高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木基金属功能复合材料研究进展

柴媛 傅峰 梁善庆

柴媛, 傅峰, 梁善庆. 木基金属功能复合材料研究进展[J]. 北京林业大学学报, 2019, 41(3): 151-160. doi: 10.13332/j.1000-1522.20180382
引用本文: 柴媛, 傅峰, 梁善庆. 木基金属功能复合材料研究进展[J]. 北京林业大学学报, 2019, 41(3): 151-160. doi: 10.13332/j.1000-1522.20180382
Chai Yuan, Fu Feng, Liang Shanqing. Progress of wood based metal functional composites[J]. Journal of Beijing Forestry University, 2019, 41(3): 151-160. doi: 10.13332/j.1000-1522.20180382
Citation: Chai Yuan, Fu Feng, Liang Shanqing. Progress of wood based metal functional composites[J]. Journal of Beijing Forestry University, 2019, 41(3): 151-160. doi: 10.13332/j.1000-1522.20180382

木基金属功能复合材料研究进展

doi: 10.13332/j.1000-1522.20180382
基金项目: 中央级公益性科研院所基本科研业务费专项(CAFYBB2016MB001)
详细信息
    作者简介:

    柴媛,博士生。主要研究方向:木质功能材料。Email:cybei123@163.com 地址:100091 北京海淀区香山路中国林业科学研究院木材工业研究所

    责任作者:

    梁善庆,博士,副研究员。主要研究方向:木质功能材料。Email:liangsq@caf.ac.cn 地址:同上

  • 中图分类号: TB33

Progress of wood based metal functional composites

  • 摘要: 为弥补木材固有的缺陷,改变木材物理、力学、化学性质和构造特征,对木材功能改性的研究从未间断过,从最初的木材塑合技术、浸渍技术、乙酰化技术、热处理技术、压缩和弯曲技术、漂白和染色技术等,到现在较为先进的微波处理技术,均极大地推动了木材科学的发展。随着对木材基本物化性能研究的逐步深入,新型木基复合材料也应运而生,如木基金属功能复合材料,其赋予木材新的电磁屏蔽、导热和导电等功能。根据木基金属复合材料的功能特性,可将其分为3类:电磁屏蔽木材、金属化木材和浸透型磁性木材。电磁屏蔽木材主要用于有射线辐射空间的地板、棚板、壁板等,其制备方法主要有化学镀金属和胶合金属两种,化学镀金属是通过化学的方法使木材表面金属化,胶合金属是通过胶黏剂将金属材料与木材相结合,这两种方法均能提高木材的电磁屏蔽效能,可以减少电磁辐射对人体的伤害。金属化木材是将低熔点合金以熔融状态浸透到木材细胞中并冷却固化后形成的复合材料,熔融状态的金属以木材导管为载体,使复合材料的压缩强度、硬度、导热性、导电性、耐磨性、冲击韧性等大幅度提高,可作导热木材用于地热采暖领域。浸透型磁性木材是在一定的压力下使磁流体浸透到木材内,从而制得带有磁性的木材,可用在磁记录、记忆、电磁转换、屏蔽、防护、医疗和生物技术、分离纯化等诸多领域。目前,木基金属功能复合材料的研究主要集中在木材表面化学镀上,此种制备方法金属只能覆盖在木材表面,而不能浸透到木材内部。金属化木材可以使金属浸透到木材中,但现有研究所用的基材没有经过处理,金属的渗透性不高,如何改善基材,最大限度发挥金属化木材的优异性能,进一步推动木基金属功能复合材料的应用范围,将是下一步研究的重点。本文对3种不同功能复合材料(电磁屏蔽木材、金属化木材和浸透型磁性木材)的研究现状进行概述,同时提出木基金属功能复合材料现有研究中的不足,并展望金属化木材在更多领域的应用和发展前景。

     

  • 图  1  木基金属镍复合材料横切面扫描电镜图

          图引自文献[13]。 Pictures are cited from reference [13].

    Figure  1.  SEM of transverse section of wood based nickel-metal functional composites

    图  2  木材化学镀

         图引自文献[15]。 Pictures are cited from reference [15].

    Figure  2.  Electroless plating on wood

    图  3  各向异性的金属化木材

       图引自文献[38]。 Pictures are cited from reference [38].

    Figure  3.  Anisotropic metallic wood

    图  4  木基金属功能复合材料的应用

            图引自文献[36]。 Pictures are cited from reference [36].

    Figure  4.  Application of wood based metal functional composites

  • [1] 李坚. 木材科学[M]. 3版. 北京: 科学出版社, 2014.

    Li J. Wood science[M]. 3rd ed. Beijing: Science Press, 2014.
    [2] 李坚, 高丽坤. 光控润湿性转换的抑菌性木材基银钛复合薄膜[J]. 森林与环境学报, 2015, 35(3):193−198.

    Li J, Gao L K. Photocontrolled wettability conversion properties of antibacterial Ag-Ti composite film based on wood substrate[J]. Journal of Forest and Environment, 2015, 35(3): 193−198.
    [3] Keplinger T, Cabane E, Chanana M, et al. A versatile strategy for grafting polymers to wood cell walls[J]. Acta Biomaterialia, 2015, 11: 256−263. doi: 10.1016/j.actbio.2014.09.016
    [4] Klimowicz T F. The large-scale commercialization of aluminum-matrix composites[J]. JOM, 1994, 46(11): 49−53. doi: 10.1007/BF03222634
    [5] Schuster D M, Skibo M D, Bruski R S, et al. The recycling and reclamation of metal-matrix composites[J]. JOM, 1993, 45(5): 26−30. doi: 10.1007/BF03223214
    [6] Lucchetta G, Marinello F, Bariani P F. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding[J]. CIRP Annals, 2011, 60(1): 559−562. doi: 10.1016/j.cirp.2011.03.073
    [7] Bulleit W M. Reinforcement of wood materials: a review[J]. Wood and Fiber Science, 1984, 16(3): 391−397.
    [8] 肖蔚鸿. 非金属材料表面金属化的方法[J]. 矿产保护与利用, 2004(3):28−31. doi: 10.3969/j.issn.1001-0076.2004.03.008

    Xiao W H. The metallization methods on nonmetallic material surface[J]. Conservation and Utilization of Mineral Resources, 2004(3): 28−31. doi: 10.3969/j.issn.1001-0076.2004.03.008
    [9] El Mahallawy N, Bakkar A, Shoeib M, et al. Electroless Ni-P coating of different magnesium alloys[J]. Surface and Coatings Technology, 2008, 202(21): 5151−5157. doi: 10.1016/j.surfcoat.2008.05.037
    [10] George R, Venkatachalam S, Ninan K N. Electrochemical impedance measurements on Ni-P coated magnesium alloy, chromated magnesium alloy, and anodised aluminium alloys in aqueous salt solutions[J]. British Corrosion Journal, 2002, 37(1): 37−42. doi: 10.1179/000705902225002330
    [11] Nagasawa C, Umehara H, Koshizaki N, et al. Effects of wood species on electroconductivity and electromagnetic shielding properties of electrolessly plated sliced veneer with nickel[J]. Journal of the Japan Wood Research Society, 1994, 40(10): 1092−1099.
    [12] Nagasawa C, Kumagai Y, Urabe K, et al. Electromagnetic shielding particleboard with nickel-plated wood particles[J]. Journal of Porous Materials, 1999, 6(3): 247−254. doi: 10.1023/A:1009692232398
    [13] 徐高祥. 金属木材复合材料的制备及其性能的研究[D]. 合肥: 安徽农业大学, 2013.

    Xu G X. Study on the preparation and properties of metal nickel and copper wood composites[D]. Hefei: Anhui Agricultural University, 2013.
    [14] 王立娟, 李坚, 刘一星. 化学镀法制备电磁屏蔽木材-Ni-P复合材料研究[J]. 材料科学与工艺, 2006, 14(3):296−299, 304. doi: 10.3969/j.issn.1005-0299.2006.03.021

    Wang L J, Li J, Liu Y X. Study on electromagnetic shielding wood Ni-P composite prepared by electroless nickel plating[J]. Materials Science and Technology, 2006, 14(3): 296−299, 304. doi: 10.3969/j.issn.1005-0299.2006.03.021
    [15] Li J, Wang L J, Liu H B. A new process for preparing conducting wood veneers by electroless nickel plating[J]. Surface and Coatings Technology, 2010, 204(8): 1200−1205. doi: 10.1016/j.surfcoat.2009.10.032
    [16] 姚晓林, 徐高翔, 刘盛全. 金属铜木材复合材料的制备及其力学性能研究[J]. 化工新型材料, 2013, 41(7):139−141, 144. doi: 10.3969/j.issn.1006-3536.2013.07.047

    Yao X L, Xu G X, Liu S Q. Research of preparation and mechanical properties of copper-wood composites[J]. New Chemical Materials, 2013, 41(7): 139−141, 144. doi: 10.3969/j.issn.1006-3536.2013.07.047
    [17] Wang L J, Sun L L, Li J. Electroless copper plating on Fraxinus mandshurica veneer using glyoxylic acid as reducing agent[J]. BioResources, 2010, 6(3): 3493−3504.
    [18] 李一, 聂俊辉, 李楠, 等. 镍覆膜碳纤维的制备与性能研究[J]. 功能材料, 2012, 43(13):1688−1691, 1695. doi: 10.3969/j.issn.1001-9731.2012.13.007

    Li Y, Nie J H, Li N, et al. The preparation and properties of nickel-coated carbon fiber by MOCVD process[J]. Journal of Functional Materials, 2012, 43(13): 1688−1691, 1695. doi: 10.3969/j.issn.1001-9731.2012.13.007
    [19] 孔祥依, 乔妙杰, 张存瑞, 等. 碳纤维表面化学镀电磁屏蔽复合材料的研究进展[J]. 材料导报, 2010, 24(增刊2):356−359.

    Kong X Y, Qiao M J, Zhang C R, et al. Research progress on the metallic carbon fiber reinforced electromagnetic shielding composite[J]. Materials Review, 2010, 24(Suppl.2): 356−359.
    [20] 潘艳飞. 木质纤维素基磁性中空复合材料的制备及其性能研究[D]. 呼和浩特: 内蒙古农业大学, 2016.

    Pan Y F. Preparation and performance of magnetic hollow composite materials based wooden cellulose fibers[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
    [21] Li R, He M, Li T, et al. Preparation and properties of cellulose/silver nanocomposite fibers[J]. Carbohydrate Polymers, 2015, 115: 269−275. doi: 10.1016/j.carbpol.2014.08.046
    [22] Cai J, Kimura S, Wada M, et al. Nanoporous cellulose as metal nanoparticles support[J]. Biomacromolecules, 2009, 10(1): 87−94. doi: 10.1021/bm800919e
    [23] Lambuth A L, Brown C. Electrically conductive lignocellulose particle board: 4906484[P]. 1990-03-06.
    [24] Cheng K B, Ramakrishna S, Lee K C. Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(10): 1039−1045. doi: 10.1016/S1359-835X(00)00071-3
    [25] Kato S, Kurosu H, Murayama T. Production of multilayered wood-based composite materials and electromagnetic shielding properties[J]. Forestry Research Institute Research Report, 1991, 360: 171−184.
    [26] Lu K Y, Fu F, Fu Y J, et al. Study to wood electromagnetic shielding composites laminated with aluminum plates[J]. Advanced Materials Research, 2011, 280: 159−164. doi: 10.4028/www.scientific.net/AMR.280
    [27] Su C W, Yuan Q P, Gan W X, et al. The research on wood fiber/stainless steel net electromagnetic shielding composite board[J]. Key Engineering Materials, 2013, 525−526: 437−440.
    [28] Park J Y, Seo S. Performances improvement of medium density fiberboard by combining with various nonwood materials[J]. Research Reports of the Forestry Research Institute (Korea Republic), 1993, 47: 35−48.
    [29] 思南. 介绍几种木材与无机非金属复合材料[J]. 中国人造板, 2003(3):20−22. doi: 10.3969/j.issn.1673-5064.2003.03.007

    Si N. Several kinds of wood and inorganic nonmetallic composite materials are introduced[J]. China Wood-Based Panels, 2003(3): 20−22. doi: 10.3969/j.issn.1673-5064.2003.03.007
    [30] 李坚, 李桂玲. 金属化木材[J]. 中国木材, 1994(6):19−20.

    Li J, Li G L. Metallized wood[J]. Zhongguo Mucai, 1994(6): 19−20.
    [31] 李坚. 走向21世纪的木质复合材料[J]. 世界林业研究, 1995, 8(3):34−40.

    Li J. Wood-based composite material towards 21th century[J]. World Forestry Research, 1995, 8(3): 34−40.
    [32] 卢灿辉, 陈晓. 利用木材介孔结构制备新型复合材料研究进展[J]. 高分子材料科学与工程, 2003, 19(6):32−36. doi: 10.3321/j.issn:1000-7555.2003.06.008

    Lu C H, Chen X. Advance in novel wood composites based on the mesoporous structures of wood[J]. Polymer Materials Science and Engineering, 2003, 19(6): 32−36. doi: 10.3321/j.issn:1000-7555.2003.06.008
    [33] 周婷婷. 木材金属基处理及涂饰性能的研究[D]. 南京: 南京林业大学, 2011.

    Zhou T T. Study on the metal-base treatment and finishing properties of wood[D]. Nanjing: Nanjing Forestry University, 2011.
    [34] 谢贤清, 张获, 范同祥, 等. 具有网络互穿结构的木质陶瓷复合材料[J]. 材料研究学报, 2002, 16(3):259−262. doi: 10.3321/j.issn:1005-3093.2002.03.008

    Xie X Q, Zhang H, Fan T X, et al. Woodceramics composites with interpenetrating network[J]. Chinese Journal of Materials Research, 2002, 16(3): 259−262. doi: 10.3321/j.issn:1005-3093.2002.03.008
    [35] Kang S G, Park K S, Lee H, et al. Manufacturing and properties of Bi-Sn impregnated wood composites of Juglans nigra[J]. Journal of the Korea Furniture Society, 2011, 22(1): 54−62.
    [36] Park K S, Lee H H, Kang S G. Physico-mechanical properties and optimum manufacturing conditions of Bi-Sn metal alloy impregnated wood composites[J]. Journal of the Korean Wood Science and Technology, 2014, 42(6): 691−699. doi: 10.5658/WOOD.2014.42.6.691
    [37] Park K S, Lee H H. Properties and manufacturing of low melting alloy impregnated wood composites for using domestic thinned logs of Juglans mandshurica[J]. Journal of Agricultural Science, 2010, 37(3): 457−464.
    [38] Park S Y, Kim H M, Kim S Y, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers[J]. Carbon, 2012, 50(13): 4830−4838. doi: 10.1016/j.carbon.2012.06.009
    [39] Amesoder S, Ehrenstein G W. Thermal conductive polymers[J]. Zeitschrift fur Metallkunde, 2003, 94(5): 606−609. doi: 10.3139/146.030606
    [40] Wan J Y, Song J W, Yang Z, et al. Highly anisotropic conductors[J]. Advanced Materials, 2017, 29(41): 1703331. doi: 10.1002/adma.v29.41
    [41] 陈京环, 钱学仁. 磁性木材和磁性木质纤维的制备及应用[J]. 林产工业, 2006, 33(5):8−11. doi: 10.3969/j.issn.1001-5299.2006.05.003

    Chen J H, Qian X R. Preparation and application of magnetic wood and magnetic woody fibers[J]. China Forest Products Industry, 2006, 33(5): 8−11. doi: 10.3969/j.issn.1001-5299.2006.05.003
    [42] Oka H, Hojo A, Osada H, et al. Manufacturing methods and magnetic characteristics of magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2004, 272−276: 2332−2334. doi: 10.1016/j.jmmm.2003.12.1214
    [43] Oka H, Hojo A, Seki K, et al. Wood construction and magnetic characteristics of impregnated type magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2002, 239(1/3): 617−619.
    [44] Merk V, Chanana M, Gierlinger N, et al. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9760−9767.
    [45] Mancosky D G, Lucia L A. A novel and efficient approach for imparting magnetic susceptibility to lignocellulosic fibers[J]. Carbohydrate Polymers, 2005, 59(4): 517−520. doi: 10.1016/j.carbpol.2004.11.026
    [46] 林志远, 吕建雄. 几种木材干燥方法机理及其对木材浸注性的影响[J]. 世界林业研究, 2004, 17(1):25−30. doi: 10.3969/j.issn.1001-4241.2004.01.006

    Lin Z Y, Lü J X. Mechanism of several different drying methods and their effects on liquid impregnation or permeability of wood[J]. World Forestry Research, 2004, 17(1): 25−30. doi: 10.3969/j.issn.1001-4241.2004.01.006
    [47] Torgovnikov G, Vinden P. High-intensity microwave wood modification for increasing permeability[J]. Forest Products Journal, 2009, 59(4): 84−92.
    [48] Torgovnikov G, Vinden P. Microwave wood modification technology and its applications[J]. Forest Products Journal, 2010, 60(2): 173−182. doi: 10.13073/0015-7473-60.2.173
    [49] 周永东, 傅峰, 李贤军, 等. 微波处理对桉木应力及微观构造的影响[J]. 北京林业大学学报, 2009, 31(2):147−150.

    Zhou Y D, Fu F, Li X J, et al. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 147−150.
    [50] Vinden P, Torgovnikov G. 木材微波改性技术[J]. 木材工业, 2001, 15(5):35−36. doi: 10.3969/j.issn.1001-8654.2001.05.012

    Vinden P, Torgovnikov G. Technique of wood microwave modification[J]. China Wood Industry, 2001, 15(5): 35−36. doi: 10.3969/j.issn.1001-8654.2001.05.012
    [51] 林兰英, 何盛, 傅峰, 等. 基于图像处理的微波处理材裂纹评价[J]. 林业科学, 2014, 50(4):84−89.

    Lin L Y, He S, Fu F, et al. Evaluation of the cracks in microwave-treated lumbers based on image processing[J]. Scientia Silvae Sinicae, 2014, 50(4): 84−89.
    [52] 李贤军, 傅峰, 周永东. 高强度微波预处理对桉木渗透性的影响规律[J]. 中南林业科技大学学报, 2011, 31(12):145−149. doi: 10.3969/j.issn.1673-923X.2011.12.026

    Li X J, Fu F, Zhou Y D. Effect of microwave pretreatment on permeability of Eucalyptus wood[J]. Journal of Central South University of Forestry & Technology, 2011, 31(12): 145−149. doi: 10.3969/j.issn.1673-923X.2011.12.026
    [53] 何盛, 傅峰, 林兰英, 等. 微波处理技术在木材功能化改性研究中的应用[J]. 世界林业研究, 2014, 27(1):62−67.

    He S, Fu F, Lin L Y, et al. Research progress in functional modification of microwave treated wood[J]. World Forestry Research, 2014, 27(1): 62−67.
    [54] 何盛, 于辉, 吴再兴, 等. 微波处理对樟子松木材液体浸注性能影响[J]. 微波学报, 2016, 32(6):90−96.

    He S, Yu H, Wu Z X, et al. Effect of microwave treatment on liquid impregnate property of Pinus sylvestris L. var lumber[J]. Journal of Microwaves, 2016, 32(6): 90−96.
    [55] Vinden P, Torgovnikov G, Hann J. Microwave modification of Radiata pine railway sleepers for preservative treatment[J]. European Journal of Wood and Wood Products, 2011, 69(2): 271−279. doi: 10.1007/s00107-010-0428-8
    [56] 司琼, 董发勤. 电磁屏蔽混凝土[J]. 材料导报, 2005, 19(2):57−59, 62. doi: 10.3321/j.issn:1005-023X.2005.02.017

    Si Q, Dong F Q. Electromagnetic shielding concrete[J]. Materials Review, 2005, 19(2): 57−59, 62. doi: 10.3321/j.issn:1005-023X.2005.02.017
    [57] Oka H, Kataoka Y, Osada H, et al. Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): e1028−e1029. doi: 10.1016/j.jmmm.2006.11.073
    [58] 扈花芝. 低温地板辐射采暖系统分析[J]. 建筑工人, 2005(11):34−35. doi: 10.3969/j.issn.1002-3232.2005.11.031

    Hu H Z. Analysis of low temperature radiant floor heating system[J]. Builders’ Monthly, 2005(11): 34−35. doi: 10.3969/j.issn.1002-3232.2005.11.031
    [59] Seo J, Jeon J, Lee J H, et al. Thermal performance analysis according to wood flooring structure for energy conservation in radiant floor heating systems[J]. Energy and Buildings, 2011, 43(8): 2039−2042. doi: 10.1016/j.enbuild.2011.04.019
    [60] 施正宇, 金海明, 叶彬洁,等 . 金属木材混搭的新中式休闲座椅[J]. 大众科技, 2016(12):120−121.

    Shi Z Y, Jin H M, Ye B J, et al. A new Chinese style leisure chair based on metal and wood[J]. Popular Science & Technology, 2016(12): 120−121.
    [61] Sugiyama S, Kiuchi M, Yanagimoto J. Application of semisolid joining-part 4 glass/metal, plastic/metal, or wood/metal joining[J]. Journal of Materials Processing Technology, 2008, 201(1/3): 623−628.
    [62] Onoda K, Aizawa K, Chuang P, et al. Composite metal wood: 20040192468[P]. 2004-09-30.
    [63] Martin A, Le Neillon V, Jouade A, et al. Mechanically reconfigurable radiation pattern slot antenna array feeded by bended sectoral horn and metalized wood splitter[J]. Progress in Electromagnetics Research C, 2017, 72: 159−165. doi: 10.2528/PIERC17010502
    [64] 王悦桐. 木材金属复合管的开发利用[J]. 林业勘查设计, 2001(3):52−54.

    Wang Y T. Development and utilization of wood metal composite pipes[J]. Forest Investigation Design, 2001(3): 52−54.
    [65] 卢克阳, 傅峰. 电磁屏蔽木基复合材料的研究现状和发展趋势[J]. 木材工业, 2007, 21(3):1−3, 7. doi: 10.3969/j.issn.1001-8654.2007.03.001

    Lu K Y, Fu F. Review of research on electromagnetic shielding wood composites[J]. China Wood Industry, 2007, 21(3): 1−3, 7. doi: 10.3969/j.issn.1001-8654.2007.03.001
  • 加载中
图(4)
计量
  • 文章访问数:  3186
  • HTML全文浏览量:  581
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2018-12-18
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回