高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江西九连山不同海拔梯度土壤有机碳的变异规律

张参参 吴小刚 刘斌 施雪文 陈伏生 裘利洪 卜文圣

张参参, 吴小刚, 刘斌, 施雪文, 陈伏生, 裘利洪, 卜文圣. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19-28. doi: 10.13332/j.1000-1522.20180383
引用本文: 张参参, 吴小刚, 刘斌, 施雪文, 陈伏生, 裘利洪, 卜文圣. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19-28. doi: 10.13332/j.1000-1522.20180383
Zhang Cancan, Wu Xiaogang, Liu Bin, Shi Xuewen, Chen Fusheng, Qiu Lihong, Bu Wensheng. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. doi: 10.13332/j.1000-1522.20180383
Citation: Zhang Cancan, Wu Xiaogang, Liu Bin, Shi Xuewen, Chen Fusheng, Qiu Lihong, Bu Wensheng. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. doi: 10.13332/j.1000-1522.20180383

江西九连山不同海拔梯度土壤有机碳的变异规律

doi: 10.13332/j.1000-1522.20180383
基金项目: 

江西省自然科学基金项目 20171BAB214032

国家自然科学基金项目 31730014

国家自然科学基金项目 31760134

详细信息
    作者简介:

    张参参。主要研究方向:森林土壤与植被的关系。Email: brightzcc@163.com  地址: 330045  江西省南昌市经济技术开发区志敏大道1101号

    责任作者:

    卜文圣,博士,助理研究员。主要研究方向:群落结构与动态。Email:bws2007@163.com  地址:同上

  • 中图分类号: S714.2

Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China

  • 摘要: 目的土壤类型、土壤层次及植被类型是土壤有机碳分布格局的重要影响因素,而海拔是对大尺度水热环境条件的再分配,涵盖了土壤类型和植被类型在小尺度上的剧烈变化信息,因而研究不同海拔梯度上土壤有机碳的变异规律对森林生态系统碳汇管理具有重要的意义。方法本研究选择九连山境内不同海拔高度(179~1 430 m)的森林土壤为研究对象,通过分析植被类型、土壤类型、和不同层次的有机碳含量与碳储量等,揭示不同海拔高度有机碳的垂直分布规律及影响因素。结果土壤的前3层(0~40 cm)有机碳含量随着海拔的升高而呈现线性增大的趋势,而第4层(40~60 cm)和第5层(60~100 cm)则随着海拔的升高而逐渐的降低,土壤碳储量与海拔梯度的趋势与土壤有机碳与海拔梯度的趋势基本一致,但总碳储量与海拔梯度的趋势则呈先降低后升高的U形趋势;草甸土的前3层土壤有机碳含量和储量往往高于红壤和黄壤,并且随海拔升高,土壤类型从红壤、黄壤至草甸土的变化过程中,前2层(0~20 cm)有机碳含量和碳储量均存在逐渐上升,而其他层次则无显著差异;高海拔的杜鹃林和高山草甸表层土壤有机碳含量和碳储量往往高于较低海拔的其他植被类型,而高山草甸和次生阔叶林的0~100 cm总碳储量较高。结论土壤表层和植被类型的变化可能是导致九连山不同海拔梯度土壤有机碳变异规律的主要原因。在全球气候变暖的情形下,高海拔地区的表层土壤可能随着温度的上升而增加碳排放。

     

  • 图  1  不同土壤层次有机碳含量和碳储量随海拔梯度的变化规律

    L代表 0~100 cm土壤层;L1代表 0~10 cm土壤层;L2代表 10~20 cm土壤层;L3代表 20~40 cm土壤层;L4代表 40~60 cm土壤层;L5代表 60~100 cm土壤层。

    Figure  1.  Variations of organic carbon content and carbon storage for different soil layers along an altitudinal gradient

    L indicates 0-100 cm soil layer; L1 indicates 0-10 cm soil layer; L2 indicates 10-20 cm soil layer; L3 indicates 20-40 cm soil layer; L4 indicates 40-60 cm soil layer; L5 indicates 60-100 cm soil layer.

    图  2  总碳储量随海拔梯度的变化规律

    Figure  2.  Variations of carbon storage along an altitudinal gradient

    图  3  不同土壤层次有机碳含量和碳储量随土壤类型的变化规律

    L代表 0~100 cm土壤层;L1代表 0~10 cm土壤层;L2代表 10~20 cm土壤层;L3代表 20~40 cm土壤层;L4代表 40~60 cm土壤层;L5代表 60~100 cm土壤层;不同小写字母代表同一土层不同土壤类型之间的差异。下同。

    Figure  3.  Variations of organic carbon content and carbon storage for different soil layers across different soil types

    L indicates 0-100 cm soil layer; L1 indicates 0-10 cm soil layer; L2 indicates 10-20 cm soil layer; L3 indicates 20-40 cm soil layer; L4 indicates 40-60 cm soil layer; L5 indicates 60-100 cm soil layer; different lowercase letters indicate the difference within soil layer between different zones of nature reserve. The same below.

    图  4  不同土壤层次有机碳含量随植被类型的变化规律

    Figure  4.  Variations of organic carbon content for different soil layers across different vegetation types

    图  5  不同土壤层次碳储量随植被类型的变化规律

    Figure  5.  Variations of carbon storage for different soil layers across different vegetation types

    表  1  样地基本情况表

    Table  1.   Brief conditions of sample plots

    样地编号
    Sample plot No.
    海拔
    Elevation/m
    坡度
    Slope degree/(°)
    坡向
    Slope aspect
    土壤类型
    Soil type
    植被类型
    Vegetation type
    1 179 20 东East 红壤Red soil 竹林Bamboo forest
    2 235 28 西West 黄壤Yellow soil 人工林Plantation
    3 385 10 东南Southeast 红壤Red soil 次生阔叶林Secondary broadleaved forest
    4 488 25 西北Northwest 黄壤Yellow soil 次生阔叶林Secondary broadleaved forest
    5 490 5 西West 红壤Red soil 次生阔叶林Secondary broadleaved forest
    6 505 32 西南Southwest 黄壤Yellow soil 人工林Plantation
    7 575 20 东南Southeast 红壤Red soil 人工林Plantation
    8 600 30 西West 红壤Red soil 竹林Bamboo forest
    9 650 26 西West 红壤Red soil 人工林Plantation
    10 693 30 西北Northwest 红壤Red soil 常绿阔叶林Evergreen broadleaved forest
    11 734 28 西南Southwest 红壤Red soil 竹林Bamboo forest
    12 800 17 东南Southeast 红壤Red soil 人工林Plantation
    13 808 26 北North 红壤Red soil 常绿阔叶林Evergreen broadleaved forest
    14 830 28 西West 红壤Red soil 常绿阔叶林Evergreen broadleaved forest
    15 954 27 北North 红壤Red soil 常绿阔叶林Evergreen broadleaved forest
    16 1 070 28 北North 草甸土Meadow soil 杜鹃林Rhododendron forest
    17 1 170 22 东北Northeast 草甸土Meadow soil 杜鹃林Rhododendron forest
    18 1 270 32 东北Northeast 草甸土Meadow soil 杜鹃林Rhododendron forest
    19 1 360 22 东北Northeast 草甸土Meadow soil 高山草甸Alpine meadow
    20 1 410 24 北North 草甸土Meadow soil 高山草甸Alpine meadow
    下载: 导出CSV

    表  2  双因素方差分析表

    Table  2.   Results of two-way ANOVA

    土壤指标
    Soil index
    因素Factor 自由度
    Freedom
    F
    F value
    P
    P value
    有机碳含量Organic carbon content 土壤类型Soil type 2 14.9 < 0.001
    土壤层次Soil layer 4 57.7 < 0.001
    土壤类型×土壤层次Soil type×soil layer 8 7.3 < 0.001
    植被类型Vegetation type 5 6.9 < 0.001
    土壤层次Soil layer 4 55.73 < 0.001
    植被类型×土壤层次Vegetation type×soil layer 20 3.14 < 0.001
    碳储量Carbon storage 土壤类型Soil type 2 2.54 0.08
    土壤层次Soil layer 4 7.2 < 0.001
    土壤类型×土壤层次Soil type× soil layer 8 9.2 < 0.001
    植被类型Vegetation type 5 4.41 0.002
    土壤层次Soil layer 4 8.25 < 0.001
    植被类型×土壤层次Vegetation type×soil layer 20 4.79 < 0.001
    下载: 导出CSV
  • [1] Sakschewski B, Von Bloh W, Boit A, et al. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change, 2016, 6(11): 1032-1036. doi: 10.1038/nclimate3109
    [2] Jackson R B, Lajtha K, Crow S E, et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48:419-445. doi: 10.1146/annurev-ecolsys-112414-054234
    [3] Lal R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123:1-22. doi: 10.1016/j.geoderma.2004.01.032
    [4] Purton K, Dan P, Leinweber P, et al. Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence[J]. Geoderma, 2015, 253-254:48-60. doi: 10.1016/j.geoderma.2015.04.007
    [5] Melillo J M, Frey S D, Deangelis K M, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science, 2017, 358:101-105. doi: 10.1126/science.aan2874
    [6] Jmo S, Hall D O. The global carbon sink: a grassland perspective[J]. Global Change Biology, 2010, 4(2):229-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6c9852e7a49e5082b1a237adc936ee0
    [7] 张仲胜, 李敏, 宋晓林, 等.气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展[J].土壤学报, 2018, 55(2):273-282. http://d.old.wanfangdata.com.cn/Periodical/trxb201802002

    Zhang Z S, Li M, Song X L, et al. Effects of climate change on molecular structure and stability of soil carbon pool: a general review[J]. Acta Pedologica Sinica, 2018, 55(2):273-282. http://d.old.wanfangdata.com.cn/Periodical/trxb201802002
    [8] 胡慧蓉, 马焕成, 罗承德, 等.森林土壤有机碳分组及其测定方法[J].土壤通报, 2010, 41(4):1018-1024. http://d.old.wanfangdata.com.cn/Periodical/trtb201004049

    Hu H R, Ma H C, Luo C D, et al. Forest soil organic carbon fraction and its measure methods[J]. Chinese Journal of Soil Science, 2010, 41(4):1018-1024. http://d.old.wanfangdata.com.cn/Periodical/trtb201004049
    [9] 魏孝荣, 邵明安, 高建伦.黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J].环境科学, 2008, 29(10):2879-2884. doi: 10.3321/j.issn:0250-3301.2008.10.034

    Wei X R, Shao M A, Gao J L. Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau[J]. Environmental Science, 2008, 29(10):2879-2884. doi: 10.3321/j.issn:0250-3301.2008.10.034
    [10] 王岩松, 李梦迪, 朱连奇.土壤有机碳库及其影响因素的研究进展[J].中国农学通报, 2015, 31(32):123-131. doi: 10.11924/j.issn.1000-6850.casb15060134

    Wang Y S, Li M D, Zhu L Q. Research process of soil organic carbon storage and its influencing factors[J]. Chinese Agricultural Science Bulletin, 2015, 31(32):123-131. doi: 10.11924/j.issn.1000-6850.casb15060134
    [11] 王晶, 何忠俊, 王立东, 等.高黎贡山土壤腐殖质特性与团聚体数量特征研究[J].土壤学报, 2010, 47(4):723-733. http://d.old.wanfangdata.com.cn/Periodical/trxb201004019

    Wang J, He Z J, Wang L D, et al. Properties of humus and content of soil aggregates in soil on Gaoligong Mountain[J]. Acta Pedologica Sinica, 2010, 47(4):723-733. http://d.old.wanfangdata.com.cn/Periodical/trxb201004019
    [12] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 2014, 47: 151-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a31f8d98465acccbf7a8232d9809dc2a
    [13] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [14] 毕珍, 石辉, 许五弟, 等.四川盆地森林土壤的有机碳储量及其空间分布特征[J].水土保持研究, 2009, 16(5):83-87. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200905017

    Bi Z, Shi H, Xu W D, et al. Forest soil organic carbon storage and characteristics of spatial distribution in Sichuan Basin[J]. Research of Soil and Water Conservation, 2009, 16(5):83-87. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200905017
    [15] 刘亚兰, 郭汝清, 孙书存.中国亚热带山地植被垂直带分布对气候季节性的响应[J].生态学报, 2010, 30(14):3912-3922. http://d.old.wanfangdata.com.cn/Periodical/stxb201014029

    Liu Y L, Guo R Q, Sun S C. Variations in the vertical vegetation zonation of subtropical Chinese mountains: the importance of climatic seasonality[J]. Acta Ecologica Sinica, 2010, 30(14):3912-3922. http://d.old.wanfangdata.com.cn/Periodical/stxb201014029
    [16] 周广胜, 张新时.全球变化的中国气候-植被分类研究[J].植物学报, 1996, 38(1):8-17. doi: 10.3321/j.issn:1000-4025.1996.01.002

    Zhou G S, Zhang X S. Study on climate-vegetation classification for global change in China[J]. Acta Botanica Sinica, 1996, 38(1):8-17. doi: 10.3321/j.issn:1000-4025.1996.01.002
    [17] 吴雅琼, 刘国华, 傅伯杰, 等.森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J].生态学报, 2007, 27(11):4678-4685. doi: 10.3321/j.issn:1000-0933.2007.11.036

    Wu Y Q, Liu G H, Fu B J, et al. Soil CO2 emission distribution along an elevation gradient and the controlling factors in the forest ecosystem[J]. Acta Ecologica Sinica, 2007, 27(11):4678-4685. doi: 10.3321/j.issn:1000-0933.2007.11.036
    [18] 吴建国, 艾丽, 田自强, 等.祁连山中部土壤颗粒组分有机质碳含量及其与海拔和植被的关系[J].生态环境学报, 2008, 17(6):2358-2365. doi: 10.3969/j.issn.1674-5906.2008.06.047

    Wu J G, Ai L, Tian Z Q, et al. The soil particulate organic carbon in different elevation and its relationship with vegetation in Qilian Mountain[J]. Ecology and Environment, 2008, 17(6):2358-2365. doi: 10.3969/j.issn.1674-5906.2008.06.047
    [19] 刘迎春, 于贵瑞, 王秋凤, 等.基于成熟林生物量整合分析中国森林碳容量和固碳潜力[J].中国科学:生命科学, 2015, 45(2): 210-222 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201502011

    Liu Y C, Yu G R, Wang Q F, et al. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass[J]. Scientia Sinica Vitae, 2015, 45(2): 1218-1229. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201502011
    [20] 邸月宝, 王辉民, 马泽清, 等.亚热带森林生态系统不同重建方式下碳储量及其分配格局[J].科学通报, 2012, 57(17):1553-1561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201217006

    Di Y B, Wang H M, Ma Z Q, et al. Carbon storage and its allocation pattern of forest ecosystems with different restoration methods in subtropical China[J]. Chinese Science Bulletin, 2012, 57(17):1553-1561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201217006
    [21] 杜有新, 吴从建, 周赛霞, 等.庐山不同海拔森林土壤有机碳密度及分布特征[J].应用生态学报, 2011, 22(7):1675-1681. http://d.old.wanfangdata.com.cn/Periodical/yystxb201107003

    Du Y X, Wu C J, Zhou S X, et al. Forest soil organic carbon density and its distribution characteristics along an altitudinal gradient in Lushan Moutain of China[J]. Chinese Journal of Applied Ecology, 2011, 22(7):1675-1681. http://d.old.wanfangdata.com.cn/Periodical/yystxb201107003
    [22] 柯娴氡, 张璐, 苏志尧.粤北亚热带山地森林土壤有机碳沿海拔梯度的变化[J].生态与农村环境学报, 2012, 28(2):151-156. doi: 10.3969/j.issn.1673-4831.2012.02.007

    Ke X D, Zhang L, Su Z Y. Variation of soil organic carbon content along altitudinal gradient in subtropical montane forest in North Guangdong[J]. Journal of Ecology and Rural Environment, 2012, 28(2):151-156. doi: 10.3969/j.issn.1673-4831.2012.02.007
    [23] 程浩, 张厚喜, 黄智军, 等.武夷山不同海拔高度土壤有机碳含量变化特征[J].森林与环境学报, 2018, 38(2): 1-8. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201802002

    Cheng H, Zhang H X, Huang Z J, et al. Variations of soil organic carbon content along an altitudinal gradient in Wuyi Mountain[J]. Journal of Forest and Environment, 2018, 38(2): 1-8. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201802002
    [24] Townsend A R, Vitousek P M, Trumbore S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J]. Ecology, 1995, 76(3):721-733. doi: 10.2307/1939339
    [25] 韩广轩, 周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望[J].植物生态学报, 2009, 33(1):197-205. doi: 10.3773/j.issn.1005-264x.2009.01.022

    Han G X, Zhou G S. Review of spatial and temporal variations of soil respiration and driving mechanism[J]. Chinese Journal of Plant Ecology, 2009, 33(1):197-205. doi: 10.3773/j.issn.1005-264x.2009.01.022
    [26] Asner N G P. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model[J]. Ecosystems, 2001, 4(1):29-48. doi: 10.1007/s100210000058
    [27] 丁虎, 郎赟超, 刘丛强.土壤碳淋溶流失研究进展[J].地球与环境, 2016, 44(1):139-146. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201601019

    Ding H, Lang Y C, Liu C Q. Advances in study on leaching loss of carbon from soil[J]. Earth and Environment, 2016, 44(1):139-146. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201601019
    [28] 杨元根, 刘丛强, 袁可能, 等.南方红土形成过程及其稀土元素地球化学[J].第四纪研究, 2000, 20(5):469-480. doi: 10.3321/j.issn:1001-7410.2000.05.008

    Yang Y G, Liu C Q, Yuan K N, et al. Laterite formation process in southern China and its rare earth element (REE) geochemistry[J]. Quaternary Sciences, 2000, 20(5):469-480. doi: 10.3321/j.issn:1001-7410.2000.05.008
    [29] 徐秋芳, 姜培坤, 沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报, 2005, 27(2):18-22. http://j.bjfu.edu.cn/article/id/9294

    Xu Q F, Jiang P K, Shen Q. Comparison of organic carbon pool of soil in bush and broad-leaved forests[J]. Journal of Beijing Forestry University, 2005, 27(2):18-22. http://j.bjfu.edu.cn/article/id/9294
    [30] 张鹏, 张涛, 陈年来.祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J].应用生态学报, 2009, 20(3):518-524. http://d.old.wanfangdata.com.cn/Periodical/yystxb200903006

    Zhang P, Zhang T, Chen N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(3):518-524. http://d.old.wanfangdata.com.cn/Periodical/yystxb200903006
    [31] 向慧敏, 温达志, 张玲玲, 等.鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J].生态学报, 2015, 35(18):6089-6099. http://d.old.wanfangdata.com.cn/Periodical/stxb201518020

    Xiang H M, Wen D Z, Zhang L L, et al. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains[J]. Acta Ecologica Sinica, 2015, 35(18):6089-6099. http://d.old.wanfangdata.com.cn/Periodical/stxb201518020
    [32] 郭鑫, 吴鹏, 韩威, 等.演替和气候对阔叶红松林土壤有机碳密度的影响[J].北京林业大学学报, 2016, 38(7):55-63. doi: 10.13332/j.1000-1522.20160060

    Guo X, Wu P, Han W, et al. The influence of succession stages and climate on soil organic carbon density of broad-leaved Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(7):55-63. doi: 10.13332/j.1000-1522.20160060
    [33] 吕超群, 孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报, 2004, 28(5):692-703. doi: 10.3321/j.issn:1005-264X.2004.05.016

    Lü C Q, Sun S C. A review on the distribution patterns of carbon density in terrestrial ecosystem[J]. Chinese Journal of Plant Ecology, 2004, 28(5):692-703. doi: 10.3321/j.issn:1005-264X.2004.05.016
    [34] 王清奎, 汪思龙, 冯宗炜.杉木纯林与常绿阔叶林土壤活性有机碳库的比较[J].北京林业大学学报, 2006, 28(5):1-6. doi: 10.3321/j.issn:1000-1522.2006.05.001

    Wang Q K, Wang S L, Feng Z W. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5):1-6. doi: 10.3321/j.issn:1000-1522.2006.05.001
    [35] 聂阳意, 王海华, 金昌善, 等.武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J].应用生态学报, 2018, 29(3):748-756. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201803008.htm

    Nie Y Y, Wang H H, Jin C S, et al. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China[J]. Chinese Journal of Applied Ecology, 2018, 29(3):748-756. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201803008.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  936
  • HTML全文浏览量:  309
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2018-12-16
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回