高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMLs参与调控植物花粉授粉竞争的作用

高述民 杨慕菡 祝园园 周燕

高述民, 杨慕菡, 祝园园, 周燕. CMLs参与调控植物花粉授粉竞争的作用[J]. 北京林业大学学报, 2019, 41(3): 143-150. doi: 10.13332/j.1000-1522.20180375
引用本文: 高述民, 杨慕菡, 祝园园, 周燕. CMLs参与调控植物花粉授粉竞争的作用[J]. 北京林业大学学报, 2019, 41(3): 143-150. doi: 10.13332/j.1000-1522.20180375
Gao Shumin, Yang Muhan, Zhu Yuanyuan, Zhou Yan. Role of CMLs in regulating the competition of plant pollen pollination[J]. Journal of Beijing Forestry University, 2019, 41(3): 143-150. doi: 10.13332/j.1000-1522.20180375
Citation: Gao Shumin, Yang Muhan, Zhu Yuanyuan, Zhou Yan. Role of CMLs in regulating the competition of plant pollen pollination[J]. Journal of Beijing Forestry University, 2019, 41(3): 143-150. doi: 10.13332/j.1000-1522.20180375

CMLs参与调控植物花粉授粉竞争的作用

doi: 10.13332/j.1000-1522.20180375
基金项目: 北京市自然科学基金项目(6162014),北京市公园管理中心课题(ZX 2018014),国家自然科学基金项目(31870573)
详细信息
    作者简介:

    高述民,博士,教授。主要研究方向:园林植物生殖发育与育种。Email:gsm689@sohu.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    周燕,博士,教授级高工。主要研究方向:园林植物的引选育研究。Email:zhouy661@sohu.com 地址:100102 北京市朝阳区花家地甲7号北京市园林科学研究院

  • 中图分类号: S718.47;Q944.42

Role of CMLs in regulating the competition of plant pollen pollination

  • 摘要: 目的在显花植物生殖过程中花粉萌发和花粉管生长起着至关重要的作用,这一过程受许多因素的影响,其中钙调素类似蛋白(calmodulin-like proteins,CMLs)通过直接或间接的作用机制调控花粉萌发及花粉管生长。然而,迄今人们对CMLs的功能研究尚少。本文旨在初步了解CMLs蛋白在花粉竞争优势中的作用,为深入探究CMLs蛋白在植物花粉竞争优势中的分子机制奠定理论基础。方法本文主要通过对参与调控花粉萌发以及花粉管生长过程的CMLs蛋白的结构、表达水平、细胞定位及其作用机理的归纳,结合不同植物中出现的花粉竞争现象,综合分析并总结国内外相关研究结果。结果CMLs蛋白约有4个保守的EF手性结构域,当CMLs蛋白结合Ca2+时,其构象发生变化,增强与下游受体蛋白的结合能力,并启动Ca2+依赖的级联信号放大效应,引起花粉管中Ca2+的浓度变化,影响从萌发孔到花粉管顶端Ca2+浓度梯度的形成,从而调控花粉管的正常生长。CMLs蛋白的表达还可以影响Mg2+、NO等离子的浓度变化,影响Ca2+与EF手性结构域的结合及花粉管生长的导向。不同CMLs蛋白具有不同生理功能,其中参与花粉萌发及花粉管生长的CMLs蛋白主要在植物花器官中表达;部分显花植物在受精过程中,不同倍性花粉之间可能由于基因组大小或者营养物质含量的差异,导致萌发率及生长速率的不同。结论CMLs蛋白可能通过在不同倍性花粉中的差异表达,影响花粉在体内萌发的进程,使其在某一时期表现出竞争优势。

     

  • 图  1  Ca2+信号感受器[1]

    Figure  1.  Ca2+ signal sensor[1]

    图  2  CML24基因调控花粉管生长的机理

    Figure  2.  Mechanism of CML24 gene regulating pollen tube growth

    表  1  植物CMLs蛋白的功能

    Table  1.   Function of CML proteins in plants

    CMLs蛋白
    Calmodulin-like protein
    来源植物
    Affiliated plant
    功能
    Function
    CML37、38、39[18];CML24[19];CML8[20] 拟南芥 Arabidopsis thaliana 响应不同生物/非生物刺激
    Respond to different biological/abiotic stimuli
    OSCML4、5、8和11[21] 水稻 Oryza sativa
    CML25[22];CML24[23] 拟南芥 Arabidopsis thaliana 参与花粉萌发以及花粉管生长
    Participate in pollen germination and pollen tube growth
    CML49[7] 甘蓝 Brassica oleracea
    CML7[24];CML39[25] 拟南芥 Arabidopsis thaliana 参与种子萌发、幼苗生长、根毛伸长等
    Participate in seed germination,seedling growth,root hair elongation,etc.
    CML24[25];CML9[26] 拟南芥 Arabidopsis thaliana 参与激素调节
    Participate in hormone regulation
    CML20[27];CML42[28] 拟南芥 Arabidopsis thaliana 调节细胞分裂、细胞壁合成、毛状体形成
    Regulate cell division,cell wall synthesis,trichome formation
    下载: 导出CSV
  • [1] DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signaling[J]. Biochemical Journal, 2010, 425(1): 27−40. doi: 10.1042/BJ20091147
    [2] Bender K W, Snedden W A. Calmodulin-related proteins step out from the shadow of their namesake[J]. Plant Physiology, 2013, 163(2): 486−495. doi: 10.1104/pp.113.221069
    [3] Abbas N, Maurya J P, Senapati D, et al. Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorxphogenesis[J]. The Plant Cell, 2014, 26(3): 1036−1052. doi: 10.1105/tpc.113.122515
    [4] Chen C, Duanmu H Z, Zhu D, et al. Bioinformatics analysis of GmCML genes in soybean genome[J]. Soybean Science, 2015, 13(7): 427−435.
    [5] Perochon A, Aldon D, Galaud J P, et al. Calmodulin and calmodulin-like proteins in plant calcium signaling[J]. Biochimie, 2011, 93(12): 2048−2053. doi: 10.1016/j.biochi.2011.07.012
    [6] Song M, Xu J Q, Sun Z J, et al. Molecular cloning and expression analysis of cam-like protein genes (bocml49) from cabbage (Brassica oleracea L. var. capitata)[J]. Acta Agronomica Sinica, 2012, 38(12): 2162−2169.
    [7] La V V, Trande M, D’Onofrio M, et al. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana[J]. International Journal of Biological Macromolecules, 2018, 108: 1289−1299. doi: 10.1016/j.ijbiomac.2017.11.044
    [8] Zeng H Q, Zhang Y X, Zhang X J, et al. Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling[J]. Frontiers in Plant Science, 2017, 8: 877. doi: 10.3389/fpls.2017.00877
    [9] Mccormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003, 159(3): 585−598. doi: 10.1046/j.1469-8137.2003.00845.x
    [10] Ogunrinde A, Munro K, Davidson A, et al. Arabidopsis calmodulin-like proteins, CML15 and CML16 possess biochemical properties distinct from calmodulin and show non-overlapping tissue expression patterns[J]. Frontiers in Plant Science, 2017, 8: 2175. doi: 10.3389/fpls.2017.02175
    [11] Finn B E, Evenäs J, Drakenberg T, et al. Calcium-induced structural changes and domain autonomy in calmodulin[J]. Nat Struct Biol, 1995, 2(9): 777−783. doi: 10.1038/nsb0995-777
    [12] Ikura M, Tanaka T, Zhang Q M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin[J]. Nature Structural Biology, 1995, 2(9): 758−767. doi: 10.1038/nsb0995-758
    [13] Chigri F, Flosdorff S, Pilz S, et al. The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively[J]. Plant Molecular Biology, 2012, 78(3): 211−222. doi: 10.1007/s11103-011-9856-z
    [14] Yang T B, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science, 2003, 8(10): 505−512. doi: 10.1016/j.tplants.2003.09.004
    [15] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. Bmc Plant Biology, 2007, 7(1): 4−10. doi: 10.1186/1471-2229-7-4
    [16] Gong M, Yang Z H, Cao Z X. Involvement of calmodulin in pollen germination and pollen tube growth[J]. Acta Phytophisiologica Sinica, 1994(3): 240−248.
    [17] Ma L G, Fan Q S, Yu Z Q, et al. Does aluminum inhibit pollen germination via extracellular calmodulin?[J]. Plant & Cell Physiology, 2000, 41(3): 372−376.
    [18] Vanderbeld B, Snedden W A. Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39[J]. Plant Molecular Biology, 2007, 64(6): 683−697. doi: 10.1007/s11103-007-9189-0
    [19] 李娜. 拟南芥钙调素类似蛋白CML24调控铝抑制根伸长的机制研究[D]. 济南: 山东大学, 2015.

    Li N. Calmodulin like protein (CML24) medicates Al-induced root growth inhibition of Arabidopsis[D]. Jinan: Shangdong University, 2015.
    [20] Zhu X Y, Robe E, Jomat L, et al. CML8, an Arabidopsis calmodulin-like protein, plays a role in pseudomonas syringae plant immunity[J]. Plant & Cell Physiology, 2017, 58(2): 307−319.
    [21] Aumnart C, Kampon L, Srivilai P, et al. Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L.[J]. Bmc Research Notes, 2012, 5(1): 625−625. doi: 10.1186/1756-0500-5-625
    [22] Wang S S, Diao W Z, Yang X, et al. Arabidopsis thaliana CML25 mediates the Ca2+ regulation of K+ transmembrane trafficking during pollen germination and tube elongation[J]. Plant Cell & Environment, 2015, 38(11): 2372−2386.
    [23] Yang X, Wang S S, Wang M, et al. Arabidopsis thaliana, calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+, concentration[J]. Plant Molecular Biology, 2014, 86(3): 225−236. doi: 10.1007/s11103-014-0220-y
    [24] Lin W D, Liao Y Y, Yang T J, et al. Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling[J]. Plant Signaling & Behavior, 2011, 155(5): 1383−1402.
    [25] Bender K W, Rosenbaum D M, Vanderbeld B, et al. The Arabidopsis calmodulin-like protein, CML39, functions during early seedling establishment[J]. Plant Journal, 2013, 76(4): 634−647. doi: 10.1111/tpj.2013.76.issue-4
    [26] Magnan F, Ranty B M, Sotta B, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. Plant Journal, 2010, 56(4): 575−589.
    [27] Azimzadeh J, Nacry P, Christodoulidou A, et al. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin[J]. The Plant Cell, 2008, 20(8): 2146−2159. doi: 10.1105/tpc.107.056812
    [28] Dobney S, Chiasson D, Lam P, et al. The calmodulin-related calcium sensor cml42 plays a role in trichome branching[J]. Journal of Biological Chemistry, 2009, 284(46): 31647−31657. doi: 10.1074/jbc.M109.056770
    [29] Pannell J R, Labouche A M. The incidence and selection of multiple mating in plants[J]. Philosophical Transactions of the Royal Society of London, 2013, 368(1613): 20120051. doi: 10.1098/rstb.2012.0051
    [30] Marshall D L, Ellstrand N C. Proximal causes of multiple paternity in wild radish, Raphanus sativus[J]. American Naturalist, 1985, 126(5): 596−605. doi: 10.1086/284441
    [31] Burkhardt A, Internicola A, Bernasconi G. Effects of pollination timing on seed paternity and seed mass in Silene latifolia (Caryophyllaceae)[J]. Annals of Botany, 2009, 104(4): 767−773. doi: 10.1093/aob/mcp154
    [32] Snow A A, Spira T P. Pollen vigour and the potential for sexual selection in plants[J]. Nature, 1991, 352(6338): 796−797. doi: 10.1038/352796a0
    [33] Pasonen H L, Pulkkinen P, Kapyla M, et al. Pollen-tube growth rate and seed-siring success among Betula pendula clones[J]. New Phytologist, 2010, 143(2): 243−251.
    [34] Jolivet C, Bernasconi G. Within/between population crosses reveal genetic basis for siring success in Silene latifolia, (Caryophyllaceae)[J]. Journal of Evolutionary Biology, 2007, 20(4): 1361−1374. doi: 10.1111/jeb.2007.20.issue-4
    [35] Mccallum B, Chang S M. Pollen competition in style: effects of pollen size on siring success in the hermaphroditic common morning glory, ipomoea purpurea[J]. American Journal of Botany, 2016, 103(3): 460. doi: 10.3732/ajb.1500211
    [36] 赖杭桂. 木薯2n配子途径诱导多倍体的研究[D]. 海口: 海南大学, 2014.

    Lai H G. Research on induction of cassava polyploid through 2n gametes[D]. Haikou: Hainan University, 2014.
    [37] Kang X Y, Zhu Z T. A study on the 2n pollen vitality and germinant characteristics of white populars[J]. Acta Botanica Yunnanica, 1997, 19(4): 402−406.
    [38] Vanbreukelen E W M, 董延瑜. 快速测定活体马铃薯花柱上2X和X花粉间的竞争[J]. 园艺与种苗, 1984(3):26−27.

    Vanbreukelen E W M, Dong Y Y. Rapid determination of competition between 2X and X pollen on living potato style[J]. Horticulture & Seed, 1984(3): 26−27.
    [39] Qu D Y, Zhu D W, Ramanna M S, et al. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n-pollen grains[J]. Euphytica, 1995, 92(3): 313−320. doi: 10.1007/BF00037114
    [40] Liu X. Investigation of ploidy level and embryogenesis of progeny from crosses of tetraploid with diploid in Chinese cabbage[J]. British Journal of Haematology, 1996, 27(1): 153−161.
    [41] Wang Y, Zhang W Z, Song L F, et al. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1201−1211. doi: 10.1104/pp.108.126375
    [42] Zhou L, Ying F U, Yang Z. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes[J]. Journal of Integrative, 2009, 51(8): 751−761.
    [43] Bender K W, Dobney S, Ogunrinde A, et al. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis[J]. Biochemical Journal, 2014, 457(1): 127−136. doi: 10.1042/BJ20131080
    [44] Lenartowska M, Rodríguez-García M I, Bednarska E. Calmodulin and calmodulin-like protein are involved in pollen-pistil interaction: immunocytochemical studies on petunia hybrida hort[J]. Acta Biologica Cracoviensia, 2001, 43(2): 117−123.
    [45] Sun Y, Sun D. Signal transduction in pollen germination and tube growth[J]. Acta Botanica Sinica, 2001, 43(12): 1211−1217.
    [46] Staiger C J, Poulter N S, Henty J L, et al. Regulation of actindynamics by actin-binding proteins in pollen[J]. Journal of Experimental Botany, 2010, 61(7): 1969−1986. doi: 10.1093/jxb/erq012
    [47] Zhang Y, Mccormick S. The regulation of vesicle trafficking by small gtpases and phospholipids during pollen tube growth[J]. Sexual Plant Reproduction, 2010, 23(2): 87−93. doi: 10.1007/s00497-009-0118-z
    [48] Luis Cárdenas, Lovywheeler A, Kunkel J G, et al. Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization[J]. Plant Physiology, 2008, 146(4): 1611−1621. doi: 10.1104/pp.107.113035
    [49] Dodd A N, Kudla J, Sanders D. The language of calcium signaling[J]. Annual Review of Plant Biology, 2010, 61(1): 593−620. doi: 10.1146/annurev-arplant-070109-104628
    [50] Hepler P K, Kunkel J G, Rounds C M, et al. Calcium entry into pollen tubes[J]. Trends in Plant Science, 2012, 17(1): 32−38. doi: 10.1016/j.tplants.2011.10.007
    [51] Franklintong V E, Drobak B K, Allan A C, et al. Growth of pollen tubes of papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate[J]. Plant Cell, 1996, 8(8): 1305−1321. doi: 10.1105/tpc.8.8.1305
    [52] Magnan F, Ranty B M, Sotta B, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. Plant Journal, 2010, 56(4): 575−589.
    [53] Li Y Q, Zhang H Q, Pierson E S, et al. Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of lilium longiflorum pollen tubes[J]. Planta, 1996, 200(1): 41−49.
    [54] Mouline K, Véry A A, Gaymard F, et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis[J]. Genes Dev, 2002, 16(3): 339−350. doi: 10.1101/gad.213902
    [55] Waters B M. Moving magnesium in plant cells[J]. New Phytologist, 2011, 190(3): 510−513. doi: 10.1111/nph.2011.190.issue-3
    [56] Ohki S, Ikura M, Zhang M. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin[J]. Biochemistry, 1997, 36(14): 4309−4316. doi: 10.1021/bi962759m
    [57] Malmendal A, Linse S, Evenäs J, et al. Battle for the EF-hands: magnesium-calcium interference in calmodulin[J]. Biochemistry, 1999, 38(36): 11844−11850. doi: 10.1021/bi9909288
    [58] Clapham D E. Calcium signaling[J]. Cell, 2007, 131(6): 1047−1058. doi: 10.1016/j.cell.2007.11.028
    [59] Gifford J L, Walsh M P, Vogel H J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs[J]. Biochemical Journal, 2007, 405(2): 199−221. doi: 10.1042/BJ20070255
    [60] Astegno A, Bonza M C, Vallone R, et al. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase Isoform ACA8 and stimulates its activity[J]. Journal of Biological Chemistry, 2017, 292(36): 15049−15061.
    [61] Delk N A, Johnson K A, Chowdhury N I, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiology, 2005, 139(1): 240−253. doi: 10.1104/pp.105.062612
    [62] 杨雪. 拟南芥CML24调控花粉萌发及花粉管生长的功能研究[D]. 济南: 山东大学, 2014

    Yang X. Functional study of CML24 in regulating pollen germination and pollen tube growth in Arabiclopsis[D]. Jinan: Shandong University, 2014.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1351
  • HTML全文浏览量:  392
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2019-01-03
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回