai. The same below.
    下载: 导出CSV

    表  2  不同种源间云南松幼苗生物量及其分配的方差分析

    Table  2.   Variance analysis for biomass and its allocation of Pinus yunnanensis seedlings from different provenances

    测定项目 Measuring item   SS df MS F P
    根生物量 Root biomass 0.520 8 0.065 1.539 0.159
    茎生物量 Stem biomass 6.595 8 0.824 26.638 < 0.001
    叶生物量 Leaf biomass 1.586 8 0.198 3.961 0.001
    地上生物量 Aboveground biomass 2.174 8 0.272 8.250 < 0.001
    总生物量 Total biomass 1.613 8 0.202 7.635 < 0.001
    根分配比 Root allocation ratio 1.928 8 0.241 10.602 < 0.001
    叶分配比 Leaf allocation ratio 2.218 8 0.277 19.674 < 0.001
    茎分配比 Stem allocation ratio 0.213 8 0.027 2.395 0.024
    根冠比 Root-shoot ratio 2.624 8 0.328 8.623 < 0.001
    下载: 导出CSV

    表  3  不同地理种源云南松苗期生物量

    Table  3.   Biomass of Pinus yunnanensis seedlings from different geographical provenances g

    种源
    Provenance

    Root

    Stem

    Leaf
    地上部分生物量
    Aboveground biomass
    总生物量
    Total biomass
    YR 0.015 2 ± 0.003 6a 0.095 2 ± 0.025 5c 0.125 0 ± 0.033 5a 0.220 2 ± 0.059 1d 0.235 4 ± 0.060 8d
    YL 0.016 6 ± 0.003 6a 0.010 0 ± 0.004 3a 0.063 9 ± 0.022 4d 0.073 8 ± 0.026 4a 0.090 4 ± 0.034 7a
    XC 0.020 0 ± 0.007 9ab 0.012 8 ± 0.003 7ab 0.062 6 ± 0.034 6d 0.075 3 ± 0.037 0a 0.095 3 ± 0.042 4a
    HZ 0.019 0 ± 0.006 3ab 0.010 0 ± 0.002 3a 0.067 2 ± 0.013 4cd 0.077 2 ± 0.015 1a 0.096 2 ± 0.017 6a
    CY 0.022 8 ± 0.003 8ab 0.012 5 ± 0.003a 0.064 4 ± 0.021 4d 0.076 9 ± 0.024 7a 0.099 7 ± 0.030 5a
    CH 0.026 5 ± 0.014 3b 0.023 6 ± 0.008 4ab 0.124 8 ± 0.027 2a 0.148 4 ± 0.033 7c 0.174 9 ± 0.045 4c
    XP 0.027 5 ± 0.012 5b 0.018 8 ± 0.006 2ab 0.099 8 ± 0.028 7ab 0.118 6 ± 0.033 5bc 0.146 1 ± 0.038 9bc
    LF 0.020 4 ± 0.009 9ab 0.029 3 ± 0.004 7b 0.092 9 ± 0.036 9bc 0.122 3 ± 0.063 6bc 0.142 7 ± 0.062 8bc
    SB 0.017 1 ± 0.009 6a 0.015 9 ± 0.005 2ab 0.089 1 ± 0.030 1bcd 0.105 1 ± 0.035 2ab 0.122 1 ± 0.044 1ab
    注:数值为平均值 ± 标准差;同列不同字母表示差异显著(P < 0.05)。下同。Notes: numerical value is M ± SD; different letters in the same row indicate significant difference (P < 0.05).The same below.
    下载: 导出CSV

    表  4  不同地理种源云南松苗期各器官间的相关生长指数(斜率)、等速生长及共同斜率(指数)检验

    Table  4.   Scaling exponent (slope), the test of isometry and common slope (index) among each organ of Pinus yunnanensis seedlings from different geographical provenances

    参数
    Parameter
    种源
    Provenance
    相关生长指数(斜率) Scaling exponent (slope) 等速生长检验 Test of isometry
    R2 P α 95%CI F P
    叶(y)−茎(x
    Leaf (y)−stem (x)
    YR 0.979 0.000 0.584 1a 0.527 8 ~ 0.646 4 153.231 0.000
    YL 0.704 0.001 1.508 8c 1.037 4 ~ 2.194 6 6.042 0.034
    XC 0.029 0.597
    HZ 0.776 0.000 0.972 4b 0.700 6 ~ 1.249 6 0.035 0.856
    CY 0.837 0.000 1.533 2c 1.258 2 ~ 1.829 5 11.929 0.006
    CH 0.744 0.000 1.256 8bc 0.986 3 ~ 1.482 1 2.077 0.180
    XP 0.609 0.003 1.017 2b 0.863 4 ~ 1.259 5 0.007 0.933
    LF 0.124 0.262
    SB 0.745 0.000 1.380 1bc 0.973 6 ~ 1.556 4 4.208 0.067
    无共同斜率
    No common slope
    t = 55.134 P = 0.001
    叶(y)−根(x
    Leaf (y)−root (x)
    YR 0.866 0.000 0.955 3b 0.740 0 ~ 1.233 1 0.156 0.701
    YL 0.961 0.000 0.678 6a 0.590 5 ~ 0.779 9 40.247 0.000
    XC 0.198 0.147
    HZ 0.350 0.043 0.749 2ab 0.436 1 ~ 1.287 2 1.319 0.278
    CY 0.348 0.044 0.976 4b 0.567 8 ~ 1.679 1 0.009 0.927
    CH 0.833 0.000 0.687 5a 0.517 3 ~ 0.913 8 8.781 0.014
    XP 0.494 0.011 0.517 4a 0.319 4 ~ 0.837 9 9.906 0.010
    LF 0.014 0.715
    SB 0.858 0.000 0.784 1ab 0.603 1 ~ 1.019 4 4.249 0.066
    无共同斜率
    No common slope
    t = 16.83 P = 0.029
    茎(y)−根(x
    Stem (y)−root (x)
    YR 0.904 0.000 1.635 4a 1.317 0 ~ 2.030 8 27.330 0.000
    YL 0.688 0.001 0.449 8bc 0.306 2 ~ 0.660 5 25.170 0.001
    XC 0.427 0.021 0.345 8c 0.207 5 ~ 0.576 2 28.303 0.000
    HZ 0.478 0.013 0.770 5b 0.472 4 ~ 0.925 7 10.333 0.009
    CY 0.467 0.017 0.636 9bc 0.473 1 ~ 0.987 1 12.440 0.005
    CH 0.748 0.000 0.547 1bc 0.386 7 ~ 0.774 0 16.251 0.002
    XP 0.541 0.006 0.508 6bc 0.320 8 ~ 0.806 4 11.567 0.007
    LF 0.211 0.133
    SB 0.694 0.001 0.568 1bc 0.388 2 ~ 0.831 4 11.593 0.007
    无共同斜率
    No common slope
    t = 42.584 P = 0.001
    地上(y)−地下(x
    Aboveground (y)−
    underground (x)
    YR 0.885 0.000 1.156 9a 0.913 2 ~ 1.465 7 1.863 0.202
    YL 0.960 0.000 0.614 5bc 0.533 8 ~ 0.707 6 63.662 0.000
    XC 0.149 0.215
    HZ 0.374 0.034 0.743 2abc 0.436 6 ~ 1.265 0 1.450 0.256
    CY 0.357 0.040 0.900 9abc 0.525 7 ~ 1.544 1 0.170 0.689
    CH 0.846 0.000 0.648 8bc 0.493 8 ~ 0.852 5 12.933 0.005
    XP 0.531 0.007 0.502 2c 0.315 2 ~ 0.800 0 11.814 0.006
    LF 0.087 0.353
    SB 0.863 0.000 0.730 7bc 0.586 1 ~ 1.069 3 7.415 0.021
    无共同斜率
    No common slope
    t = 20.683 P = 0.012
    注:同列不同字母表示SMA斜率差异显著(P < 0.05)。下同。Notes: different letters in the same row indicate the slope of SMA is significant difference (P < 0.05). The same below.
    下载: 导出CSV

    表  5  不同地理种源云南松苗期各器官(y)与个体大小(x)之间的相关生长指数(斜率)、等速生长及共同斜率(指数)检验

    Table  5.   Scaling exponent (slope), the test of isometry and common slope (index) between each organ (y) and individual size (x) of Pinus yunnanensis seedlings from different geographical provenances

    参数  
    Parameter  
    种源
    Provenance
    相关生长指数(斜率) Scaling exponent (slope) 等速生长检验 Test of isometry
    R2 P α 95%CI F P

    Root
    YR 0.898 0.000 0.876 6a 0.701 5 ~ 1.095 4 1.717 0.219
    YL 0.974 0.000 1.512 5b 1.350 4 ~ 1.694 0 69.705 0.000
    XC 0.013 0.724
    HZ 0.577 0.004 1.351 8ab 0.867 7 ~ 2.106 1 2.216 0.167
    CY 0.543 0.006 1.183 2ab 0.747 0 ~ 1.873 9 0.625 0.447
    CH 0.896 0.000 1.454 7b 1.160 8 ~ 1.822 9 14.109 0.004
    XP 0.779 0.000 1.828 8b 1.320 4 ~ 2.533 0 18.560 0.002
    LF 0.305 0.063
    SB 0.906 0.000 1.315 0ab 1.060 9 ~ 1.629 8 0.041 0.843
    无共同斜率
    No common slope
    t = 18.474 0.017

    Stem
    YR 0.994 0.000 1.433 6a 1.357 0 ~ 1.514 5 222.738 0.000
    YL 0.761 0.000 0.680 2c 0.485 2 ~ 0.953 8 6.525 0.029
    XC 0.406 0.026 0.588 2c 0.349 9 ~ 0.988 8 5.202 0.046
    HZ 0.842 0.000 1.041 6b 0.790 1 ~ 1.373 1 0.105 0.752
    CY 0.853 0.000 0.753 5bc 0.576 9 ~ 0.984 3 5.586 0.040
    CH 0.813 0.000 0.795 8bc 0.589 6 ~ 1.074 2 2.842 0.123
    XP 0.730 0.000 0.930 2bc 0.649 9 ~ 1.331 3 0.194 0.669
    LF 0.618 0.002 1.527 6a 1.000 9 ~ 1.531 5 5.986 0.039
    SB 0.803 0.000 0.747 1bc 0.549 1 ~ 1.016 4 4.439 0.061
    无共同斜率
    No common slope
    t = 51.301 P = 0.001

    Leaf
    YR 0.995 0.000 0.837 4a 0.796 4 ~ 0.880 5 62.708 0.000
    YL 0.993 0.000 1.026 4b 0.967 6 ~ 1.088 8 0.967 0.349
    XC 0.695 0.001 2.616 6c 1.789 6 ~ 3.825 8 40.930 0.000
    HZ 0.947 0.000 1.012 8b 0.861 4 ~ 1.190 9 0.031 0.865
    CY 0.960 0.000 1.155 3b 1.003 5 ~ 1.330 0 5.217 0.045
    CH 0.987 0.000 1.000 1b 0.923 2 ~ 1.083 5 0.000 0.997
    XP 0.904 0.000 0.946 1ab 0.762 0 ~ 1.174 8 0.320 0.584
    LF 0.643 0.002 1.238 4ab 0.822 4 ~ 1.865 0 1.301 0.281
    SB 0.990 0.000 1.031 1b 0.960 0 ~ 1.107 4 0.911 0.362
    无共同斜率
    No common slope
    t = 40.716 P = 0.001
    地上
    Aboveground
    YR 1.000 0.000 1.014 1b 0.998 9 ~ 1.029 6 4.257 0.066
    YL 0.998 0.000 0.929 5c 0.902 0 ~ 0.957 8 29.563 0.000
    XC 0.753 0.000 1.380 1a 0.979 0 ~ 1.945 5 4.350 0.064
    HZ 0.958 0.000 1.004 7bc 0.870 0 ~ 1.160 1 0.005 0.944
    CY 0.964 0.000 1.053 0b 0.921 1 ~ 1.203 7 0.735 0.411
    CH 0.994 0.000 0.943 9c 0.894 6 ~ 0.995 9 5.751 0.037
    XP 0.929 0.000 0.918 4c 0.762 1 ~ 1.106 8 1.023 0.336
    LF 0.910 0.000 1.161 9ab 0.942 4 ~ 1.432 7 2.531 0.143
    SB 0.995 0.000 0.960 9bc 0.916 0 ~ 1.007 9 2.676 0.136
    无共同斜率
    No common slope
    t = 30.742 P = 0.001
    下载: 导出CSV

    表  6  云南松种源地理、气候因子与苗期生物量的相关性

    Table  6.   Spearman correlation coefficients between geo-climatic parameters and biomass of Pinus yunnanensis seedlings

    地理、气候因子
    Geo-climatic parameter
    生物量
    Biomass
    生物量分配比
    Biomass allocation ratio
    根冠比
    Root-shoot ratio

    Root

    Stem

    Leaf
    地上
    Aboveground

    Total

    Root

    Stem

    Leaf
    经度
    Longitude
    − 0.090 − 0.028 − 0.369** − 0.240* − 0.244* 0.284* 0.095 − 0.288** 0.238*
    纬度
    Latitude
    0.127 0.077 0.377** 0.271* 0.279* − 0.162 0.015 0.105 − 0.118
    海拔
    Elevation
    − 0.355** − 0.066 − 0.496** − 0.338** − 0.364** 0.237* 0.058 − 0.227* 0.195
    年均温
    Mean annual temperature
    0.314** 0.055 0.363** 0.225* 0.265* 0.003 − 0.013 0.009 0.026
    年降雨量
    Annual precipitation
    0.191 − 0.071 0.346** 0.175 0.198 − 0.095 − 0.131 0.182 − 0.077
    注:*表示在P < 0.05水平上差异显著,**表示P < 0.01水平上差异显著。Notes: * means significant difference at P < 0.05 level, ** means extremely significant difference at P < 0.01 level.
    下载: 导出CSV
  • [1] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environment control[J]. New Phytologist, 2012, 193(1): 30−50. doi: 10.1111/j.1469-8137.2011.03952.x
    [2] 谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015, 34(3):648−655.

    Xie R, Tao Y, Chang S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China[J]. Chinese Journal of Ecology, 2015, 34(3): 648−655.
    [3] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Australian Journal of Plant Physiology, 2000, 27(6): 595−607.
    [4] Pike C C, Warren J C, Montgomery R A. Allometry of early growth in selected and wild sources of white spruce, Picea glauca (Moench) Voss[J]. New Forests, 2016, 47(1): 131−141. doi: 10.1007/s11056-015-9498-0
    [5] Chmura D J, Guzicka M, Rożkowski R, et al. Allometry varies among related families of Norway spruce[J/OL]. Annals of Forest Science, 2017, 74(2): 36 [2018−10−09]. http://doi.org/10.1007/s13595-017-0631-4.
    [6] Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360
    [7] Vasseur F, Violle C, Enquist B J, et al. A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry[J]. Ecology Letters, 2012, 15(10): 1149−1157. doi: 10.1111/j.1461-0248.2012.01839.x
    [8] 陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23(2):38−48.

    Tao Y, Zhang Y M. Biomass allocation patterns allometric relationships of six ephemeroid species in Junggar Basin, China[J]. Acta Pratacul Turae Sinica, 2014, 23(2): 38−48.
    [9] Aranda I, Alia R, Ortega U, et al. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations[J]. Tree Genetics & Genomes, 2010, 6(2): 169−178.
    [10] Sanchez-Gomez D, Majada J, Alia R, et al. Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation?[J/OL] Annals of Forest Science, 2010, 67(5): 505 [2018−10−09]. http://doi.org/10.1051/forest/20100.
    [11] Cheng D, Ma Y, Zhong Q, et al. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings[J]. Ecology and Evolution, 2014, 4(20): 3968−3977. doi: 10.1002/ece3.2014.4.issue-20
    [12] Niklas K J, Enquist B J. Invariant scaling relationships for interspecific plant biomass production rates and body size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2922−2927. doi: 10.1073/pnas.041590298
    [13] 韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32(4):951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025

    Han W X, Fang J Y. Review on the mechanism models of allometric scaling laws[J]. Journal of Plant Ecology, 2008, 32(4): 951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025
    [14] Poorter H, Jagodzinski A M, Ruiz-Peinado R, et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents[J]. New Phytologist, 2015, 208(3): 736−749. doi: 10.1111/nph.13571
    [15] Chmura D J, Guzicka M, Rożkowski R, et al. Variation in aboveground and belowground biomass in progeny of selected stands of Pinus sylvestris[J]. Scandinavian Journal of Forest Research, 2013, 28(8): 724−734. doi: 10.1080/02827581.2013.844269
    [16] Aspinwall M J, King J S, Mckeand S E. Productivity differences among loblolly pine genotypes are independent of individual-tree biomass partitioning and growth efficiency[J]. Trees, 2013, 27(3): 533−545. doi: 10.1007/s00468-012-0806-4
    [17] Stovall J P, Fox T R, Seiler J R. Short-term changes in biomass partitioning of two full-sib clones of Pinus taeda L. under differing fertilizer regimes over 4 months[J]. Trees, 2012, 26(3): 951−961. doi: 10.1007/s00468-011-0673-4
    [18] Stovall J P, Fox T R, Seiler J R. Allometry varies among 6-year-old Pinus taeda (L.) clones in the Virginia Piedmont[J]. Forest Science, 2013, 59(1): 50−62. doi: 10.5849/forsci.10-095
    [19] 金振洲, 彭鉴. 云南松[M]. 昆明: 云南科技出版社, 2004.

    Jin Z Z, Peng J. Pinus yunnanensis[M]. Kunming: Yunnan Science and Technology Press, 2004.
    [20] 许玉兰, 蔡年辉, 陈诗, 等. 云南松天然群体遗传变异与生态因子的相关性[J]. 生态学杂志, 2016, 35(7):1767−1775.

    Xu Y L, Cai N H, Chen S, et al. Relationships between the genetic diversity of Pinus yunnanensis Franch. natural populations and ecological factors[J]. Chinese Journal of Ecology, 2016, 35(7): 1767−1775.
    [21] 陈强, 董福美, 常恩福. 云南松母树林后代苗期生长变异的初步研究[J]. 云南林业科技, 1996(4):15−23.

    Chen Q, Dong F M, Chang E F. A preliminary study on seedling stage growth variation of subsequent generation of seed stand of Pinus yunnanensis[J]. Yunnan Forestry Science and Technology, 1996(4): 15−23.
    [22] 舒筱武, 郑畹, 冯弦. 云南松种源、林分和家系苗高生长的遗传变异研究[J]. 云南林业科技, 1998(2):2−6, 9-10.

    Shu X W, Zheng W, Feng X. Study on seedling height growth hereditary variation of Pinus yunnanensis provenance, stand and family[J]. Yunnan Forestry Science and Technology, 1998(2): 2−6, 9-10.
    [23] 刘代亿, 李跟前, 李连芳, 等. 云南松优良家系及优良个体苗期选择研究[J]. 西北林学院学报, 2009, 24(4):67−72.

    Liu D Y, Li G Q, Li L F, et al. Seedling selection of superior families and excellent-individuals selection of Pinus yunnanensis[J]. Journal of Northwest Forestry University, 2009, 24(4): 67−72.
    [24] 吕学辉, 魏巍, 陈诗, 等. 云南松优良家系超级苗选择研究[J]. 云南大学学报(自然科学版), 2012, 34(1):113−119.

    Lü X H, Wei W, Chen S, et al. Study on seedling selection of superior families of Pinus yunnanensis Franch[J]. Journal of Yunnan University(Natural Sciences Edition), 2012, 34(1): 113−119.
    [25] Gould S J. Allometry and size in ontogeny and phylogeny[J]. Biological Reviews, 1966, 41(4): 587−640. doi: 10.1111/brv.1966.41.issue-4
    [26] Warton D I, Weber N C. Common slope tests for bivariate errors in variables models[J]. Biometrical Journal, 2002, 44(2): 161−174. doi: 10.1002/(ISSN)1521-4036
    [27] Falster D S, Warton D I, Wright I J. User ’s guide to SMATR: standardised major axis tests & routines (Version 2.0)[J/OL]. 2006[2018−10−09]. http://www.bio.mq.edu.au/ecology/SMATR/.
    [28] 虞泓, 葛颂, 黄瑞复, 等. 云南松及其近缘种的遗传变异与亲缘关系[J]. 植物学报, 2000, 42(1):107−110. doi: 10.3321/j.issn:1672-9072.2000.01.018

    Yu H, Ge S, Huang R F, et al. A preliminary study on genetic variation and relationships of Pinus yunnanensis and its closely related species[J]. Acta Botani Sinica, 2000, 42(1): 107−110. doi: 10.3321/j.issn:1672-9072.2000.01.018
    [29] 刘志龙, 虞木奎, 唐罗忠, 等. 不同地理种源麻栎苗期变异和初步选择[J]. 林业科学研究, 2009, 22(4):486−492. doi: 10.3321/j.issn:1001-1498.2009.04.005

    Liu Z L, Yu M K, Tang L Z, et al. Provenance variation and preliminary selection of Quercus acutissima seedlings[J]. Forest Research, 2009, 22(4): 486−492. doi: 10.3321/j.issn:1001-1498.2009.04.005
    [30] Lin L, Luo J. Variation in traits of Picea likiangensis var. linzhiensis seedlings from different provenances[J]. Forest Research, 2014, 27(4): 557−561.
    [31] Wang B S, Mao J F, Zhao W, et al. Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis[J/OL]. PLoS One, 2013, 8(6): e67345[2018−10−09]. https://doi.org/10.1371/journal.pone.0067345.
    [32] 尹擎, 罗方书, 皮文林, 等. 云南松地理种源的研究[J]. 广西植物, 1995, 15(1):52−56.

    Yin Q, Luo F S, Pi W L, et al. Studies on the geographical provenance of Pinus yunnanensis[J]. Guihaia, 1995, 15(1): 52−56.
    [33] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083
    [34] Wright S D, McConnaughay K D M. Interpreting phenotypic plasticity: the importance of ontogeny[J]. Plant Species Biology, 2002, 17(2-3): 119−131. doi: 10.1046/j.1442-1984.2002.00082.x
    [35] Niklas K J. Plant allometry: is there a grand unifying theory?[J]. Biological Reviews, 2004, 79(4): 871−889. doi: 10.1017/S1464793104006499
    [36] Niklas K J. Modelling below-and above-ground biomass for nonwoody and woody plants[J]. Annals of Botany, 2005, 95(2): 315−321. doi: 10.1093/aob/mci028
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  3223
  • HTML全文浏览量:  885
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-09
  • 修回日期:  2019-02-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回