高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阔叶红松混交林不同大小林隙地表温度和浅层土壤温度的时空异质性

段文标 郭绮雯 陈立新 冯静 王丽霞 杜珊

段文标, 郭绮雯, 陈立新, 冯静, 王丽霞, 杜珊. 阔叶红松混交林不同大小林隙地表温度和浅层土壤温度的时空异质性[J]. 北京林业大学学报, 2019, 41(9): 108-121. doi: 10.13332/j.1000-1522.20180390
引用本文: 段文标, 郭绮雯, 陈立新, 冯静, 王丽霞, 杜珊. 阔叶红松混交林不同大小林隙地表温度和浅层土壤温度的时空异质性[J]. 北京林业大学学报, 2019, 41(9): 108-121. doi: 10.13332/j.1000-1522.20180390
Duan Wenbiao, Guo Qiwen, Chen Lixin, Feng Jing, Wang Lixia, Du Shan. Heterogeneity of soil surface temperature and shallow soil temperature in different size gaps of broadleaved Pinus koraiensis forest[J]. Journal of Beijing Forestry University, 2019, 41(9): 108-121. doi: 10.13332/j.1000-1522.20180390
Citation: Duan Wenbiao, Guo Qiwen, Chen Lixin, Feng Jing, Wang Lixia, Du Shan. Heterogeneity of soil surface temperature and shallow soil temperature in different size gaps of broadleaved Pinus koraiensis forest[J]. Journal of Beijing Forestry University, 2019, 41(9): 108-121. doi: 10.13332/j.1000-1522.20180390

阔叶红松混交林不同大小林隙地表温度和浅层土壤温度的时空异质性

doi: 10.13332/j.1000-1522.20180390
基金项目: 国家自然基金项目(31670627、31770656)
详细信息
    作者简介:

    段文标,教授,博士生导师。主要研究方向:森林气象学、水土保持。Email:dwbiao88@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院主西614

    责任作者:

    陈立新,教授,博士生导师。主要研究方向:森林土壤、植物营养、林地养分管理。Email:lxchen88@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院土壤研究室

Heterogeneity of soil surface temperature and shallow soil temperature in different size gaps of broadleaved Pinus koraiensis forest

  • 摘要: 目的探究不同大小林隙地表温度和浅层土壤温度的动态变化特征,为阔叶红松混交林苗木更新、生物多样性维持及生态环境的恢复提供理论依据。方法以小兴安岭阔叶红松林中林隙和小林隙为研究对象,采用网格法和十字样线法分别布设地表温度表和土壤温度表观测样点,在植物生长季测定了两个林隙的地表温度、地表最低和地表最高温度以及浅层(5、10、15和20 cm)土壤温度,采用经典统计学与地统计学对地表温度和土壤温度进行测量及时空异质性的分析。结果(1)地表温度和地表最高温度在生长季内(6—9月)的月变化均表现为先升后降的单峰型曲线分布,且7月达到最大值。地表温度的升温速率高于降温速率,升温幅度大,降温幅度小。(2)不同样地间地面最高温度与地面温度的变化相同,生长季内(6—9月)地面温度变化为:中林隙 > 小林隙 > 郁闭林分,最低温度变化为:中林隙 < 小林隙 < 郁闭林分。(3)各月份林隙土壤温度空间变异程度不同,6月和9月变异程度较7月和8月有所增加;随着土层深度增加,土壤温度的变异减小。(4)林隙日均地表温度和日均土壤温度均较郁闭林分高,且林隙土壤温度的最大值区域随时间出现动态变化。林隙中心地表温度和土壤温度极其日较差均高于郁闭林分。中、小林隙各土层温度差并无明显差异。(5)7月和8月土壤温度均呈较弱变异,6月和9月部分呈中等变异。结论地表温度和浅层土壤温度在不同月份均呈现出不同的变化趋势,生长季(6—9月)的地表温度与土壤温度恰恰是苗木更新及种子萌发的关键条件之一,本文旨在对群落演替和种群动态研究提供基础性数据。

     

  • 图  1  中、小林隙形状及观测样点分布示意图

    ☆代表林隙中心位置,A和B中○分别代表中、小林隙地表温度的观测样点,C和D中●分别代表中、小林隙土壤温度的观测样点. ☆ represents the gap center position, ○ in A and B represents observation point of ground temperature, ● in C and D represents observation point of soil temperature.

    Figure  1.  Schematic diagram of the shapes of medium and small gaps and the distribution of observation sample points

    图  2  不同大小林隙6—9月地表温度的日变化

    Figure  2.  Diurnal variations in ground temperature for different size of gaps during June and September

    图  3  6—9月中、小林隙地表平均温度的等值线图

    Figure  3.  Contour map of the ground temperature in the medium and small gaps between June and September

    图  4  6—9月中、小林隙地表最高温度的等值线图

    Figure  4.  Contour map of the maximum ground temperature in gaps during June to September

    图  5  6—9月中、小林隙地表最低温度的等值线图

    Figure  5.  Contour map of the minimum ground temperature in gaps during June to September

    图  6  6—9月中、小林隙地表温度日较差的等值线图

    Figure  6.  Contour map of the daily range of ground temperature in gaps during June to September

    表  1  各样地基本特征

    Table  1.   Basic features of various sample plots

    样地
    Sample plot
    扩展林隙面积
    Expanded gap area/m2
    H/D 坡度
    Slope
    degree/(°)
    坡向
    Slope aspect
    坡位
    Slope position
    海拔
    Altitude/m
    林隙形成方式
    Gap formation
    mode
    林隙形成木
    Gap maker
    边缘木树种组成
    Species composition of
    edge tree species
    郁闭林分
    Closed stand
    5
    South
    中上部
    Middle-upper part
    640 红松、冷杉、臭松、枫桦、槺椴
    Pinus koraiensis, Abies fabri, Pinus sylvestris, Betula platyphylla, Tilia amurensis
    小林隙
    Small gap
    228.74 2:1 4
    South
    中上部
    Middle-upper part
    642  树倒
     Trees falling
    红松
    Pinus koraiensis
    红松、槺椴、冷杉
    Pinus koraiensis, Tilia mandshurica, Abies fabri
    中林隙
    Medium gap
    812.79 1:1 6
    South
    中上部
    Middle-upper part
    638  树倒、折干
     Trees falling
     and break
    红松、枫桦
    Pinus koraiensis,
    Betula costata
    红松、冷杉、枫桦
    Pinus koraiensis, Abies fabri, Betula costata
    注:H为树高;D为林隙直径。Notes: H, tree height; D, gap diamter.
    下载: 导出CSV

    表  2  6—9月阔叶红松混交林林隙及郁闭林分地表温度的描述性统计

    Table  2.   Descriptive statistics of ground temperature in gaps and closed-stands of Pinus koraiensis-dominated broadleaved mixed forest during June and September

    月份 Month 林隙大小 Gap size 均值 ± 标准差 Mean ± SD/℃ 极小值 Minimum/℃ 极大值 Maximum/℃ 方差 Variance 变异系数 CV
    6月 June 中林隙 Medium gap 21.4 ± 4.3ab 11.2 37.3 18.8 20.1
    小林隙 Small gap 21.2 ± 3.6ab 17.2 30.2 13.0 17.0
    郁闭林分 Closed stand 20.4 ± 2.6bc 17.5 26.3 6.9 12.7
    7月 July 中林隙 Medium gap 23.8 ± 2.4a 16.4 54.5 5.9 10.1
    小林隙 Small gap 23.3 ± 2.2a 17.0 50.0 4.9 9.4
    郁闭林分 Closed stand 20.5 ± 2.0bc 18.2 28.0 4.1 9.8
    8月 August 中林隙 Medium gap 19.1 ± 3.0bc 13.0 32.0 9.0 15.7
    小林隙 Small gap 18.7 ± 2.1bc 16.5 29.7 4.4 11.2
    郁闭林分 Closed stand 16.5 ± 2.0c 16.9 26.0 4.0 12.1
    9月 September 中林隙 Medium gap 17.5 ± 3.2c 9.9 30.8 10.2 18.3
    小林隙 Small gap 17.2 ± 2.8c 10.7 26.5 7.9 16.3
    郁闭林分 Closed stand 15.6 ± 2.3c 11.2 21.5 5.3 14.7
    注:同列不同字母表示差异显著(P < 0.05)。Note: different letters in the same column show significant difference (P < 0.05).
    下载: 导出CSV

    表  3  6—9月中、小林隙土壤含水量变异函数理论模型及其参数

    Table  3.   Theoretical models and their parameters of soil water content in the medium and small gap during June and September

    样地
    Sample plot
    月份
    Month
    模型
    Model
    块金值
    Nugget (C0)
    基台值
    Sill (C0 +C)
    变程
    Variable range/m
    结构比
    Structural ratio
    C/ (C0 + C)
    R2 残差平方和
    Residual sum
    of squares
    分维数
    Fractal dimension
    (D0)
    中林隙
    Medium gap
     6月 June Sph. 0.142 1.011 11.75 0.860 0.072 0.096 1.962
     7月 July Sph. 0.096 1.005 8.39 0.904 0 0.139 1.918
     8月 August Sph. 0.168 1.042 14.16 0.839 0.575 0.021 1.949
     9月 September Lin. 0.563 1.296 36.77 0.566 0.888 0.024 1.830
    小林隙
    Small gap
     6月 June Sph. 0.147 1.027 8.22 0.857 0.125 0.042 1.997
     7月 July Sph. 0.001 1.230 12.36 0.999 0.974 0.004 1.783
     8月 August Exp. 0.352 1.226 16.29 0.713 0.999 0 1.881
     9月 September Lin. 0.763 1.007 16.30 0.242 0.992 0.001 1.937
    注:Sph. 代表球状模型,Exp. 代表指数模型,Lin. 代表线性模型。Notes: Sph. represents spherical model, Exp. represents exponential model, and Lin. Represents linear model.
    下载: 导出CSV

    表  4  6—9月阔叶红松混交林林隙各土层土壤温度的描述性统计表

    Table  4.   Descriptive statistical table of soil temperature in gaps of broadleaved Korean pine mixed forest from June to September

    月份
    Month
    林隙
    Gap
    土层
    Soil layer/cm
    均值
    Mean/℃
    极小值
    Minimum value/℃
    极大值
    Maximum value/℃
    变异系数
    CV/%
    温度差
    Temperature difference/℃
    6月 June 中林隙
    Medium gap
    5 18.9 ± 1.5a 12.2 23 12.48 2.7
    10 16.2 ± 1.6c 9.5 20.7 17.73 0.8
    15 15.4 ± 1.8b 9 20 14.46 0.3
    20 15.1 ± 1.8b 8 19.5 18.01
    小林隙
    Small gap
    5 18.3 ± 1.6a 13 22.3 11.44 2.1
    10 16.2 ± 1.6c 12 20.7 9.93 1.1
    15 15.1 ± 1.8b 11.5 18.6 8.42 0.9
    20 14.2 ± 1.7b 11 16.8 8.23
    7月 July 中林隙
    Medium gap
    5 19.3 ± 2.7a 15.8 25.2 7.52 1.3
    10 18.0 ± 3.3a 15.2 21.5 5.87 0.8
    15 17.2 ± 3.78a 14.2 20 6.4 0.4
    20 16.8 ± 4.0a 13.6 19.7 6.63
    小林隙
    Small gap
    5 18.8 ± 2.6a 15.7 25 7.14 1.2
    10 17.6 ± 3.2a 15.3 22 5.46 0.7
    15 16.9 ± 3.7a 14.5 18.5 4.55 0.4
    20 16.5 ± 3.9a 14.3 18 4.2
    8月 August 中林隙
    Medium gap
    5 17.2 ± 2.0a 15.2 21.3 9.53 0.8
    10 16.4 ± 2.6a 14.8 19.3 6.89 0.5
    15 15.9 ± 3.1a 14 18.6 6.16 0.3
    20 15.6 ± 4.2a 13.3 17.8 5.29
    小林隙
    Small gap
    5 16.8 ± 2.0b 14.8 20.3 8.59 0.7
    10 16.1 ± 2.6b 14.3 19.2 6.3 0.4
    15 15.7 ± 3.1b 14 18.1 5.13 0.1
    20 15.6 ± 4.2a 13.3 17.4 3.74
    9月 September 中林隙
    Medium gap
    5 15.5 ± 1.7b 11.8 18.8 10.85 0.6
    10 14.9 ± 2.8b 12.3 17.7 7.16 0.3
    15 14.6 ± 4.1b 12.9 17 5.43 0.1
    20 14.5 ± 6.1b 13 16.5 4.25
    小林隙
    Small gap
    5 15.1 ± 1.6 11.7 18.5 9.29 0.5
    10 14.6 ± 2.7 12.5 17 5.37 0.2
    15 14.4 ± 4.0 13.4 16 3.58 0.1
    20 14.3 ± 6.0 13 15.5 2.38
    注:同列不同字母表示差异显著(P < 0.05)。Note: different letters in the same column show significant difference (P < 0.05).
    下载: 导出CSV
  • [1] 夏冰, 邓飞, 贺善安. 林窗研究进展[J]. 植物资源与环境, 1997, 6(4):50−57.

    Xia B, Deng F, He S A. Advances on the forest gap studies[J]. Journal of Plant Resources and Environment, 1997, 6(4): 50−57.
    [2] 刘少冲, 陈立新, 段文标, 等. 影响不同林型天然红松混交林林隙更新的土壤特征因子[J]. 生态学报, 2017, 37(12):4072−4083.

    Liu S C, Chen L X, Duan W B, et al. Effects of soil characteristics on forest gap regeneration in different types of natural Pinus koraiensis mixed forest[J]. Acta Ecologica Sinica, 2017, 37(12): 4072−4083.
    [3] He Z S, Wang L J, Jiang L. Effect of Microenvironment on species distribution patterns in the regeneration layer of forest gaps and non-gaps in a subtropical natural forest, China[J]. Forests, 2019, 10(2): 90−102. doi: 10.3390/f10020090
    [4] Zhang T, Yan Q L, Wang, J. Restoring temperate secondary forests by promoting sprout regeneration: effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance[J]. Forest Ecology and Management, 2018, 429: 267−277. doi: 10.1016/j.foreco.2018.07.025
    [5] 李猛, 刘洋, 段文标, 等. 红松阔叶混交林林隙浅层土壤温度的异质性[J]. 生态学杂志, 2013, 32(2):319−324.

    Li M, Liu Y, Duan W B, et al. Heterogeneity of shallow soil temperature in the forest gaps of Pinus koraiensis-dominated broadleaved mixed forest[J]. Chinese Journal of Ecology, 2013, 32(2): 319−324.
    [6] 张宏, 史培军, 郑秋红, 等. 半干旱地区天然草地灌丛化与土壤异质性关系研究进展[J]. 植物生态学报, 2001, 25(3):366−370. doi: 10.3321/j.issn:1005-264X.2001.03.017

    Zhang H, Shi P J, Zheng Q H, et al. Research progress in relationship between shrub invasion and soil heterogeneity in a natural semiarid grassland[J]. Acta Phytoecologica Sinica, 2001, 25(3): 366−370. doi: 10.3321/j.issn:1005-264X.2001.03.017
    [7] Duan R Y, Huang M Y, Wang X A. The distribution pattern of different patch types and heterogeneity of the light and temperature: Larix chinensis Beissn in Qinling Mountains (China)[J]. Russian Journal of Ecology, 2014, 45(3): 209−214. doi: 10.1134/S1067413614030096
    [8] Ellner S P. Habitat structure and population persistence in an experimental community[J]. Nature, 2001, 412: 538−543. doi: 10.1038/35087580
    [9] 吴刚. 长白山红松阔叶林林冠空隙特征的研究[J]. 应用生态学报, 1997, 8(4):360−364. doi: 10.3321/j.issn:1001-9332.1997.04.005

    Wu G. Characteristics of gap in Korean pine broad-leaved forest in Changbai mounatin[J]. Chinese Journal of Applied Ecology, 1997, 8(4): 360−364. doi: 10.3321/j.issn:1001-9332.1997.04.005
    [10] Popma J, Bongers F. The effect of canopy gaps on growth and morphology of seedlings of rain forest species[J]. Oecologia, 1988, 75(4): 625−632. doi: 10.1007/BF00776429
    [11] Gravel D, Canham C D, Beaudet M, et al. Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees[J]. Oikos, 2010, 119(3): 475−484. doi: 10.1111/more.2009.119.issue-3
    [12] Bongers F, Popma J. Leaf dynamics of seedlings of rain-forest species in relation to canopy gaps[J]. Oecologia, 1990, 82(1): 122−127. doi: 10.1007/BF00318543
    [13] Jurij D, Tomaz A, Andrej R, et al. Gap recruitment and partitioning in an old-growth beech forest of the dinaric mountains: influences of light regime, herb competition and browsing[J]. Forest Ecology and Management, 2012, 8(10): 20−28.
    [14] 段文标, 王晶, 陈立新, 等. 红松阔叶混交林不同大小林隙小气候特征[J]. 应用生态学报, 2008, 19(12):2561−2566.

    Duan W B, Wang J, Chen L X, et al. Microclimatic characteristics of different size gaps in Pinus koraiensis-dominated broadleaved mixed forest[J]. Chinese Journal of Applied Ecology, 2008, 19(12): 2561−2566.
    [15] 刘少冲, 段文标, 陈立新, 等. 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化[J]. 水土保持学报, 2012, 26(5):78−83.

    Liu S C, Duan W B, et al. Dynamic Changes in Soil Temperature, Water Content, Nutrition and Microorganisms of Different Size Gaps in the mixed broad-leaved Korean Pine Forest[J]. Journal of Soil and Water Conservation, 2012, 26(5): 78−83.
    [16] 高举明, 张一平, 于贵瑞, 等. 西双版纳热带季节雨林地温特征[J]. 生态学杂志, 2008, 27(6):880−887.

    Gao J M, Zhang Y P, Yu G R, et al. Characteristics of soil temperature in tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Chinese Journal of Ecology, 2008, 27(6): 880−887.
    [17] Zhu J J, Tan H, Li F Q, et al. Microclimate regimes following gap formation in a montane secondary forest of eastern Liaoning Province, China[J]. Journal of Forestry Research, 2007, 18(3): 167−173, 249. doi: 10.1007/s11676-007-0035-7
    [18] 刘文杰, 李庆军, 张光明, 等. 西双版纳望天树林林窗小气候特征研究[J]. 植物生态学报, 2000, 24(3):356−361. doi: 10.3321/j.issn:1005-264X.2000.03.019

    Liu W J, Li Q J, Zhang G M, et al. Microclimatic characteristics of canopy gaps in Shorea chinensis forest in Xishuangbanna[J]. Acta Phytoecologica Sinica, 2000, 24(3): 356−361. doi: 10.3321/j.issn:1005-264X.2000.03.019
    [19] 刘文杰, 李庆军, 张光明, 等. 西双版纳望天树林干热季不同林窗间的小气候差异[J]. 生态学报, 2000, 20(6):932−937. doi: 10.3321/j.issn:1000-0933.2000.06.005

    Liu W J, Li Q J, Zhang G M, et al. The microclimatic differences between and within canopy gaps in the dry-hot season in Shorea chinensis forest[J]. Acta Ecologica Sinica, 2000, 20(6): 932−937. doi: 10.3321/j.issn:1000-0933.2000.06.005
    [20] 朱教君, 刘世荣. 森林干扰生态研究[M]. 北京: 中国林业出版社, 2007.

    Zhu J J, Liu S R. Ecological research on forest disturbance[M]. Beijing: China Forestry Press, 2007.
    [21] 李岩, 段文标, 陈立新, 等. 阔叶红松林林隙地面温度微环境变异特征[J]. 中国水土保持科学, 2007, 5(2):81−85. doi: 10.3969/j.issn.1672-3007.2007.02.015

    Li Y, Duan W B, Chen L X, et al. Microenvironmental variation feature of soil surface temperature in a broad-leaved Korean pine forest gap[J]. Science of Soil and Water Conservation, 2007, 5(2): 81−85. doi: 10.3969/j.issn.1672-3007.2007.02.015
    [22] 田国成, 孙路, 施明新, 等. 小麦秸秆焚烧对土壤有机质积累和微生物活性的影响[J]. 植物营养与肥料学报, 2015, 21(4):1081−1087. doi: 10.11674/zwyf.2015.0429

    Tian G C, Sun L, Shi M X, et al. Effect of wheat straw burning on soil organic matter accumulation and microbial activity[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 1081−1087. doi: 10.11674/zwyf.2015.0429
    [23] 周才平, 欧阳华. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J]. 植物生态学报, 2001, 25(2):204−209. doi: 10.3321/j.issn:1005-264X.2001.02.010

    Zhou C P, Ouyang H. Temperature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest[J]. Acta Phytoecologica Sinica, 2001, 25(2): 204−209. doi: 10.3321/j.issn:1005-264X.2001.02.010
    [24] 苏衍涛, 王凯荣, 刘迎新, 等. 稻草覆盖对红壤旱地土壤温度和水分的调控效应[J]. 农业环境科学学报, 2008, 27(2):670−676. doi: 10.3321/j.issn:1672-2043.2008.02.049

    Su Y T, Wang K R, Liu Y X, et al. Effects of rice straw mulching on soil temperature and moisture regulation in an upland red soil[J]. Journal of Agro-Environment Science, 2008, 27(2): 670−676. doi: 10.3321/j.issn:1672-2043.2008.02.049
    [25] Laszlo G, Barbara M, Andrea H, et al. Effects of gap size and associated changes in light and soil moisture on the understory vegetation of a Hungarian beech forest[J]. Plant Ecology, 2006, 183: 133−145. doi: 10.1007/s11258-005-9012-4
    [26] 国家气象局. 地面气象要素观测标准[M]. 北京: 中国气象出版, 1983.

    Central Meteorological Bureau. Standard for observation of ground meteorological elements[M]. Beijing: China Meteorological Press, 1983.
    [27] Issaks E H, Srivastava R M. An introduction to applied geostatistics[M]. New York: Oxford University Press, 1989.
    [28] Journel A G, Huijbregts C J. Mining geostatistics[M]. London: Academic Press, 1992.
    [29] 王政权. 地质统计学及其在生态学中的应用[M]. 北京: 科学出版社, 1999.

    Wang Z Q. Geostatistics and its application in ecology[M]. Beijing: Science Press, 1999.
    [30] 王盛萍, 张志强, 武军, 等. 土壤水分运动特征参数空间异质性: 理论分析、取样与影响因素[J]. 中国水土保持科学, 2003, 1(3):95−98. doi: 10.3969/j.issn.1672-3007.2003.03.020

    Wang S P, Zhang Z Q, Wu J, et al. Spatial heterogeneity of characteristic functional parameter of soil water movement: mathematical approaches, sampling scheme, and influencing factors[J]. Science of Soil and Water Conservation, 2003, 1(3): 95−98. doi: 10.3969/j.issn.1672-3007.2003.03.020
    [31] 冯静, 段文标, 陈立新, 等. 阔叶红松混交林林隙大小和林隙内位置对小气候的影响[J]. 应用生态学报, 2012, 23(7):1758−1766.

    Feng J, Duan W B, Chen L X, et al. Effects of forest gap size and within-gap position on the microclimate in Pinus koraiensis-dominated broadleaved mixed forest[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1758−1766.
    [32] 段文标, 冯静, 陈立新, 等. 阔叶红松混交林不同大小林隙土壤含水量的时空异质性[J]. 林业科学研究, 2012, 25(3):385−393. doi: 10.3969/j.issn.1001-1498.2012.03.019

    Duan W B, Feng J, Chen L X, et al. Spatiotemporal heterogeneity of soil water content at different size of gaps of Pinus koraiensis-dominated broadleaved mixed forest[J]. Forest Research, 2012, 25(3): 385−393. doi: 10.3969/j.issn.1001-1498.2012.03.019
    [33] Wang Z, He Q H, Hu B, et al. Gap thinning improves soil water content, changes the vertical water distribution, and decreases the fluctuation[J]. Canadian Journal of Forest Research, 2018, 48(9): 1042−1048. doi: 10.1139/cjfr-2018-0093
    [34] Latif Z A, Blackburn G A. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest[J]. International Journal of Biometeorology, 2010, 54(2): 119−129. doi: 10.1007/s00484-009-0260-1
    [35] Schmidt M G, Ogden A E, Lertzman K P. Seasonal comparison of soil temperature and moisture in pits and mounds under vine maple gaps and conifer canopy in a coastal western hemlock forest[J]. Canadian Journal of Soil Science, 1998, 78: 291−300. doi: 10.4141/S97-081
    [36] 魏全帅, 王敬华, 段文标, 等. 红松阔叶混交林不同大小林隙内丘坑复合体微气候动态变化[J]. 应用生态学报, 2014, 25(3):702−710.

    Wei Q S, Wang J H, Duan W B, et al. Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 702−710.
    [37] Han A R, Kim H J, Jung J B. Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature[J]. Forest Ecology and Management, 2018, 429: 579−588. doi: 10.1016/j.foreco.2018.07.042
    [38] 杜颖, 关德新, 殷红, 等. 长白山阔叶红松林的温度效应[J]. 生态学杂志, 2007, 26(6):787−792. doi: 10.3321/j.issn:1000-4890.2007.06.003

    Du Y, Guan D X, Yin H, et al. Temperature effect of broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains[J]. Chinese Journal of Ecology, 2007, 26(6): 787−792. doi: 10.3321/j.issn:1000-4890.2007.06.003
    [39] 罗大庆, 张晓娟, 任德智, 等. 藏东南色季拉山冷杉林林隙与非林隙小气候比较[J]. 北京林业大学学报, 2014, 36(6):48−53.

    Luo D Q, Zhang X J, Ren D Z, et al. Comparative research on microclimate between forest gaps and non-gaps of Smith fir forests in the Sejila Mountains, southeastern Tibet[J]. Journal of Beijing Forestry University, 2014, 36(6): 48−53.
    [40] Tajchman S J, Minton C M. Soil temperature regime in a forested Appalachian Watershed[J]. Canadian Journal of Forest Research, 1986, 16(3): 624−629. doi: 10.1139/x86-107
    [41] 江国华, 汪秀琴, 吴泽民. 安徽查湾甜槠林不同大小林隙温度因子对比分析[J]. 长江大学学报(自科版), 2016, 13(33):4−10. doi: 10.3969/j.issn.1673-1409(s).2016.33.003

    Jiang G H, Wang X Q, Wu Z M. Comparative analysis of temperature factors in different sizes of Castanopsis Eyre forests in Cha Wan, Anhui[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(33): 4−10. doi: 10.3969/j.issn.1673-1409(s).2016.33.003
    [42] 李洪建, 高玉凤, 严俊霞, 等. 不同取样尺度下亚高山草甸土壤呼吸的空间变异特征[J]. 环境科学, 2014, 35(11):4313−4320.

    Li H J, Gao Y F, Yan J X, et al. Spatial heterogeneity of soil respiration in a subalpine meadow at different sampling scales[J]. Environmental Science, 2014, 35(11): 4313−4320.
    [43] 张一平, 武传胜, 梁乃申, 等. 哀牢山亚热带常绿阔叶林森林土壤温湿特征及其对温度升高的响应[J]. 生态学报, 2015, 35(22):7418−7425.

    Zhang Y P, Wu C S, Liang N S, et al. Responses of soil temperature, moisture and respiration to experimental warming in a subtropical evergreen broad-leaved forest in Ailao Mountains, Yunnan[J]. Acta Ecologica Sinica, 2015, 35(22): 7418−7425.
    [44] 王晓婷, 郭维栋, 钟中, 等. 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系[J]. 地球科学进展, 2009, 24(2):181−191. doi: 10.3321/j.issn:1001-8166.2009.02.008

    Wang X T, Guo W D, Zhong Z, et al. Long term trend of soil temperature and humidity in eastern China and its relationship with climate background[J]. Advances in Earth Science, 2009, 24(2): 181−191. doi: 10.3321/j.issn:1001-8166.2009.02.008
    [45] Redding T E, Hope G D, Fortin M J, et al. Spatial patterns of soil temperature and moisture across subalpine forest-clearcut edges in the southern interior of British Columbia[J]. Canadian Journal of Soil Science, 2003, 83(1): 121−130. doi: 10.4141/S02-010
    [46] Petrie M D, Wildeman A M, Bradford J B, et al. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration[J]. Forest Ecology and Management, 2016, 361: 328−338. doi: 10.1016/j.foreco.2015.11.028
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1476
  • HTML全文浏览量:  908
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2019-04-07
  • 网络出版日期:  2019-07-11
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回